KINETIC STUDIES ON THE AMINOLYSIS OF 1-(TRIMETHYLSILYL)ETHYL ARENESULPHONATES IN ACETONITRILE AND METHANOL

HYUCK KEUN OH AND CHUL HO SHIN

Department of Chemistry, Chonbuk National University, Chonju, 560-756, Korea

AND

HYOUNG YEON PARK AND IKCHOON LEE*

Department of Chemistry, Inha University, Inchon, 420-751, Korea

Nucleophilic substitution reactions of 1-(trimethylsilyl)ethyl arenesulphonates with anilines and benzylamines in acetonitrile and methanol at $65 \cdot 0^{\circ}$ C were studied. The cross-interaction constants, ρ_{XZ} , between substituents in the nucleophile (X) and leaving group (Z) are relatively small (0.10 for XC₆H₄NH₂ in MeCN) but similar to those for other S_N2 processes at a secondary carbon atom. This provides further evidence for an approximately constant, loose S_N2 transition state at a secondary carbon regardless of the size of the C_{\alpha} substituents. The transition-state variations with substituents X and Z are in accord with that expected from the positive ρ_{XZ} value observed: a stronger nucleophile and/or nucleofuge leads to an earlier transition state, i.e. a lower degree of bond making and breaking.

INTRODUCTION

The cross-interaction constants, ρ_{ij} in the equation

$$\log(k_{ij}/k_{\rm HH}) = \rho_i \sigma_i + \rho_j \sigma_j + \rho_{ij} \sigma_i \sigma_j \tag{1}$$

have been successfully applied to the elucidation of organic reaction mechanisms in solution.¹ In equation (1), *i* and *j* represent the substituent X, Y or Z in the nucleophile, substrate and leaving group, respectively (Scheme 1). It has been shown¹ that if the sign of ρ_{XZ} , which can be alternatively given¹ as

$$\rho_{\rm XZ} = \frac{\delta \rho_Z}{\delta \sigma_{\rm X}} = \frac{\delta \rho_{\rm X}}{\delta \sigma_Z} \tag{2}$$

is positive (negative), a stronger nucleophile ($\delta \sigma_X < 0$) and/or nucleofuge ($\delta \sigma_Z > 0$) lead to an earlier (later) transition state (TS) with a lower (higher) degree of bond making ($\delta | \rho_X | < 0$) and breaking ($\delta \rho_Z < 0$). On the other hand, the magnitude of ρ_{XZ} provides a measure of the tightness of the TS.¹ It has been reported that a tight TS involved in an associative S_N2 process at a primary carbon atom shows a relatively large magnitude of ρ_{XZ} , whereas the ρ_{XZ} value is small for a dissociative S_N2 process with a loose TS at a sec-

ondary carbon atom.² Surprisingly, the size of ρ_{XZ} has been found to be approximately constant for the primary (ca 0.33)³ and secondary carbon centres (ca 0.10),⁴ respectively, irrespective of the size of a group attached to the reaction centre carbon, C_{α}.

In previous work, a ρ_{XZ} value of 0.33 was obtained³ for the reactions of trimethylsilylmethyl arenesulphonates (I) with anilines in acetonitrile at 65.0 °C conforming to the value expected for a tight TS at a primary carbon centre despite the large trimethylsilyl group on the α -carbon. In this work, we extended our work to its α -methyl-substituted analogue (II), which has a secondary carbon center.

> Received 12 December 1993 Revised 18 February 1994

^{*} Author for correspondence.

CCC 0894-3230/94/070359-05

^{© 1994} by John Wiley & Sons, Ltd.

RESULTS AND DISCUSSION

The second-order rate constants, k_2 , for the reactions of 1-(trimethylsilyl)ethyl arenesulphonates (II) with anilines and benzylamines are summarized in Table 1. The rate is seen to increase with a stronger nucleophile ($\delta\sigma_X < 0$) and nucleofuge ($\delta\sigma_Z > 0$), as expected from a typical S_N2 process. Comparison of the rates for II in Table 1 with the corresponding values for the reactions of I with anilines in MeCN³ indicates that the rate is ca 3-6.8 times faster for I than for II, i.e. $k_2(I)/k_2(II) = 3-6.8$. The rate ratio becomes greater with a stronger nucleophile and nucleofuge; the ratio varies from ca 3 for X = p-Cl with Z = p-CH₃ to 6.8 for X = p-CH₃O with Z = p-NO₂. This is consistent with a lower degree of steric inhibition due to a lower degree of bond formation in the TS for a stronger nucleophile and/or nucleofuge, as the decrease in the magnitude of the Hammett ($|\rho_X|$ and ρ_Z) and Brønsted coefficients (β_X and $|\beta_Z|$) in Table 2 indicate.

