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ABSTRACT

Ortho-lithiated styrenes or ortho-lithiated benzaldehyde dimethyl acetals were added to 2,2-dimethoxypent-4-enals 7. The resulting alcohols were
carried on to the aromatic dienones 10. These were ring-closed by olefin metathesis. Hydrolysis of the dimethyl ketal moiety and enolization
provided the 3,4-benzotropolones 5. Overall, this access comprises 4�6 steps and totaled a 22�81% yield.

In 1945 Dewar deduced the correct structure of the
fungal metabolite stipitatic acid (Figure 1) and named its
hydroxycycloheptatrienone core tropolone (1).1 This as-
signment was confirmed by Todd et al.2 The latter also
demonstrated that the mold product puberulic acid is
hydroxystipitatic acid.3 β-Thujaplicin was described as a
naturallyoccurring tropolone at that timeaswell.4Figure1
shows stipitatic and puberulic acid as single tautomers
arbitrarily, and β-thujaplicin is depicted as a mixture of
tautomers,5 because tropolone tautomerizes quickly.6

Benzannulation to the tropolone scaffold gives rise to
3,4- (3) and 5,6-benzotropolones (4) but not to 6,7-
(tautom-3) or 4,5-benzotropolones (tautom-4). The latter
gain a Clar electron sextet7 if they isomerize to give the
former.Only a few5,6-benzotropolones (4) occur in nature,8

but various 3,4-benzotropolones (3) do, e.g. purpurogallin9

(Figure 1). In nature 3,4-benzotropolones are found in
plants10 and fungi.11 In industry 3,4-benzotropolones have
gainedpatentprotectionasantimicrobial, antiretroviral, and

Figure 1. Tropolones (red), 3,4-benzotropolones (blue), and 6,7-
(tautom-3), 4,5- (4), and 5,6-benzotropolone (tautom-4).
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antiobesity agents, for stabilizing household, cosmetic, and
nutritional products, and as UV-absorbers in sunscreens.12

Several 3,4-benzotropolones inhibit a regulator of our im-
mune system.13

A one-step synthesis of 3,4-benzotropolones from cate-
chols and pyrogallols has been known since the 19th
century.14 It is still being used15 but entails limited varia-
bility of the substitution pattern. Multistep routes to 3,
4-benzotropolone comprise the functionalization of
benzocycloheptenones16 and ring expansions.17 A route
to ether-annulated 3,4-benzotropolones by an intra-
molecular 1,3-dipolar cycloaddition18 was extended to
making polycyclic 3,4-benzotropolones by hetero-Diels�
Alder reactions.19

In our retrosynthetic analysis (Scheme 1) we perceived
3,4-benzotropolones 5 as thermodynamically favored enol
tautomers enol-5 of much less stable 1,2-diketones keto-5.

Accordingly, a synthetic plan targeting diketones keto-5
should conclude with 3,4-benzotropolones enol-5. We
traced back these diketones keto-5 to their monoketals 6.
Constituting cycloheptenes of sorts we envisaged accessing
them by ring-closing metatheses (“RCM”) of benzannu-
lated dienes 10. The latter are aromatic ketones. This
indicated that 10 could stem from the acylation20;or an
equivalent hydroxyalkylation/oxidation sequence starting
with the incorporation of 2,2-dimethoxypent-4-enals 7;
of ortho-metalated styrenes or ortho-metalated precursors
of styrenes. Such reagents seemed accessible from ortho-
bromostyrenes 8 (by Br/Li exchange) or benzaldehyde
dimethyl acetals 9 (by ortho-lithiation), respectively.
Our syntheses of 2,2-dimethoxypent-4-enals 7a and b

beganwith thedimethoxyacetate11 (available fromglyoxylic
acid in one step;21 Scheme 2). Allylating the 11-enolate by
modifying the procedure from Conia et al.22 delivered the
ester 12a in 74% yield (ref 22, 50%). Methallylating the
11-enolate analogously furnished ester 12b readily.Esters12a
and b were reduced with iBu2AlH

23 to provide aldehydes 7a
(74% yield) and b (95%).

A Br/Li exchange reaction of ortho-bromostyrene (8a)
followed by the addition of aldehyde 7a24 gave the benzylic
alcohol 13a (Scheme 3). Oxidation with Dess-Martin
periodinane25 led to the benzannulated dienone 10a. In
the presence of 1 mol % of the second generation Grubbs

Scheme 1. Our Retrosynthetic Analysis of 3,4-Benzotropolones Scheme 2. Syntheses of 2,2-Dimethoxypent-4-enals 7a and b

