Synthesis, Isomerisation and Diels-Alder Reactions of (5S)-5-Phenyl-3,4-dehydromorpholin-2-one ${ }^{1}$

David Ager, ${ }^{\text {a }}$ Nicholas Cooper,b Geoffrey G. Cox, ${ }^{\text {b }}$ Florence Garro-Hélion, ${ }^{\text {c }}$ and Laurence M. Harwood ${ }^{\text {* }}$

${ }^{a_{N S C}}$ Technologies, 601 E. Kensington Road, Mt. Prospect, IL 60056-1300, U.S.A.
${ }^{b}$ Dyson Perrins Laboratory, University of Oxford, South Park Road, Oxford, OX1 3QY, U.K.

Abstract

S)-5-Phenyl-3,4-dehydromorpholin-2-one [(5S)-5-phenyl-5,6-dihydro-2H-1,4-oxazin-2-one] 2a is prepared by a one-pot bromination / dehydrobromination of ($5 S$)-5-phenyl morpholin-2-one and undergoes regio- and diastereocontrolled catalysed Diels-Alder reactions. Copyright © 1996 Elsevier Science Ltd

We have previously shown that 5-phenylmorpholin-2-one systems 1 are excellent templates for diastereocontrolled reactions leading to enantiomerically pure cyclic and acyclic amino acids ${ }^{2}$ and have also demonstrated good diastereocontrol in the reduction of 3-substituted (5S)-5-phenyl-3,4-dehydromorpholin-2one substrates 2 , resulting in enantiocontrolled reductive amination of α-ketoacids. ${ }^{3}$ Following the studies of Stella and Bailey on acyclic chirally modified imino esters, ${ }^{4}$ we decided to investigate the potential for stereocontrol in Diels-Alder reactions of (5S)-5-phenyl-3,4-dehydromorpholin-2-ones 2 leading to adducts with potential for subsequent elaboration into pipecolic acid analogues. ${ }^{4,5}$

1a
$1 b$

2a
2b

$$
\mathrm{R}=\mathrm{H}
$$

$$
\mathrm{R}=\text { alkyl, phenyl }
$$

Preliminary work established that presence of a $\mathrm{C}-3$ substituent inhibited Diels-Alder reactions under all conditions investigated, so we turned our attention to the parent system $2 \mathrm{a},(\mathrm{R}=\mathrm{H})$ in the hope that reduced steric hindrance at the reacting site would permit reaction. At the outset of our studies, the parent system $\mathbf{2 a}$ was unknown (although subsequent to our initial disclosure, ${ }^{1}$ a report of an alternative approach to this system via oxidative rearrangement of oxazolines has appeared in the literature ${ }^{6}$) and our initial efforts to obtain the imine were thwarted, when our standard method for preparing 3 -substituted 3,4-dehydromorpholinones ${ }^{3}$ proved ineffective as the glyoxylate ester precursor would not undergo condensative cyclisation. However, aware of the work of Williams in which $N-\mathrm{Cbz}$ protected ($5 R, 6 S$)-5,6-diphenylmorpholinone underwent $\mathrm{C}-2$ bromination using N-bromosuccinimide, ${ }^{7}$ we were pleased to find that modification of these conditions by the addition of an acid trap permitted a one-pot C-2 bromination-dehydrobromination of unprotected $\mathbf{1 a}^{8}$ to give the desired imine 2a directly (Scheme). Depending upon conditions employed, (5S)-5-phenyl-3,4-dehydromorpholin-2-one 2a was contaminated by varying amounts of the isomeric 5 -phenyl-4,5-dehydromorpholinone 3,9 and 5-phenyl-3,4,5,6-didehydromorpholin-2-one $4 .{ }^{10}$ Utilising propylene oxide as a non-basic proton sponge in dichloromethane at room temperature for periods of less than 2 hours yielded a product mixture consisting of (5S)-5-phenyl-3,4-dehydromorpholin-2-one 2a and 5-phenyl-3,4,5,6-didehydromorpholin-2-one 4. However, leaving the reaction for longer periods resulted in formation of $\mathbf{2 a}$ as the sole product; 5 equivalents of propylene oxide proving optimal. Chromatography on triethylamine-washed silica induced isomerisation of

2a to 3 . Likewise, use of triethylamine in the reaction with N-bromosuccinimide with $\mathbf{1 a}$ led to 3 being isolated as the only product in 72% purified yield.

