thiazole indicated, 2 moles of thiourea must be present in the reaction mixture for each mole of halogen. In an experiment where 1 mole of thiourea was used for each mole of halogen the yield of thiazole was poor and the product was difficult to purify.

Preliminary experiments indicate that the above reaction is a convenient general synthetic method for preparation of substituted thiazoles. Extension of this reaction to other ketones and to thioamides is in progress.

Summary

It has been demonstrated that acetophenone, propiophenone, *m*-nitroacetophenone, acetone and ethyl acetoacetate react directly with 1.0 mole of a halogen and 2.0 moles of thiourea to give in excellent yield, 2-amino-4-phenylthiazole, 2-amino-4-phenyl-5-methylthiazole, 2-amino-4-(3-nitrophenyl)-thiazole, 2-amino-4-methylthiazole, and 2-amino-4-methyl-5-carbethoxythiazole, respectively.

EVANSTON, ILLINOIS RECEIVED SEPTEMBER 28, 1945

[CONTRIBUTION FROM THE BIOCHEMICAL INSTITUTE AND THE CLAYTON RESEARCH FOUNDATION, THE UNIVERSITY OF TEXAS]

Derivatives of Sulfanilamide. I. N⁴-(p-Aminobenzoyl)-sulfanilamide and Related Compounds

By Edith Ju-Hwa Chu¹

Since the discovery and establishment of antagonism between sulfonamide drugs and p-aminobenzoic acid, a normal constituent of cells, a number of p-aminobenzoic acid derivatives and analogs have been investigated and described. Hirsch² demonstrated that *p*-aminobenzamide also possessed bacteriostatic properties, while Johnson and co-workers⁸ indicated that in the molecule of p-aminobenzoic acid variation of the carbonyl group by replacement or by derivative formation might give compounds exhibiting paminobenzoic acid activity, bacteriostatic activity, or neither. It was interesting to study the physiological action of a combination of sulfanilamide and p-aminobenzoic acid in a simple molecule. The present paper reports syntheses of $N^{4}-(p-aminobenzoyl)$ -sulfanilamide and related compounds and their action on several organisms.

 N^4 -(p-Aminobenzoyl)-sulfanilamide and analogs from albucid, sulfapyridine, sulfadiazine, sulfathiazole and sulfaguanidine have been synthesized by reduction of corresponding nitro derivatives. The most suitable reducing agent is Raney nickel in alcohol or pyridine. N^4 -(p-Nitrobenzoyl)-sulfanilamide,⁴ N^4 -(p-nitrobenzoyl)-albucid⁵ and N^4 -(p-nitrobenzoyl)-sulfapyridine⁶ were previously reported.

These compounds have been tested on Lactobacillus arabinosus 17-5, Streptococcus lactis R, Staphylococcus aureus and Escherichia coli and found to be more or less toxic to these organisms;

(1) On leave from the University of Peking, China. The present address is the Department of Medicine, University of Minnesota, Minneapolis, Minn.

(2) J. Hirsch, Science, 96, 140 (1942).

(3) O. H. Johnson, D. E. Green and R. Pauli, J. Biol. Chem., 153, 37 (1944).

(4) C. Siebenmann and R. J. Schnitzer, THIS JOURNAL, 65, 2126 (1943).

(5) S. M. Mistry and P. C. Guha, J. Indian Inst. Sci., 15A, 25 (1932).

(6) Société des usines chimiques Rhône-Poulenc, French Patent 846,191, Sept. (1939). but the action is not reversed by presence of *p*-aminobenzoic acid in most cases.

Preparation and Properties

N⁴⁻(p-Nitrobenzoyl)-sulfanilamide and Analogs.—A mixture of one millimole each of p-nitrobenzoyl chloride and sulfanilamide in 5 ml. of dry pyridine was refluxed for an hour, cooled and then poured into ice water. The precipitate thus obtained was recrystallized from acetic acid or pyridine, yielding pale yellow fine needles. It is difficultly soluble in benzene or 1,4-dioxane, slightly soluble in acetic acid, acetone or alcohol, moderately soluble in isobutyl acetate, and soluble in pyridine, ethanolamine, diethanolamine and triethanolamine. It is recovered unchanged by boiling with 10% sodium hydroxide or concentrated hydrochloric acid for ten-fifteen minutes, but is hydrolyzed by refluxing with 10% sodium hydroxide for two hours, p-nitrobenzoic acid being identified. It was also synthesized from p-nitrobenzanilide by treatment with chlorosulfonic acid and reaction of the aromatic sulfonyl chloride with ammonium hydroxide; yield, 75%.

