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Abstract: An asymmetric synthesis of the C(17)-C(27) segment of bryostatin I is described. 

Bryostatin 1 is a recently discovered antineoplastic macrolide isolated from the marine organism Bugula 

neritina.l,2 Bryostatin 1 displays potent antitumour activity against a range of liquid and solid animal tumours, 

that include the murine P388 lymphocytic leukaemia, where it leads to a 96% life extension at 70 I.tg/kg, 1 and the 

murine M531 ovarian sarcoma where it produces a 68% life extension when administered at 40 pg/kg. 2 The 

exact sequence of biological events by which bryostatin 1 induces tumour regression remains unknown. One 

hypothesis 3,4 is that bryostatin 1 synergises with interleukin 4 (IL-4) and interleukin-2 (IL-2) to activate protein 

kinase C, and that this stimulates the maturation of cytotoxic T-lymphocytes from naive, resting T-lymphocytes. 

Bryostatin 1 then cooperatively activates the newly primed cytotoxic T-cells, along with IL-4 and IL-2, to 

promote the non-specific lysis of tumour cells. While this mechanism of antitumour action for bryostatin 1 is very 

appealing,  3,4 further studies are going to be necessary before it is conclusively proven in vivo. Such 

investigations might be facilitated by the availability of bryostatin 1 analogues for use as biological probes. As a 

result, we have initiated a total synthesis programmeS, 6 on bryostatin 1 (1), and herein, describe our asymmetric 

synthesis of 2, an advanced intermediate corresponding to the C(17)-C(27) sector. 
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Our retrosynthetic analysis of bryostatin 1 is outlined in Scheme 1. The key steps in our plan were a 

Claisen condensation between anion 3 and ester 4 to establish the C(18)-C(19) bond, subsequent unmasking of 

the C(20), C(21) and C(23) hydroxyl protecting groups, a Fischer glycosidation to introduce the axial methyl 

glycoside at C(19), and a butyrolactonisation between the C(17)-ester and the C(20)-hydroxy group. This would 

expose the secondary alcohol at C(21) for oxidation and Wittig olefination to install the exocyclic t~,13-unsaturated 

ester of 2. Ester 4 would be obtainable from aldehyde 6 through a Wittig olefination/Sharpless asymmetric 

dihydroxylation (AD) tactic. AD technology 7 could also be used to stereoselectively introduce the two hydroxy 

stereocentres in 7, if chemoselectively applied on diene 8. 8 Homologation of the double bond in 7 to give an 

allylic alcohol might then allow the C(23)-hydroxyl group to be installed through a Sharpless 

epoxidation/REDAL reduction sequence. 

Asynunetric dihydroxylation 7 of diene 8 with AD-mix-~ (0.6 equiv) occurred selectively across the (E)- 

disubstituted olefin, to deliver known diol 7 in 45-58% yield. 8 The two hydroxy groups in 7 were protected as t- 

butyldimethylsilyl ethers by treatment with t-butyldimethylsilyl chloride (2.4 equiv) and imidazole (3.0 equiv) in 

DMF (ca. 1M) at 70°C, and the double bond oxidatively cleaved with catalytic osmium tetroxide (1.8 mol %) and 

sodium periodate (6.5 equiv) in aqueous THF. The resulting aldehyde 9 reacted readily with stabilised ylid 5 

(3.0 equiv) in CH2C12 (ca. IM) to provide alkene 10 as essentially one geometrical isomer. After reduction of the 

ester group with DIBAL-H (2.2 equiv), a Sharpless asymmetric epoxidation 9 was carried out on the (E)-allylic 

alcohol with (-)-DET as the chiral additive. Epoxy alcohol 11 { [t~]D +48.4 ° (c 0.5, CH2Cl2)}was obtained in 

89% yield and >96% ee; it underwent regioselective reduction 10 with REDAL (5.0 equiv) in THF (ca. 0.68 M) 

between -30 and -20 oC to afford diol 12 {[Ct]D +18.4 ° (c 0.5, CH2C12)} in 83% yield. After protection of the 

1,3-diol as its p-methoxybenzylidene acetal, reductive cleavage 11 was performed with DIBAL-H (2.4 equiv) in 