An earlier TS with a lower degree of bond formation for a stronger nucleophile and nucleofuge is also consistent with the positive ρ_{XZ} values (Table 3), which are determined by subjecting the rate data in Table 1 to multiple regression analysis using equation (1) with i, j = X, Z.¹ A similar trend is found for the reactions of I and II with anilines in MeOH; in this case, however, the ratio is greater, $k_2(I)/k_2(II) = 5-7.5$. This may be due to a looser TS for the reactions in MeOH than in MeCN. Indeed, we note in Table 3 that the cross-interaction constants, ρ_{XZ} and β_{XZ} , are smaller in MeOH, albeit the difference in the magnitude is very small.

The TSs for both $S_N 2^5$ and $S_N 1^6$ processes are known to become tighter and less ionic with increasing solvent polarity. A tighter TS is therefore expected in MeCN ($\varepsilon = 37.5$) than in MeOH ($\varepsilon = 32.6$).

Nucleophile		Z					
	х	p-CH ₃	H	<i>p</i> -Cl	m-NO ₂	p-NO ₂	
Aniline ^a	<i>p</i> -CH₃O	0.837	1.24	2.26	6.80	$8 \cdot 62$ $(58 \cdot 6)^d$	
	$p-CH_3$	0.539	0.797	1.47	4.61	5.74	
	́н ́	0.267	0.408	0.754	2.37	2.96	
	p-Cl	$0.106 (0.312)^{d}$	0.160	0.298	0.941	1 · 22	
	[MeOH] ^c	[0.425]	[0.656]	[1.33]	[4 • 47]	[5.70]	
Aniline ^b	p-CH₃O	2.15	3.30	5.16	14.5	20·9 (157) ^d	
	p-CH ₃	1.43	2.17	3.54	10.2	14.4	
	н	0.832	1.23	2.07	6.04	8.61	
	<i>p</i> -Cl	0·347 (1·78) ^d	0.502	0.868	2.49	3.68	
Benzylamine ^a	p-CH ₃ O	2.57	4.25	9.28	30.2	40·0 (839) ^d	
	p-CH ₃	2.21	3.71	8.05	25.9	35.6	
	Ĥ	1.68	2.76	6.09	19.6	26.8	
	p-Cl	$(30 \cdot 4)^d$	2.02	4.46	14.4	19.8	

Table 1. Second-order rate constants, $k_2 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, for reactions of 1-(trimethylsilyl)ethyl Z-benzenesulphonates with X-anilines and X-benzylamines in MeCN and MeOH at $65 \cdot 0^{\circ} \text{C}$

^a MeCN.

^b MeOH.

^c Methanolysis rate constants, $k_1 \times 10^5 \text{ s}^{-1}$, at $65 \cdot 0^{\circ}$ C.

^d The values in parentheses are those for the corresponding trimethylsilylmethylene arenesulphonates (I).

The rate ratio $k_2(\mathbf{I})/k_2(\mathbf{II})$ (ca 20) becomes even greater for the reactions with benzylamines. This is again consistent with a much lower degree of bond formation expected from a looser TS based on the substantially lower ρ_{XZ} and β_{XZ} values in Table 3. The magnitude of ρ_{XZ} (and also β_{XZ}) is similar to that obtained for S_N2 reactions at secondary carbon atoms. This is indicative of an approximately constant TS tightness (or looseness) for the S_N2 TS at a secondary carbon atom (reactions E–K in Table 3), similarly with an approximately constant TS tightness obtained at a primary carbon atom (reactions A–D in Table 3). It is surprising that the TS tightness is similar ($\rho_{XZ} \approx 0.10$) for the reactions of II, (CH₃)₃SiCH(CH₃)—, and isopropyl, CH₃CH(CH₃)—, series since II has a much bulkier group, Si(CH₃)₃, than the latter, CH₃, attached to the reaction centre in addition to a common CH₃ group; the Taft's steric constants, E_{s} ,⁷ are -1.74 and