Scheme 3. ortho-Lithiostyrene Approach to Benzotropolone 5d(12) (a) Bieler, K.; Ochs, D.;Wagner, B.WO2011048011 (A2), April 28,
2011 (CAN 154:524103). (b) Wagner, B. et al. WO2011042423 (A2), April 14,
2011 (CAN 154:443987). (c) Fukui, Y.; Asami, S.; Maeda, M. WO2010134595
(A1), November 25, 2010 (CAN 153:634903). (d) Wagner, B.; €Ohrlein, R.;
Herzog,B.;Eichin,K.;Baisch,G.; Portmann,S.WO2009156324 (A2),December
30, 2009 (CAN152:97724). (e)Romanov,A.N. et al. RU2359954 (C2), June 27,
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2009 (CAN 151:100922).
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catalyst26 (“Grubbs II catalyst”) the benzocycloheptad-
ienedionemonoketal6a resulted innearlyquantitativeyield.
Hydrolysis of 6a with excess pTsOH in aqueous acetoni-
trile required heating at 75 �C for 4 h. This sluggishness
reflects the destabilization of the carboxonium ion, which
precedes the hemiacetal intermediate, through the benzoyl
group.Completionof hydrolysis andketo�enol tautomer-
ism furnished the unsubstituted 3,4-benzotropolone 5a.
Altogether our synthesis comprised four steps and gave
71%of 5a. This resembles the best previous synthesis of 5a,
which required four steps aswell and totaled a 68%yield.16b

We employed the strategy of Scheme 3 for synthesizing
the substituted benzotropolones 5b�d (Scheme 4). None
of themnor their core 5a is substituted such that it could be
reached by thementioned14 co-oxidation of a catechol and
a pyrogallol. By subjecting the ortho-bromostyrenes 8b27

�d to Br/Li-exchange reactions, adding aldehyde 7a, and
oxidizing the resulting carbinols without prior purification
by the Dess-Martin reagent25 rendered the benzannulated
dienones 10b�d in 39%, 59%, and 54% yield, respec-
tively.Dienone 10b needed 3mol%Grubbs II catalyst and
90 �C (9 h) for an effective ring closure to the benzo-
cycloheptadienedione monoketal 10b (93% yield). Acidic
hydrolysis completed the unprecedented benzotropolone

5b in 32%yield from styrene 8b. In the presence of 2mol%
Grubbs II catalyst26 the dienones 10c and d ring-closed at
110 �C (3 h) and 100 �C (90min), whereupon the respective
hydrolyses provided the known28 benzotropolone 5c (45%
overall yield) and the hitherto unknown benzotropolone
5d (52% overall yield). In the latter the RCM had estab-
lished a trisubstituted CdC bond.

The sequence in Scheme 5 shows a modified entry into
our benzotropolone synthesis. It warrants consideration
when proceeding similarly to Scheme 3 or 4 would require
an ortho-bromostyrene substrate, which is neither com-
mercially available nor readily synthesized. In the first step
benzaldehyde dimethyl acetal 9a29 and n-BuLi gave an
ortho-lithioacetal, which was added to the aldehyde 7b.
The resulting benzylic alcohol 13e was oxidized with the
Dess-Martin reagent25 in the presence of pyridine.30 Hy-
drochloric acid selectively cleaved the benzylic acetal of the
crude product, furnishing ketoaldehyde 14e (71% yield
from 9a). 14ewas dimethylenated under “salt-free”Wittig
conditions, providing 78% of the benzannulated dienone
10e. This substrate required the harshest RCM conditions
of the present study: Within 7 h at 100 �C, 5 mol % of the
Grubbs II catalyst26 led to the bicyclic monoketal 10e in
91% yield. Hydrolysis afforded the benzotropolone 5e
(49% overall yield for the five steps).
The benzaldehyde dimethyl acetals 9a29 and b29 were the

starting materials for the benzotropolone syntheses in
Scheme 6. Following the course of our proof-of-principle
sequence 9a f 10e (Scheme 5) we advanced to the

Scheme 4. Synthesis of 3,4-Benzotropolones 5b�d: Embellish-
ing the ortho-Lithiostyrene Approach of Scheme 3,a

aOver the two steps.

Scheme 5. Accessing Benzotropolone 5eUponOrtho-Lithiation
of the Benzaldehyde Dimethyl Acetal 9aa

aPrepared from Ph3MePx BrQ and sodium hexamethyldisilazide.
b From 9a.

(24) Recent Br/Li exchanges in ortho-bromostyrenes with ensuing
hydroxyalkylations: (a) Snyder, S. A.; Sherwood, T. C.; Ross, A. G.
Angew.Chem., Int. Ed. 2010, 49, 5146–5150. (b) Snyder, S.A.; Breazzano,
S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131,
1753–1765. (c) Kim, J.; Li, H. B.; Rosenthal, A. S.; Sang, D.; Shapiro,
T. A.; Bachi, M. D.; Posner, G. H. Tetrahedron 2006, 62, 4120–4127. (d)
Tietze, L. F.; Stewart, S. G.; Polomska, M. E.; Modi, A.; Zeeck, A.
Chem.;Eur. J. 2004, 10, 5233–5242.