Analogs were prepared from albucid, sulfapyridine, sulfathiazole, sulfadiazine and sulfaguanidine, respectively. $N^4-(p-Nitrobenzoyl)$ -albucid was also prepared by acetylation of $N^4-(p-nitrobenzoyl)$ -sulfanilamide with acetic anhydride and pyridine in a quantitative yield.

 $N^{4-}(p-Aminobenzoyl)$ -sulfanilamide and Analogs. The most satisfactory means for reducing N⁴-(p-nitrobenzoyl)-sulfanilamide thus far tried is Raney nickel in alcohol or pyridine. A mixture of 2 g. of N⁴-(p-nitrobenzoyl)-sulfanilamide and 10 g. of Raney nickel in 20 ml. of alcohol was refluxed on a steam-bath for an hour and then filtered. The precipitate of N⁴-(p-aminobenzoyl)-sulfanil-amide was recrystallized from acctone. It melts at 276° first, solidifies and then melts again at 313° dec.

 N^{4} -(p-Nitrobenzoyl) derivatives of sulfathiazole, sulfapyridine, sulfadiazine and sulfaguanidine were similarly reduced to amino derivatives by Raney nickel except that pyridine was used as the solvent instead of alcohol and the product was washed with acetic acid.

N⁴-(p-Aminobenzoyl)-sulfathiazole was insoluble in most solvents and difficultly purified and the analysis of nitrogen content always was 2% lower. It was acetylated to acetyl derivative, prisms, m. p. 314° dec. **Physiological Action on Microörganisms.**—These compounds have been tested on *Lactobacillus arabinosus* 17-5, Constituent 28 Challenge and the acetylated of the acetylated o

Physiological Action on Microörganisms.—These compounds have been tested on Lactobacillus arabinosus 17-5, Streptococcus lactis R, Staphylococcus aureus and Escherichia coli, respectively. For testing with Lactobacillus arabinosus 17-5 a medium described by Lewis⁷ was modified by

(7) J. C. Lewis, J. Biol. Chem., 146, 441 (1942).

TABLE I

				T UDUUT								
									Toxicity			
Compounds	Solvent for recrystn.	Cryst. form	Yield, %	M. p., °C.	Formula		trogen Found	Laclo- bacil- lus arabi- nosus 17-5	Strep- tococ- cus lactis R	Sta- phylo- coccus aureus	Es- cheri- chia coli	
N ⁴ -(<i>p</i> -Nitrobenzoyl)-												
sulfanilamide	Acet. acid.	Fine need.	89°, 75 ⁵	263 dec.*	C18H11N:OS			†NR 9				
albucid	Pyridine	Prisms	78 ^d , 100 ^e	279-280 dec.	C1.H13N3O6S	11.57	11.53	†NR				
sulfapyridine	Pyridine	Prisms	82	272 dec.	CitH14N4O4S	· · ·		††R	0	†NR	†NR	
sulfathiazole	Pyridine	Prisms	90	281-282 dec.	C16H12N4O4S2	13.86	13.74	††R	††NR	††NR	††NR	
sulfadiazine	Pyrid. $+$ alc.	Needles	74	282 dec.	CirHisNsOsS	17.54	17.51	††R	††NR	††NR	††NR	
sulfaguanidine	Pyridine	Prisms	78	266-267	C14H11NOS	19.28	19.14	0				
acetylsulfaguanidine	Acetone	Plates	82	238-239 dec.	C16H10N6O6S	17.28	17.15			· · · ·		
N ¹ -(p-Aminobenzoy1)-												
sulfanilamide	Acetone	Prisms	50	276, 313 dec.	CuHuN;OsS	14.43	14.21	†NR				
albucid	Pyridine	Prisms	67	230	C1.HINO4S	12.61	12.80	0				
sulfapyridine	Acetone	Prisms	78	255-256	C15H16N4O4S	15.21	15.10	††R	††NR	††NR	††NR	
sulfathiazole			90	265 dec.	C14H14N4O2S1							
sulfadiazine	Acet. + pyrid.	Cubes	49	233 dec.	C ₁₇ H ₁₈ N ₈ O ₈ S	18.97	18.71	††R	'††NR	††NR	††NR	
sulfaguanidine	Pyridine	Prisms	67	253-254	CI4H11N1O1S	21.01	20.98	0				
N4-(p-Acetylaminoben-												
zoyl)-sulfathiazole	Acet. acid	Prisms	••	314 dec.	C18H16NeOeS1	13.46	13.30	•••		• • •	••	

