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2-ACYLTHIOACETAMIDES IN THE BIGINELLI REACTION

M. N. Kurmach', A. B. Ryabitskiy', and V. N. Britsun'*

We have demonstrated for the first time a Biginelli reaction of 2-acylthioacetamides with aromatic
aldehydes and ureas or thioureas, leading to N-Ar'-4-4r-6-R'-1 —R2-2—0x0(thiox0)—1,2,3,4—tetrahydro-
pyrimidine-5-carbothioamides. The regioselectivity of this process matched the concept of hard/soft Lewis
acids and bases. It was established that nitrous acid or other oxidants converted the synthesized compounds
into N-Ar'-4-Ar*-6-R'-1 -R2-2-0x0(thi0x0)-1,2, 3,4-tetrahydropyrimidine-5-carboxamides, and not the
expected 4-Ar’-6-R'-1-R’-5-(1, 3-benzothiazol-2-yl)-1,2,3,4-tetrahydropyrimidin-2-ones(thiones).

Keywords: 2-acylthioacetamides, aromatic aldehydes, 2-oxo(thioxo)-1,2,3,4-tetrahydropyrimidine-
S-carbothioamides, thioureas, ureas, three-component heterocyclization.

2-Acylthioacetamides are known as polyfunctional reagents useful as starting materials for the synthesis
of various nitrogen- or sulfur-containing compounds [1]. Nevertheless, multicomponent reactions of
2-acylthioacetamides remain little known. Some examples are known of one-pot condensation between 2-acyl-
thioacetamide and nitriles or aldehydes with activated methylene groups [2, 3], or with Meldrum's acid and
aldehydes [4], leading to 1,4-dihydropyridines or 1,5-dihydro-4H-thiochromeno[2,3-b]pyridin-5-ones,
respectively. However, the heterocyclization of 2-acylthioacetamides with aldehydes and ureas/thioureas (the
Biginelli reaction) so far has not been investigated.

The Biginelli reaction is a general method for the synthesis of 3,4-dihydropyrimidin-2-ones with
antiviral, antitumor, antihypertensive, antimalarial, and antituberculosis properties [5, 6]. This work is aimed at
introducing 2-acylthioacetamides in the Biginelli reaction and investigating the regioselectivity in such
reactions.

We established that the 2-acylthioacetamides la-d reacted with the aldehydes 2a-f and the
ureas/thioureas 3a-c in the presence of boric acid as a catalyst. The synthesis was performed in acetic acid at
100-110°C. The reaction did not proceed in the absence of boric acid. Using propionic acid instead of acetic
acid and increasing the reaction mixture temperature to 130-135°C had essentially no impact on the product
yield.

The reaction was selective and produced N-Ar'-4-Ar*-6-R'-1-R*-2-oxo(thioxo)-1,2,3,4-tetrahydro-
pyrimidine-5-carbothioamides 4a-m in 53-72% yields. The potential reaction products Sa-m were not observed.
Electron-donating substituents in the phenyl rings of the starting materials slightly improved the yields of the
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expected products (70-72%), compareed to electron-withdrawing substituents (51-58%). The reaction with
unsymmetrical N-methylthiourea (3c¢) was selective and produced 1-methyl-1,2,3,4-tetrahydropyrimidine-
2-thione 4k.

2-Acylthioacetamides played the role of 1,2-reactive bifunctional reagents in this [2+1+3]-
cyclocondensation reaction.

It should be pointed out that the heterocyclization reactions occurred at the carbonyl group, not the
thiocarbonyl group of the starting 2-acylthioacetamides la-d. Since the carbonyl group has a lower
polarizability and smaller size than the thiocarbonyl group, and amino group is a hard nucleophile, the
regioselectivity of this reaction was in agreement with the hard-soft acid-base theory.
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According to review articles [5, 6], a Biginelli reaction in acidic medium probably involves azomethine
intermediates, formed from aldehyde and urea/thiourea. It has been proposed [7] that boric acid with azomethine
and the 2-acylthioacetamide 1a-d formed reactive adducts 6 and 7, having highly electrophilic carbon atoms in
the C=N and C=0 groups, respectively.