Scheme
Chromatography on silica or alumina furnished pure 2a but also led to extensive decomposition and a maximum isolated yield of $55 \%\left\{[\alpha]_{\mathrm{D}} 25+250\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right)\right.$; Lit. ${ }^{6}(5 R)-2 \mathrm{a},[\alpha]_{\mathrm{D}}-252$ (c $\left.\left.5.23, \mathrm{CHCl}_{3}\right)\right\}$. Consequently, material isolated directly from the reaction, consisting of a single component by NMR analysis, was used for subsequent Diels-Alder investigations.

As any equilibration between $\mathbf{2 a}$ and $\mathbf{3}$ would result in degradation of the enantiomeric integrity of 2a, a sample of purified 2a was hydrogenated 1a using platinum oxide catalyst in dichloromethane. The recovered material showed effectively the same specific rotation as the sample of (S)-5-phenylmorpholin-2-one 1a used to prepare $2 \mathbf{a}$ in the first instance $\left\{[\alpha]_{\mathrm{D}}{ }^{24}-112.3\right.$ versus -112.7 (c $\left.\left.1, \mathrm{CHCl}_{3}\right)\right\}$ and it may be concluded that any equilibration between 2 a and $\mathbf{3}$ under the reaction and isolation conditions is negligible.

The effect of the nature of the base and length of reaction may be rationalised by invoking initial formation of $2 \mathbf{2}$ which subsequently undergoes base-promoted isomerisation to 3 . Although formation of 4 may result from further reaction of NBS with imines $\mathbf{2 a}$ or $\mathbf{3}$ followed by dehydrobromination, this does not appear to be consistent with the fact that longer reaction times avoid formation of this by-product. The observation that bromine is produced during work-up in those cases when 4 is isolated, leads us to propose that quenching the reaction before all the HBr has been trapped by the propylene oxide leads to bromine formation, giving rise to 4 as an artefact of the work-up procedure.

With 2a readily available, we adapted procedures of Stella ${ }^{4 \mathrm{a}}$ and Bailey, ${ }^{4 \mathrm{~b}}$ using mixed Bronsted acidLewis acid catalyst systems to study its potential as a heterodienophile. Under optimised conditions, 2,3-dimethyl-1,3-butadiene (1.7 equiv, $\mathrm{AcOH}, \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C} \rightarrow$ r.t.) furnished pure ($2 S, 6 S$)-8,9-dimethyl-2-phenyl-1-aza-4-oxabicyclo[4.4.0]dec-8-en-5-one 5 in 37% overall yield from 1a. With isoprene (1.5 equiv, TFA, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$) a single adduct, shown to be ($2 S, 6 S$)-8-methyl-2-phenyl-1-aza-4-oxabicyclo[4.4.0]dec-8-en-5-one 6, was produced in 37% overall yield. The reaction performed with cyclopentadiene (1.2 equiv, TFA, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$) furnished the endo-cycloadduct ($1 S, 3 S, 7 S, 8 S$)-3-phenyl-2-aza-5-oxo[6.2.1.0 ${ }^{2.7}$]tricycloundec-9-en-6-one 7, in 28% overall yield. The stereochemistries were assigned by n.O.e. difference experiments $\left[5 \mathrm{H}^{2} \rightarrow \mathrm{H}^{10}{ }_{\text {endo }} 4.4 \%, \mathrm{H}^{6} \rightarrow \mathrm{H}^{7}\right.$ exo $9.5 \% ; 6 \mathrm{H}^{2} \rightarrow \mathrm{H}^{10}$ endo $5.3 \%, \mathrm{H}^{10}$ exo $5.3 \% ; 7 \mathrm{H}^{9} \rightarrow \mathrm{H}^{2} 4.7 \%$]. It is noteworthy that only a single cycloadduct could be identified in each reaction, demonstrating not only excellent diastereocontrol at $\mathrm{C}-3$ but also excellent regiocontrol in the case of formation of 6 and endo-selectivity in the case of 7.

5

6

7

In conclusion we have described a one-pot synthesis of (S)-5-phenyl-3,4-dehydromorpholin-2-one 2a from (5S)-5-phenylmorpholin-2-one 1 a by reaction with N-bromosuccinimide, using propylene oxide as a proton sponge. Representative Diels-Alder reactions of the crude material furnish cycloadducts in moderate overall yield from $1 \mathbf{a}$ with excellent regio- and diastereocontrol.