Nucleophile Ζ ρx° βx° х ρz° βz^c 1.06 Aniline^a p-CH₃ -1.810.65 p-CH₃O -0.29 -1.79 -0.29н 0.64 p-CH₃ 1.08 p-Cl -1.77 0.64 Н 1.09 -0.30-1.73 p-Cl m-NO₂ 0.63 1.10 -0.30 $p-NO_2$ -1.71 0.62 Aniline^b p-CH₃O p-CH₃ -1.580.57 1.01 -0.27 Н -1.570.57 p-CH₃ 1.02 -0.28p-Cl -1.550.56 Н 1.04 -0.28m-NO₂ -1.53 0.55 p-Cl 1.06 -0.28 $p-NO_2$ -1.50 0.54 Benzylamine^a p-CH₃ -0.66 0.65 p-CH₃O 1.23 -0.41p-CH₃ н -0.660.65 1.23 -0.41-0.65 p-Cl 0.64 Н $1 \cdot 24$ -0.41m-NO₂ -0.550.63 p-Cl 1.24 -0.42 $p-NO_2$ -0.530.63

Table 2. Hammett (ρ_X and ρ_Z) and Brønsted (β_X and β_Z) coefficients for reactions of 1-(trimethylsilyl)ethyl Z-benzenesulphonates with X-anilines and X-benzylamines

^a MeCN. ^b MeOH.

^c Correlation coefficients are better than 0.994 in all cases.

Table 3. Cross-interaction constants, ρ_{XZ} and β_{XZ} , for some nucleophilic substitution reactions at 65	aucleophilic substitution reactions	some nucleophilic substitution	p_{XZ} and p_{XZ} , ic	constants, ρ_{2}	Cross-interaction	Table 3.
---	-------------------------------------	--------------------------------	----------------------------	-----------------------	-------------------	----------

Reaction	Solvent	ρxz	$\beta_{\rm XZ}$	Ref.
(A) $XC_6H_4NH_2 + CH_3OSO_2C_6H_4Z$	MeOH	0.30	0.18	9
	MeCN	0.32	0.20	9
(B) $XC_6H_4NH_2 + CH_3CH_2OSO_2C_6H_4Z$	MeOH	0.33	0.19	9
	MeCN	0.34	0.21	9
(C) $XC_6H_4NH_2 + (CH_3)_3SiCH_2OSO_2C_6H_4Z$	MeOH	0.31	0.18	8
	MeCN	0.33	0.20	8
(D) $XC_6H_4NH_2 + (CH_3)_3CCH_2OSO_2C_6H_4Z^a$	MeOH	0.31	0.18	3
(E) $XC_6H_4NH_2 + (CH_3)_2CHOSO_2C_6H_4Z$	MeCN	0.10	0.06	2
(F) $XC_6H_4NH_2 + cvclo-C_4H_7OSO_2C_6H_4Z$	MeCN	0.11	0.06	4
(G) $XC_6H_4NH_2 + cvclo-C_5H_9OSO_2C_6H_4Z$	MeCN	0.11	0.06	4
(H) $XC_6H_4NH_2 + cyclo-C_6H_{11}OSO_2C_6H_4Z$	MeCN	0.11	0.07	4
(1) $XC_6H_4NH_2 + cyclo-C_7H_{13}OSO_2C_6H_4Z$	MeCN	0.11	0.06	4
(J) $XC_6H_4NH_2 + (CH_3)_3SiCH(CH_3)OSO_2C_6H_4Z$	MeCN	0.10	0.06	This work
(-)		(0·999) ^b	(0·995) ^b	
	MeOH	0.08	0.05	This work
		(0·999) ^b	(0·996) ^b	
(K) $XC_6H_4CH_2NH_2 + (CH_3)_3SiCH(CH_3)OSO_2C_6H_4Z$	MeCN	0.01	0.04	This work
· · · · · · · · · · · · · · · · · · ·		(0·999) ^b	(0·999) ^b	

"At 55 ⋅ 0 °C.