The reaction of the adducts 6 and 7 apparently led to the intermediate 8, which underwent intra-
molecular cyclization accompanied by elimination of water and formation of the tetrahydropyrimidin-
2-ones(thiones) 4a-m.
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We have previously demonstrated that interaction of 2-acylthioacetamides with nitrous acid induced a
cyclization of the N-arylthioamide moiety to a benzothiazole [8]. A further research suggested that the 1,2,3,4-
tetrahydropyrimidin-2-ones 4 could be oxidized to the 5-(benzothiazol-2-yl)-1,2,3,4-tetrahydropyrimidin-2-ones 9.

However, data from the literature indicated that oxidation reactions of N-arylthioamides may proceed as
heterocyclizations to 1,2,4-thiadiazoles [9] and benzothiazoles [10-12], and/or as desulfurization and conversion
to amides [11-15]. The oxidants were nitrous acid [8, 9, 13], palladium chloride with atmospheric oxygen [10],
phenyliodonium bis(trifluoroacetate) [11, 12], N-nitrosopiperidine and N-methyl-N-nitrosoaniline [14], ceric
ammonium nitrate [12], and silver carbonate [15]. Other researchers have previously suggested that such
reactions occur through a nitrosonium cation intermediate [13, 14], and by a radical cation mechanism [11, 12].

We should note that even with the same reagent (nitrous acid [8, 9, 13], phenyliodonium
bis(trifluoroacetate) [11, 12]) the reactions can yield not only the heterocyclization products, but also products
from the thioamide group oxidation to an amide group. The substrate structure is likely a major factor affecting
these reactions.

We used the NaNO,/AcOH and KCIO;/AcOH systems as oxidants. However, the attempt to convert the
N-arylthioamide group of compounds 4a,b,d,e,i into a benzothiazole system failed to close the ring and resulted
in oxidation of the thioamide to an amide group. The reaction products in all cases were N-aryl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxamides 10a-e in 40-48% yields.
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The structures of the synthesized compounds were confirmed by IR, 'H NMR, and °C NMR
spectroscopy, and the composition was determined by elemental analysis.

The '"H NMR spectra of compounds 4a-m, 10a-e exhibited signals of all the structural fragments that
contained protons. The characteristic signals were those of the 6-methyl group protons (1.89-2.10 ppm), 4-CH
protons (5.35-6.00 ppm), 1-NH (8.58-8.82 ppm for the tetrahydropyrimidin-2-ones 4a-h, 10a-d and 9.88-
10.14 ppm for the tetrahydropyrimidine-2-thiones 4i-m, 10e), 3-NH (7.48-9.46 ppm), NHCS (10.57-11.46 ppm),
and NHCO (9.35-9.67 ppm). The vicinal 3-NH and 4-CH proton signals were typically present as broad
singlets, probably due to the rapid deuterium exchange at the nitrogen atom. The most informative >C NMR
signals of compounds 4a,d,e,i,h and 10a,e were those of the carbonyl groups (NHCONH (152.5-163.1 ppm),
NHCO (164.9-165.2 ppm)) and the thiocarbonyl groups (NHCS (194.7-195.4 ppm), NHCSNH (173.4-174.0 ppm)).

The IR spectra of the compounds 4a-m, 10a-e contained absorption bands of NH groups (3350-3200 cm™),
aromatic CH (3100-2950 cm™), and carbonyl groups (1660-1690 cm™).

Compounds 10 were also obtained in 27-82% yields by the condensation of acetoacetanilides with
aldehydes and ureas [16]. We should note that this reaction required forcing conditions when no catalysts were
used: a mixture of the starting materials was fused at the temperature range from 120°C to 150°C. Our reported
method presents an alternative, which may be used depending on the availability of the starting
acetoacetanilides and 2-acylthioacetamides.