Experimental

(5S)-5-Phenyl-3,4-dehydromorpholin-2-one 2a. (5S)-5-Phenylmorpholin-2-one 1 (250 $\mathrm{mg}, 1.41 \mathrm{mmol}$) was dissolved in dichloromethane (10 mL), in a dry flask under nitrogen. Propylene oxide (0.5 mL) was added, followed by N-bromosuccinimide ($252 \mathrm{mg}, 1.41 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h , then cooled to $0{ }^{\circ} \mathrm{C}$ and filtered. The filtrate was washed with water ($4 \times 50 \mathrm{~mL}$), dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the solvent removed in vacuo to yield crude (5S)-5-phenyl-3,4-dehydromorpholin-2one 2a as a yellow-orange oil (quant). Purification by chromatography, eluting with ethyl acetate-light petroleum (20:80) to give the title compound in 55% yield. $[\alpha]_{D}{ }^{25}+250\left(c 1.0, \mathrm{CHCl}_{3}\right)$. $\mathrm{u}_{\max }(\mathrm{KBr}) 2927$, 1747), $1632,1455,1030,760,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.29(\mathrm{t}, J 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (dd, J 4.6 $\mathrm{Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dt}, J 4.1 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 5 \mathrm{H}), 8.06(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}(125.7$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 59.9,71.1,127.3,128.7,129.2,136.4,153.5,154.5 ; \mathrm{m}_{\mathrm{z}}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 176\left(85 \%, \mathrm{MH}^{+}\right)$.

Diels-Alder reactions: (5S)-5-phenyl-3,4-dehydromorpholin-2-one 2 a ($100 \mathrm{mg}, 0.57 \mathrm{mmol}, 1$ equiv.), trifluoroacetic acid or acetic acid (1 equiv), boron trifluoride etherate (1 equiv.) and the appropriate diene (1.2 to 1.7 equiv.) were stirred at $-78^{\circ} \mathrm{C}$ under argon for 3 to 6 hours (until t.l.c. analysis indicated disappearance of 2a). After warming to room temperature the mixture was quenched with sat. sodium bicarbonate (10 mL) and extracted with dichloromethane. Drying over potassium carbonate, solvent removal in vacuo and chromatography, eluting with ethyl acetate-light petroleum (1:4), gave the title compounds.
($2 S, 65$)-8,9-dimethyl-2-phenyl-1-aza-4-oxabicyclo[4.4.0]dec-8-en-5-one 5: [$\alpha]_{\mathrm{D}}{ }^{25}-113.9$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.51(\mathrm{~m}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, J 16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J 16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J 5.3 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J 4.5 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J 6.1 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J 4.5 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.0,18.2,31.8,53.7,55.8,57.9,73.0,123.0,123.2,128.5,128.6,128.8,135.55$, $170.5 ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 258\left(100 \%, \mathrm{MH}^{+}\right) ; \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires 258.1494, found 258.1483 . (2S, 6S)-8-methyl-2-phenyl-1-aza-4-oxabicyclo[4.4.0]dec-8-en-5-one 6: [$\alpha]_{\mathrm{D}}{ }^{22}-68.5$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.50(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.15$ (m, 2H), 3.74 (dd, J $5.3 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.05(\mathrm{dd}, J 4.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (dd, J $6.6 \mathrm{~Hz}, 11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{dd}, J 4.5 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.29(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}(125.7 \mathrm{MHz}, \mathrm{CDCl}) \delta$ $22.8,29.6,30.5,48.6,55.5,57.8,72.9,118.2,128.4,128.5,128.8,131.1,135.7,170.4 . \mathrm{m} / \mathrm{z}\left(\mathrm{CI}_{1}, \mathrm{NH}_{3}\right)$ $244\left(100 \%, \mathrm{MH}^{+}\right), 199(10 \%) ; \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires 244.1343, found 244.1338.
($1 S, 3 S, 7 S, 8 S$)-3-phenyl-2-aza-5-oxo[6.2.1.0 $\left.0^{2.7}\right]$ tricycloundec-9-en-6-one 7. $[\alpha]{ }^{23}+35.0$ (c $\left.0.44, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.54-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.82(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J 0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63(\mathrm{dd}, J 3.1 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J 3.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J 11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J 2.0 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.55(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.47(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 47.4,47.9,59.7,61.0,62.9,72.1,127.6,128.3,128.7,136.6,137.6,138.1$, 138.4, 172.2. $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 242\left(50 \%, \mathrm{MH}^{+}\right), 176(100 \%) ; \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 241.1103, found 241.1102 .