^bCorrelation coefficients at the 99% confidence level.

0.0 for C(CH₃)₃ and CH₃, respectively [The E_s value for the trimethylsilyl group, Si(CH₃)₃, is not available, but it is expected to be even more negative than that for the *tert*-butyl group, C(CH₃)₃, owing to the greater size of Sil.

Likewise, a similar TS tightness is obtained for the reactions at primary carbon centres, e.g. the ρ_{XZ} values (ca 0.33 in MeCN) for neopentyl, (CH₃)₃CCH₂—,³ and trimethylsilylmethylene, (CH₃)₃SiCH₂—,⁸ series are similar to that of ethyl, CH₃CH₂—,⁹ series (Table 3).

Shaik et al.¹⁰ have shown that the tightness (or looseness) of the $S_N 2$ TS can be correlated with magnitude of the intrinsic barrier, i.e. the barrier for the thermoneutral process, ΔE_0^{\neq} . For a non-identity $S_N 2$ process:

$$X^{-} + RZ \rightleftharpoons (X \cdots R \cdots Z)^{-} \rightleftharpoons XR + Z^{-}$$
(3)
$$d_{XZ}^{\neq}$$

 ΔE_0^{\neq} is given by the average of the two ΔE_0^{\neq} values involving the forward, ΔE_{XX}^{\neq} , and reverse, ΔE_{ZZ}^{\neq} , thermoneutral (identity) processes:

$$\Delta E_0^{\neq} = \frac{1}{2} \left(\Delta E_{XX}^{\neq} + \Delta E_{ZZ}^{\neq} \right) \tag{4}$$

Hence the similar magnitude of ρ_{XZ} should be an indication of the approximately constant ΔE_{δ}^{\neq} , which is primarily a function of bond stretching (R...X and R...Z) energy in the TS. The relatively constant $|\rho_{XZ}|$ values obtained for the primary ($\rho_{XZ} = 0.33$) and secondary ($\rho_{XZ} = 0.10$) carbon centres reflect that an α -alkyl substituent has little effect on the overall (or average) intrinsic barrier, ΔE_{0}^{\pm} , and hence on the overall tightness of the S_{N2} TS, d_{XZ}^{\pm} . The actual reactivity (ΔE^{\pm}) is affected also by the steric effect in addition to the thermodynamic barrier (ΔE°).

We conclude that the overall tightness of an $S_N 2$ TS depends only on whether the reaction centre is a primary or a secondary carbon, but is almost independent of the size of the group attached to the reaction centre carbon atom.

EXPERIMENTAL

Materials. Reagent-grade chemicals were used. Acetonitrile (Merck) was used after three distillations and methanol (Merck) was used without further purification. The nucleophiles, aniline and benzylamine, were purchased from Tokyo Kasei and were redistilled or recrystallized before use. Substrates, 1-(trimethylsilyl)ethyl arenesulphonates, were prepared by reacting 1-(trimethylsilyl)ethanol (Aldrich) with arenesulphonyl chlorides.¹¹

The NMR (Jeol 400 MHz) spectroscopic data are as follows. 1-(Trimethylsilyl)ethyl benzenesulphonate: liquid, δ (CDCl₃) 0.02 (9H, s, Si(CH₃)₃), 1.29 (3H, d, CH₃, J = 7.33 Hz), 4.44 (1H, q, CH, J = 7.33 Hz),