Thus, we have demonstrated for the first time a Biginelli reaction with 2-acylthioacetamides. It was
established that the reaction occurred between the hard reaction centers according to the hard-soft acid-base
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theory. N-Ar'-4-Ar*-6-R'-1-R*-2-oxo(thiox0)-1,2,3 4-tetrahydropyrimidine-5-carbothioamides were synthesized
and characterized, and the structure was confirmed by spectroscopy. The attempts at oxidation of these
compounds with NaNO,/AcOH or KCIO3/AcOH systems resulted in desulfurization and produced the
respective carboxamides.

EXPERIMENTAL

IR spectra of compounds were acquired on a Vertex 70 spectrometer in KBr pellets. "H and *C NMR
spectra were acquired on a Varian GEMINI 2000 instrument (400 and 100 MHz, respectively) in DMSO-dg,
with TMS as internal standard. Elemental analysis was performed on a Carlo Erba elemental analyzer. The
melting points were determined with a PTP-1 apparatus. The 2-acylthioacetamides 1a-d were synthesized by a
literature method [17].

Preparation of N-Ar'-4-Ar’-6-R'-1-R*-2-Oxo(thioxo)-1,2,3,4-tetrahydropyrimidine-5-carbothio-
amides 4a-m (General Method). A solution of 2-thioacetamide 1a-d (1.0 mmol), aldehyde 2a-f (1.0 mmol),
urea or thiourea 3a-c (1.0 mmol), and boric acid (0.2 mmol) in acetic acid (2-3 ml) was heated for 4-8 h at 100-
110°C. A crystalline precipitate of the tetrahydropyrimidine 4a-m formed upon cooling. In cases when there
was no precipitation, the reaction mixture was poured into aqueous NaCl solution. The precipitate was filtered
off, dried, and purified by crystallization.

6-Methyl-2-oxo0-V,4-diphenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4a). Yield 65%; mp
235-237°C (PhCN). IR spectrum, v, cm™: 3200-2950, 1675 (C=0), 1495, 1445, 1365, 1305. "H NMR spectrum,
o, ppm: 1.91 (3H, s, CH3;); 5.72 (1H, br. s, 4-CH); 7.17-7.58 (11H, m, H Ph, 3-NH); 8.62 (1H, s, 1-NH); 11.06
(1H, s, NHCS). C NMR spectrum, &, ppm: 16.9 (CHs); 57.8 (C-4); 113.4, 123.6, 125.9, 126.2, 127.1, 128.2,
128.3, 131.7 (C Ph); 139.2 (C-5); 143.7 (C-6); 152.5 (C=0); 195.2 (C=S). Found, %: C 66.90; H 5.27; N 12.69;
S 10.15. C3H7N50S. Calculated, %: C 66.85; H 5.30; N 12.99; S 9.91.

N-(4-Methoxyphenyl)-6-methyl-2-0x0-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4b).
Yield 70%; mp 179-182°C (MeNQO,). IR spectrum, v, cm™: 3200, 3100, 2950, 1680 (C=0), 1513, 1436, 1372,
1299. '"H NMR spectrum, &, ppm (J, Hz): 1.90 (3H, s, CH3); 3.73 (3H, s, 4-CH;0); 5.71 (1H, br. s, 4-CH); 6.85
(2H, d, J= 8.1, H Ar); 7.23-7.41 (7TH, m, H Ph, 3-NH); 7.47 (2H, d, J = 8.1, H Ar); 8.58 (1H, s, 1-NH); 10.94
(1H, s, NHCS). Found, %: C 64.61; H 5.55; N 12.18; S 9.36. C;oH9N;0,S. Calculated, %: C 64.57; H 5.42;
N 11.89; S 9.07.

6-Methyl-N-(4-nitrophenyl)-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4c).
Yield 55%; mp 238-240°C (PhCN). IR spectrum, v, cm™: 3345, 3230, 3090, 2930, 1690 (C=0), 1615, 1600,
1525, 1500, 1462, 1431. "H NMR spectrum, 3, ppm (J, Hz): 1.97 (3H, s, CH3); 5.71 (1H, br. s, 4-CH); 7.25-7.35
(5H, m, H Ph); 7.56 (1H, s, 3-NH); 7.80 (2H, d, /= 8.4, H Ar); 8.20 (2H, d, /= 8.4, H Ar); 8.81 (1H, s, I-NH);
11.40 (1H, s, NHCS). Found, %: C 58.74; H 4.27; N 14.97; 8.48. C;sHsN4O3S. Calculated, %: C 58.68; H 4.38;
N 15.21; S 8.70.