Acknowledgements

We thank the SERC for a post-doctoral support (G. G. C.) and NSC technologies for a post-doctoral fellowship (F. G-H).

References.

1 Prelminary results were presented at the Royal Society of Chemistry 14th International Symposium of Synthesis in Organic Chemistry, Cambridge, July 1995, Abstract No. 1.8.

2 (a) Anslow, A. S.; Harwood, L. M.; Phillips, H.; Watkin, D. J.; Tetrahedron Asymmetry, 1991, 2, 169
(b) Anslow, A. S.; Harwood, L. M.; Phillips, H.; Watkin, D. J.; Tetrahedron Asymmetry, 1991, 2, 997. (c) Anslow, A. S.; Harwood, L. M.; Phillips, H.; Watkin, D. J.; Wong, L.F.; Tetrahedron Asymmetry, 1991, 2, 1343 (d) Harwood, L. M.; Macro, J.; Watkin, D. J.; Williams, C. E.; Wong, L. F.; Tetrahedron Asymmetry, 1992, 3, 1127 (e) Harwood L. M.; Lilley, I. A.; Tetrahedron Lett., 1993, 537 (f) Harwood, L. M.; Kitchen, L. C.,Tetrahedron Lett., 1993, 6603 (g) Harwood, L. M.; Manage, A. C.; Robin, S.; Hopes, S. F. G.; Watkin, D. J.; Williams, C. E.; SYNLETT, 1993, 777 (h) Harwood, L. M.; Lilley,I. A.; Tetrahedron Asymm. 1995, 6, 1557 (i) Anslow, A. S.; Cox, G. G.; Harwood, G. G.; Chemistry of Heterocyclic Compounds, 1995, 10, 1393 (j) Anslow, A. S.; Harwood, L. M., Lilley, I. A.; Tetrahedron Asymm., 1995, 6, 2465 (k) Williams,C. E.; Harwood, L. M.; Alker, D. J.; Abstracts of Papers of the American Chemical Society, 1995, 209 (2), 290.

3 Cox, G. G.; Harwood, L. M.; Tetrahedron Asymm., 1994, 5, 1669.
4 (a) Stella, L., Abraham, H.; Tetrahedron , 1992, 48, 9707. and references cited therein (b) Bailey, P. D.; Londesborough, D. J.; Hancox, T. C.; Heffernan, J. D., Holmes, A. B.; J. Chem. Soc., Chem. Commun., 1994, 2543. and references cited therein.
5 Agami, C.,Couty, F. and Mathieu, H.; Tetrahedron Lett., 1996, 37, 4001.
6 C. M. Shafeer, C. M., Molinski, T. F.; J. Org. Chem., 1996, 6 1, 2044.
7 Williams, R. M., Fegley, G. J.; J. Am. Chem. Soc., 1991, 113, 8796.
8 Dellaria, J.F., Santarsiero, B.D.; J. Org. Chem., 1989, 54, 3916.
$9 \quad$ 5-phenyl-4,5-dehydromorpholin-2-one 3: pale yellow crystals m.p. $62-65^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}) 2927$, $1762,1646,1448,1237,1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.57(\mathrm{t}, J 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{t}, J 2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.6,67.3,126.0$, $128.9,131.5,134.2,163.1,166.7 . \mathrm{m}_{\mathrm{z}}(\mathrm{CI}, \mathrm{NH} 3) 176\left(100 \%, \mathrm{MH}^{+}\right), 132(35), 118$ (65).
105 -phenyl-3,4,5,6-didehydromorpholin-2-one 4: pale yellow solid m.p. $90-92^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}) 1756$, $1492,1194,1150,1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.75(\mathrm{~m}, 3 \mathrm{H}) 8.15$ $(\mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.6,125.2,129.0,132.7,133.1,137.5,146.1,152.4$. $\mathrm{m}_{\mathrm{z}}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 191\left(10 \%, \mathrm{MNH}_{4}{ }^{+}\right), 174\left(55 \%, \mathrm{MH}^{+}\right), 173$ (65\%), 145 (100\%), 117 (40\%), 90 (40%).
(Received in UK 11 June 1996)