7.51-7.93 (5H, m, aromatic). 1-(Trimethylsilyl)ethyl *p*-methylbenzenesulphonate: liquid, δ (CDCl₃) 0.01 $(9H, s, Si(CH_3)_3)$, 1.27 $(3H, d, CH_3, J = 7.14 \text{ Hz})$, 2.44 (3H. s, CH₃), 4.41 (1H, q, CH, J = 7.15 Hz), 7.32 (2H, d, J = 7.93 Hz, meta), 7.79 (2H, d, 1-(Trimethylsilyl)ethyl J = 8.73 Hz, ortho). chlorobenzenesulphonate: m.p. 31-32 °C, & (CDCl₃) 0.01 (9H, s, Si(CH₃)₃), 1.24 (3H, d, CH₃, J = 8.07 Hz), 4.43 (1H, q, CH, J = 7.33 Hz), 7.58 (2H, d, J = 8.80 Hz, meta), 7.84 (2H, d, J = 8.79 Hz, 1-(Trimethylsilyl)ethyl ortho). *m*-nitrobenzenesulphonate: m.p. 63-64 °C, δ (CDCl₃) 0.02 (9H, s, Si(CH₃)₃), $1 \cdot 35$ (3H, d, CH₃, $J = 7 \cdot 65$ Hz), $4 \cdot 59$ (1H, q, CH, $J = 8 \cdot 00$ Hz), $7 \cdot 77$ (1H, t, aromatic-5H, $J = 8 \cdot 01$ Hz), $8 \cdot 24$ (1H, d, aromatic-6H, $J = 8 \cdot 01$ Hz), 8.49 (1H, d, aromatic-4H, J = 8.35 Hz), 8.76 (1H, s, aromatic-2H). 1-(Trimethylsilyl)ethyl p-nitrobenzenesulphonate: m.p. 72-73 °C, δ (CDCl₃) 0.02 (9H, s, Si(CH₃)₃), 1·34 (3H, d, CH₃, J = 7·33 Hz), 4·58 (1H, q, CH, J = 7.33 Hz), 8.11 (2H, d, J = 8.79 Hz, meta), $8 \cdot 38$ (2H, d, $J = 8 \cdot 80$ Hz, ortho).

Kinetic procedures. Rates were measured conductimetrically and k_2 values were determined with at least four nucleophile concentrations using the procedure described previously.^{2,4,8} The k_2 values were reproducible to within 3%.

Product analysis. The analysis of final products was difficult owing to partial decomposition during product separation and purification. We therefore analysed the reaction mixture by NMR (Jeol 400 MHz) at appropriate intervals under exactly the same reaction conditions as for the kinetic measurements in CD₃CN at $65 \cdot 0^{\circ}$ C. Initially we found a CH peak for the reactant, $(CH_3)_3SiCH(CH_3)OSO_2C_6H_4Cl-p$, at 4.43 ppm, which was gradually reduced, and a new peak for CH in the product, (CH₃)₃SiCH(CH₃)NHC₆H₅, grew at 2.95 ppm as the reaction proceeded. No other peaks or complications were found during the reaction, except for the two peak height changes indicating that the reaction proceeds with no other side-reactions. The reactions with benzylamine had two corresponding peaks at 4.43 and 2.02 ppm.

ACKNOWLEDGEMENTS

We thank the Korea Science and Engineering Foundation and the Ministry of Education for support of this work.

REFERENCES

- I. Lee, Chem. Soc. Rev. 19, 317 (1990); Adv. Phys. Org. Chem. 27, 57 (1992).
- H. K. Oh, Y. B. Kwon and I. Lee, J. Phys. Org. Chem. 6, 357 (1993).

- 3. H. J. Koh, H. W. Lee and I. Lee, J. Chem. Soc., Perkin Trans. 2, 253 (1994).
- 4. H. K. Oh, Y. B. Kwon, I. H. Cho and I. Lee, J. Chem. Soc., Perkin Trans. 2, in press.
- 5. I. Lee, K. W. Rhyu, H. W. Lee and C. S. Shim, J. Phys. Org. Chem. 3, 751 (1990).
- J. R. Mathis, H. J. Kim and J. T. Hynes, J. Am. Chem. Soc. 115, 8248 (1993).
- 7. R. W. Taft, Jr, Steric Effects in Organic Chemistry, Chapt. 13. Wiley, New York (1956).
- H. K. Oh, C. H. Shin and I. Lee, J. Chem. Soc., Perkin Trans. 2 2411 (1993).
- 9. I. Lee, Y. H. Choi, K. W. Rhyu and C. S. Shim, J. Chem. Soc., Perkin Trans. 2 1881 (1989).
- S. S. Shaik, H. B. Schlegel and S. Wolfe, *Theoretical Aspects of Physical Organic Chemistry. The S_N2 Mechanisms*, Chapt. 5. Wiley, New York (1992).
- 11. R. S. Tipson, J. Org. Chem. 9, 235 (1949).