4-(4-Fluorophenyl)-6-methyl-2-oxo-/N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide ~ (4d).
Yield 64%; mp 162-165°C (EtOH). IR spectrum, v, cm™: 3200, 3100, 2950, 1660 (C=0), 1510, 1446, 1365,
1307. '"H NMR spectrum, 8, ppm: 1.93 (3H, s, CHs); 5.70 (1H, br. s, 4-CH); 7.11-7.43 (8H, m, H Ar, 3-NH);
7.54-7.62 (2H, m, H Ar); 8.64 (1H, s, 1-NH); 11.06 (1H, s, NHCS). BC NMR spectrum, d, ppm: 16.6 (CHs);
57.2 (C-4); 113.3, 115.0, 115.3, 123.6, 126.0, 128.3, 128.5, 132.0 (C Ar); 139.6 (C-5); 152.4 (C-6); 162.4
(C=0); 195.2 (C=S). Found, %: C 63.44; H4.87; N 12.04; S 9.25. C;3H,FN;OS. Calculated, %: C 63.32;
H4.72; N 12.31; S 9.39.

4-(4-Methoxyphenyl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4e).
Yield 72%; mp 184-185°C (MeNO,). IR spectrum, v, cm™: 3200, 3100, 2950, 1660 (C=0), 1610, 1555, 1510,
1445. '"H NMR spectrum, d, ppm (J, Hz): 1.91 (3H, s, CH3); 5.66 (1H, br. s, 4-CH); 6.88 (2H, d, J= 8.2, H Ar);
7.23-7.40 (6H, m, H Ph, 3-NH); 7.59 (2H, d, J = 8.2, H Ar); 8.60 (1H, s, 1-NH); 11.06 (1H, s, NHCS).
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BCNMR spectrum, 8, ppm: 16.7 (CHs); 54.9 (OCHs); 57.3 (C-4); 113.3, 123.5, 123.7, 125.7, 127.5, 128.4,
131.6, 135.8 (C Ar); 139.2 (C-5); 152.4 (C-6); 158.0 (C=0); 195.4 (C=S). Found, %: C 64.63; H 5.58; N 12.13;
S 8.80. C;9H9N30,S. Calculated, %: C 64.57; H 5.42; N 11.89; S 9.07.
6-Methyl-4-(3-nitrophenyl)-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4f).
Yield 51%; mp 170-172°C (EtOH). IR spectrum, v, cm™: 3350, 3200, 3100, 2950, 1670 (C=0), 1600, 1525,
1495, 1465. '"H NMR spectrum, o, ppm: 1.97 (3H, s, CH3); 5.77 (1H, br. s, 4-CH); 7.17-7.22 (1H, m, H Ar);
7.31-7.36 (2H, m, H Ar); 7.51-7.83 (5H, m, H Ar, 3-NH); 8.12-8.17 (2H, m, H Ph); 8.82 (1H, s, 1-NH); 11.17
(1H, s, NHCS). Found, %: C 58.79; H4.10; N 14.95; S 8.98. CgHsN4OsS. Calculated, %: C 58.68; H 4.38;
N 15.21; S 8.70.
4-(2-Furyl)-6-methyl-2-oxo-N-phenylthiocarbamoyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide
(4g). Yield 53%; mp 145-147°C (EtOH). IR spectrum, v, cm™: 3200, 3100, 2955, 1670 (C=0), 1600, 1510,
1445, 1365. '"H NMR spectrum, 8, ppm (J, Hz): 1.89 (3H, s, CH3); 5.76 (1H, br. s, 4-CH); 6.25-6.29 (1H, m,
H Ar); 6.37 (1H, d, J= 4.0, H Ar); 7.17-7.23 (1H, m, H Ph); 7.32-7.38 (2H, m, H Ar); 7.55-7.63 (4H, m, H Ar,
3-NH); 8.73 (1H, s, 1-NH); 11.20 (1H, s, NHCS). Found, %: C 61.57; H 5.09; N 13.22; S 10.46. C;sH5N30,S.
Calculated, %: C 61.32; H4.82; N 13.41; S 10.23.
2-0x0-N,4,6-triphenyl-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4h). Yield 60%; mp
232-234°C (EtOH). IR spectrum, v, cm™: 3350, 3300, 3100, 3000, 1680 (C=0), 1595, 1530, 1490, 1460, 1430.
"H NMR spectrum, d, ppm: 5.68 (1H, br. s, 4-CH); 7.05-7.63 (16H, m, H Ph, 3-NH); 8.78 (1H, s, 1-NH); 10.57
(1H, s, NHCS). >C NMR spectrum, 8, ppm: 58.2 (C-4); 123.4, 124.2, 125.6, 126.2, 126.5, 127.1, 127.5, 128.1,
128.6, 129.3, 130.0, 133.9 (C Ph); 143.1 (C-5); 152.8 (C-6); 163.1 (C=0); 195.0 (C=S). Found, %: C 71.73;