CH2C12 (ca. 1M). This furnished primary alcohol 13 in 60-69% yield for the two steps. Compound 13 was then 

oxidised to aldehyde 6,12 and a Wittig reaction performed to obtain 14 as the major geometrical isomer. The 

Sharpless AD reaction on alkene 14 with AD-mix-13 (3.85 equiv) and methanesulfonamide (3.8 equiv) proved 

rather slow, taking 3 days at 0oc to reach completion. However, it did successfully install the C(20)-hydroxy 

stereocentre with total stereocontrol in 86% yield. The diol unit in 15 was next protected as an isopropylidene 

acetal, and a Claisen condensation executed with the lithium enolate obtained from treating methyl isobutyrate 

(7.4 equiv) with LDA (7.0 equiv) in THF at -75oc. The Claisen condensation was essentially complete after 90 

min at -75°C and delivered ~-keto ester 16 {[O~]D +38.4 ° (c 0.5, CH2C12)} in 85% yield. O-Desilylation was 

accomplished with HF-pyridine complex (2.4 equiv) in THF (ca. O. 14 M) at -5°C. The resulting diol was then 

O-pivaloylated, and the p-methoxybenzyl ether removed 13 with DDQ (1.5 equiv) in CH2CI2-H20 (17:1, ca. O. 14 

M) to give alcohol 17. The best conditions for removing the acetonide group from 17 involved the use of 

Amberlyst-15 (H ÷) resin in methanol at 45oc for 30 h. This not only instigated cyclisation to the butyrolactone 14 

but also induced ring-closure of the pyran hemiketal ring system. Fischer glycosidation 15 of the bicyclic lactol 

proceeded slowly with acetyl chloride (18.5 equiv) in methanol (ca 0.16 M) at 40°C for 28 h, but did produce 

methyl glycoside 18 { [O~]D +28.5 ° (c 0.2, CH2C12)} in 56% yield from 17. All that now remained to complete 

the synthesis of 2 was oxidation of alcohol 18 with ruthenium trichloride (8 mol%) and sodium periodate (2.0 

equiv) in MeCN:CC14:H20 (2:2:3), 16 followed by a Wittig reaction with MeO2CCH=PPh3 (2.8 equiv) in 

dichloromethane. Somewhat surprisingly, this olefination proved to be non-stereoselective, delivering a 1:1 

mixture of (E)- and (Z)-isomers in 82 % yield; the latter were successfully separated by multiple-elution 

preparative TLC. The double-bond geometry in alkene 2 was apparent from the 400 MHz IH NMR NOESY 
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spectrum in C6D6. This revealed a strong NOE between the equatorial hydrogen at C(20), which resonated as a 

singlet at 6 4.07, and the olefinic hydrogen at 8 5.85 which resonated as a narrow doublet (J = 1.8 Hz). In 

addition, the equatorial allylic hydrogen at C(22) resonated as a double-doublet at 6 3.91 (J = 1.8, 14.1 Hz); its 
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chemical shift was indicative of it residing in the deshielding cone of the tx,[~-unsaturated ester carbonyl group. 

The axial hydrogen at C(22) resonated as a doublet of double-doublets at 5 2.09 (J = 1.8, 11.7, 14.0 Hz). As 

one would expect, the C(22) equatorial hydrogen also showed a strong NOE with the axial hydrogen at C(23), 

which indicated that both these hydrogens were syn-related. The C(23) hydrogen appeared as a multiplet at 5 

3.70 and gave rise to a significant NOE with the methoxy group of the methyl glycoside (s, ~5 3.11), confirming 

their 1,3-diaxial relationship. The low-field positions of the C(25) hydrogen (5 5.38, m) and the C(26) hydrogen 

(5 5.01, m) corroborated the presence of O-pivaloate esters at these positions. Evidence for the 7-butyrolactone 

ring system was provided by the IR spectrum of 2 (KBr) which displayed an intense C=O stretching absorption 

at 1793 c m l ;  its high frequency position was suggestive of significant angular strain within the lactone ring. 

Compound 2 also gave a satisfactory microanalysis for C27H42010 (Calcd.: C, 61.58; H, 8.04%. Found: C, 

61.42; H, 8.40%). Further synthetic studies on bryostatin 1 will be reported in due course. 
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