(25) Dess, D. B.;Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287.
(26) [1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro-

(phenylmethylene)(tricyclohexylphosphane)ruthenium.
(27) 8b had been obtained from 2-bromo-3,5-dimethoxybenzalde-

hyde: Broering, T. J.; Morrow, G. W. Synth. Commun. 1999, 29, 1135–
1142. However, we made 8b differently (see Supporting Information).

(28) 5c was synthesized in 3 steps and 7% total yield by: Barltrop,
J. A.; Johnson, A. J.; Meakins, G. D. J. Chem. Soc. 1951, 181–185.

(29) Obtained by acetalization of the corresponding aldehyde as de-
scribed by: Napolitano, E.; Giannone, E.; Fiaschi, R.; Marsili, A. J. Org.
Chem. 1983, 48, 3653–3657.

(30) When the base was absent the benzylic acetal hydrolyzed
partially. Thereupon the OH and CHdO groups combined forming a
lactol, which was inert to the oxidant. The same kind of lactolization
thwarted our attempts of ortho-lithiating benzaldehydes rather than
benzaldehydedimethyl acetals by Comins in situ protection/ortho-lithia-
tion strategy (Comins, D. L. Synlett 1992, 615–625).

(31) The dimethylenation of ketoaldehyde 14g giving dienone 10g
afforded a 92% yield only under “salt-free” conditions. The ylide
resulting fromMePh3P

x BrQ and n-BuLi gave 10g in 45% yield at best.
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benzannulated dienones 10f and g uneventfully.31 Ring
closure by metathesis and ketal hydrolysis delivered
4-methoxybenzotropolone (5f) and 3,4-dimethoxybenzo-
tropolone (5g), respectively. Both compounds had not
been described. Optimizing their syntheses paid off by
overall yields of 48% (5f) and 81% (5g). Bis(demethyla-
tion) of 5g gave 75% of 3,4-dihydroxybenzotropolone
(5h). 50 years ago the latter compound was synthesized
by thementioned14 co-oxidation of a catechol (in this case:
the catechol) and a pyrogallol (in this case: the pyrogallol)32

in a single step with a 47�50% yield. Remarkably, the
latter is less than the total yield of our six-step sequence:
61%. This underscores the efficiency of our strategy.33

A bypass for the ketal cleavage 6gf5g (Scheme 6,
middle), which we had performed at 75 �C under equally
acidic conditions as the analogous cleavages 6a�f f5a�f
(Schemes 3�6), deserves mentioning. An LDA-induced
β-elimination of methanol from the benzocycloheptadi-
enedione monoketal 6g provided 80% of 3,4-dimethoxy-
benzotropolone methyl ether (15g; Scheme 6, bottom).
The latterwasmono(demethylated)withBBr3 at�78 �Cat

4-O (f15h).34 15h was di(demethylated) at rt giving 3,4-
dihydroxybenzotropolone (5h) in 77% yield.
Finally we tested our benzotropolone strategy replacing

the ring-closing diene metathesis by a ring-closing enyne
metathesis (Scheme 7). The requisite substrate 17 was ob-
tained in a manner similar to that for the dienes 10a�d by
our ortho-lithiostyrene route (Schemes 3 and 4), namely by
adding the lithioarene derived from (ortho-bromophenyl)-
acetylene 1635 to the aldehyde 7a. After oxidation and
deprotection we obtained the enyne 17 in 58% yield over
three steps. Ring-closing metathesis in the presence of
5 mol % of the Grubbs II catalyst26 delivered the vinyl-
substituted benzocycloheptadienedione monoketal 6i in
45% yield. Attempted ketal cleavage with pTsOH led to
decomposition rather than to the benzotropolone 5i. How-
ever, a DBU-induced β-elimination of methanol delivered
9-vinyl-3,4-benzotropolone methyl ether (15i) in 33% yield.
The fact that benzoid aromatics can emerge from ring-

closing metatheses may not be obvious but is well-
known.36 In the present study, it was established for the
first time that a nonbenzenoid aromatic such as a tropo-
lone can emerge from a ring-closing metathesis. This al-
lowed access to the 3,4-benzotropolones 5a�h in 4�6 steps
with 22�81% overall yield and the 3,4-benzotropolone
methyl ethers 15g�i in 5 steps with 8.6�69% overall yield.
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Scheme 6. Benzotropolone Syntheses Based on the ortho-
Lithioacetal Approach of Scheme 5 (a Non-Hydrolytic
Ketoketal Cleavage of 6gf15g Is Included)a

aOver the three steps. b Over the two steps.

Scheme 7. Synthesis of the BenzotropoloneMethyl Ether 15i via
a Ring-Closing Enyne Metathesisa

aOver the 3 steps.
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