H 5.23; N 11.04; S 8.12. C,3H9N30S. Calculated, %: C 71.66; H 4.97; N 10.90; S 8.32.
6-Methyl-/V,4-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4i). Yield 70%;
mp 251-253°C (PhCN). IR spectrum, v, cm™: 3350, 3200-3000, 2950, 1560, 1490, 1440, 1345. '"H NMR
spectrum, J, ppm: 1.97 (3H, s, CH3); 5.71 (1H, br. s, 4-CH); 7.25-7.55 (8H, m, H Ph); 7.57-7.63 (2H, m, H Ph);
9.26 (1H, s, 3-NH); 9.91 (1H, s, 1-NH); 11.21 (1H, s, NHCS). BC NMR spectrum, J, ppm: 16.3 (CH3); 58.1
(C-4); 114.8, 123.4, 124.2, 125.9, 126.4, 126.9, 127.5, 128.9 (C Ph); 138.6 (C-5); 142.4 (C-6); 173.4 (C=S);
194.7 (C=S). Found, %: C 63.89; H 4.88; N 12.25; S 19.17. C;sH7N3S,. Calculated, %: C 63.68; H 5.05;
N 12.38; S 18.89.
6-Methyl-N-phenyl-4-(2-thienyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbothioamide “)).
Yield 68%; mp 220-222°C (MeNQO,). IR spectrum, v, cem™: 3350, 3150, 2955, 1580, 1554, 1480, 1440.
'H NMR spectrum, 8, ppm: 1.99 (3H, s, CH3); 6.00 (1H, br. s, 4-CH); 6.95-6.99 (2H, m, H Ar); 7.18-7.23 (1H,
m, H Ar); 7.35-7.45 (3H, m, H Ar); 7.60-7.64 (2H, m, H Ph); 9.46 (1H, s, 3-NH); 10.05 (1H, s, 1-NH); 11.32
(1H, s, NHCS). Found, %: C 55.38; H4.55; N 12.26; S 28.12. C;sH;5N3S;. Calculated, %: C 55.62; H 4.38;
N 12.16; S 27.84.
4-(4-Methoxyphenyl)-1,6-dimethyl-/NV-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbothio-
amide (4k). Yield 60%; mp 225-227°C (MeNO,). IR spectrum. v, cm™: 3180, 3030, 2900, 1605, 1535, 15009,
1450, 1370. '"H NMR spectrum, o, ppm (J, Hz): 2.10 (3H, s, CH3); 3.47 (3H, s, NCH,); 3.73 (3H, s, CH;0); 5.56
(1H, d, J = 3.0, 4-CH); 6.88 (2H, d, J = 8.1, H Ar); 7.18-7.22 (3H, m, H Ph); 7.34-7.40 (2H, m, H Ph); 7.69
(2H, d, J= 8.1, H Ar); 9.37 (1H, d, J = 3.0, 3-NH); 11.46 (1H, s, NHCS). Found, %: C 62.90; H 5.34; N 11.23;
S 16.49. CyH,1N;08,. Calculated, %: C 62.63; H 5.52; N 10.96; S 16.72.
4-(4-Methoxyphenyl)-6-methyl-N-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbothioamide
(4). Yield 73%; mp 170-172°C (MeNO,). IR spectrum, v, cm™: 3300, 3170, 2970, 1595, 1565, 1522, 1472,
1440. '"H NMR spectrum, o, ppm (J, Hz): 1.97 (3H, s, CH3); 3.73 (3H, s, CH;0); 5.64 (1H, br. s, 4-CH); 6.90
(2H, d, J= 8.3, H Ar); 7.18-7.25 (3H, m, H Ph); 7.30-7.37 (2H, m, H Ph); 7.60 (2H, d, J = 8.3, H Ar); 9.21
(1H, s, 3-NH); 9.88 (1H, s, 1-NH); 11.21 (1H, s, NHCS). Found, %: C 62.02; H 5.35; N 11.55; S 17.08.
Ci9H9N50S,. Calculated, %: C 61.76; H5.18; N 11.37; S 17.36.
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6-Methyl-4-(3-nitrophenyl)-NV-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbothioamide (4m).
Yield 58%; mp 185-188°C (MeNO,). IR spectrum, v, cm™: 3300, 3170, 2975, 1563, 1525, 1475, 1440, 1350
'H NMR spectrum, 8, ppm: 2.02 (3H, s, CHs); 5.77 (1H, br. s, 4-CH); 7.18-7.22 (1H, m, H Ar); 7.32-7.37 (2H,
m, H Ar); 7.57-7.72 (4H, m, H Ar); 8.10-8.17 (2H, m, H Ph); 9.44 (1H, s, 3-NH); 10.14 (1H, s, 1-NH); 11.33
(1H, s, NHCS). Found, %: C 56.50; H 4.38; N 14.73; S 16.94. C;sH(N4O,S,. Calculated, %: C 56.23; H 4.19;
N 14.57; S 16.68.

Preparation of N-Ar'-4-Ar’-6-R'-1-R*-2-Oxo(thioxo)-1,2,3,4-tetrahydropyrimidine-5-carboxamides
10a-e (the method by nitrous acid oxidation). A suspension of tetrahydropyrimidine 4a,b,e,d,i (1.0 mmol) and
NaNO, (172.5 mg, 2.5 mmol) in acetic acid (3 ml) was stirred for 8 h at 5°C and poured into 50 ml of cold
water. The precipitate of tetrahydropyrimidine 10a-e was filtered off, dried, and purified by crystallization.

Preparation of N-Ar'-4-Ar’-6-R'-1-R*-2-Oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamides 10a,c
(the method by potassium chlorate oxidation). A solution of tetrahydropyrimidine 4a,b (3 mmol) and KClOs
(122.5 mg, 1.0 mmol) in acetic acid (5 ml) was stirred for 2 h at 30-40°C, cooled, and poured into 50 ml of cold
water. The precipitate of tetrahydropyrimidine 10a,c was filtered off, dried, and purified by crystallization.

6-Methyl-2-o0x0-V,4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (10a). Yield 48%; mp
240-243°C (PhCN) (246-248°C (EtOH) [16]). IR spectrum, v, cm™: 3230, 3100, 2980, 1675 (C=0), 1620,
1595, 1520, 1440. '"H NMR spectrum, d, ppm: 2.04 (3H, s, CH;); 5.40 (1H, br. s, 4-CH); 6.95-7.02 (1H, m,
H Ph); 7.18-7.29 (7H, m, H Ph, 3-NH); 7.50 (3H, m, H Ph); 8.63 (1H, s, 1-NH); 9.47 (1H, s, NHCO). *C NMR
spectrum, 6, ppm: 17.1 (Me); 55.0 (C-4); 105.4, 119.5, 123.0, 126.1, 127.2, 128.4, 128.6, 138.4 (C Ph); 139.1
(C-5); 144.2 (C-6); 152.6 (C-2); 165.2 (NHCO). Found, %: C 70.37; H 5.29; N 13.90. C;3H;7N50,. Calculated,
%: C 70.34; H 5.58; N 13.67.

4-(4-Methoxyphenyl)-6-methyl-2-0xo0-/V-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide  (10b).
Yield 45%; mp 222-223°C (PhCN). IR spectrum, v, cm™: 3240, 3100, 2950, 1675 (C=0), 1625, 1600, 1510,
1450. '"H NMR spectrum, o, ppm (J, Hz): 2.04 (3H, s, CH3); 3.71 (3H, s, CH;0); 5.35 (1H, br. s, 4-CH); 6.86
(2H, d, J = 8.4, H Ar); 6.94-7.00 (2H, m, H Ph); 7.18-7.24 (3H, m, H Ph); 7.40 (1H, s, 3-NH); 7.53 (2H, d,
J=28.4, H Ar); 8.62 (1H, s, 1-NH); 9.45 (1H, s, NHCO). Found, %: C 67.40; H 5.39; N 12.72. C;9H9N30s.
Calculated, %: C 67.64; H 5.68; N 12.46.

N-(4-Methoxyphenyl)-6-methyl-2-ox0-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (10c).
Yield 42%; mp 229-230°C (PhCN). IR spectrum, v, cm™: 3250, 3100, 2950, 1680 (C=0), 1670 (C=0), 1620,
1515, 1465, 1410. '"H NMR spectrum, 6, ppm (J, Hz): 2.03 (3H, s, CH3); 3.69 (3H, s, CH;0); 5.37 (1H, br. s,
4-CH); 6.78 (2H, d, J = 9.0, H Ar); 7.27-7.33 (SH, m, H Ph); 7.42 (2H, d, J = 9.0, H Ar); 7.48 (1H, s, 3-NH);
8.59 (1H, s, 1-NH); 9.35 (1H, s, NHCO). Found, %: C 67.90; H 5.95; N 12.45. C9HoN;0s. Calculated, %:
C 67.64; H5.68; N 12.46.

4-(4-Fluorophenyl)-6-methyl-2-oxo0-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (10d).
Yield 41%; mp 190-193°C (MeNO,). IR spectrum, v, cm™: 3280, 3100, 2950, 1670 (C=0), 1630, 1600, 1505,
1440. '"H NMR spectrum, J, ppm: 2.05 (3H, s, CHs;); 5.39 (1H, br. s, 4-CH); 6.96-7.02 (1H, m, H Ph); 7.08-7.12
(2H, m, H Ar); 7.20-7.24 (2H, m, H Ar); 7.30-7.35 (2H, m, H Ar); 7.49-7.56 (3H, m, H Ar, 3-NH); 8.68 (1H, s,
1-NH); 9.49 (1H, s, NHCO). Found, %: C 66.47; H 5.24; N 13.05. C;sHsFN3;0O,. Calculated, %: C 66.45;
H4.96; N 12.92.

6-Methyl-V,4-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide (10e). Yield 40%;
mp 160-162°C (MeNO,). IR spectrum, v, cm™: 3270, 3100, 3000, 1675 (C=0), 1630, 1595, 1525, 1490, 1440.
'"H NMR spectrum, d, ppm (J, Hz): 2.07 (3H, s, CH3); 5.40 (1H, br. s, 4-CH); 6.93-7.03 (1H, m, H Ph);
7.25-7.35 (6H, m, H Ph); 7.50-7.54 (3H, m, H Ph); 9.35 (1H, s, 3-NH); 9.67 (1H, s, NHCO); 9.91 (1H, s,
1-NH). *C NMR spectrum, , ppm: 16.3 (CHz); 55.2 (C-4); 120.2, 123.2, 124.0, 125.5, 126.6, 127.3, 129.0,
134.7 (C Ph); 139.3 (C-5); 142.9 (C-6); 164.9 (C=0); 174.0 (C=S). Found, %: C 66.93; H 5.40; N 13.90;
S 10.07. CsH7N30S. Calculated, %: C 66.85; H 5.30; N 12.99; S 9.91.
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