^a From *p*-nitrobenzoyl chloride and sulfanilamide. ^b From *p*-nitrobenzanilide. ^c Siebenmann and Schnitzer⁴ reported a m. p. 260°. ^d From *p*-nitrobenzoyl chloride and albucid. ^e Acetylation of N⁴-(*p*-nitrobenzoyl)-sulfanilamide. ^f Mistry and Guha⁵ reported a m. p. 293°. ^g \dagger = slightly toxic; \dagger = toxic; R = reversed and NR = not reversed by *p*-aminobenzoic acid.

addition of 1 γ (gamma) of *p*-aminobenzoic acid per 10 ml. For *Strephococcus luctis R*, *Staphylococcus aureus* and *Escherichia coli* the same medium was modified by addition of 1 γ of *p*-aminobenzoic acid and 1 γ of folic acid concentrate per 10 ml. The medium containing the testing substance (200 γ per 10 ml.) was inoculated with the respective organism, incubated at 30° for twenty-four hours and the turbidity was read as usual.

The properties, analyses and toxicity action of these compounds are collected in the following table.

Summary

N⁴-(*p*-Aminobenzoyl)-sulfanilamide and analogs derived from albucid, sulfapyridine, sulfadiazine, sulfathizole and sulfaguanidine have been synthesized by reduction of corresponding nitro compounds. Among reducing agents tried, Raney nickel in alcohol or pyridine is the most satisfactory.

N⁴-(p-Nitrobenzoyl) derivatives of sulfapyridine, sulfadiazine, sulfathiazole and N⁴-(p-aminobenzoyl) derivatives of sulfapyridine and sulfadiazine inhibit growth of *Lactobacillus arabinosus* 17-5 and the inhibition action is reversed by p-aminobenzoic acid. The action of N⁴-(p-nitrobenzoyl) derivatives of sulfanilamide and of albucid and N⁴-(p-aminobenzoic acid, while N⁴-(p-nitrobenzoyl)-sulfaguanidine, N⁴-(p-aminobenzoyl)-albucid and N⁴-(p-aminobenzoyl-sulfaguanidine are indifferent.

RECEIVED JULY 16, 1945

[CONTRIBUTION FROM THE WESTERN REGIONAL RESEARCH LABORATORY,¹ ALBANY, CALIFORNIA]

The Thermal Degradation of Pectin

BY REYNOLD C. MERRILL² AND MARY WEEKS

The most obvious change that occurs when a solution of pectin is heated is the rapid irreversible decrease in viscosity³ which is denoted in this paper by the term degradation. Kertesz⁴ has shown that most of this change in viscosity occurs before appreciable changes in the methoxyl content and reducing power of the pectin solutions are detected. He postulated a structure for

(1) Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture. Article not copyrighted.

(2) Present address: Philadelphia Quartz Co., Philadelphia, Penna.

(3) See e. g., P. B. Myers and G. L. Baker, Agr. Expt. Sta. (Del.) Bull., 149, 26 (1927).

(4) Z. I. Kertesz, THIS JOURNAL, 61, 2544 (1939).

pectin in solution described by the formula $[(G)_m]_n$. $(G)_m$ represents a polymer of m galacturonic acid units which forms aggregates containing n of these units held together by secondary valence forces. These "secondary aggregates," he believes, are mostly responsible for the high viscosity of pectin solutions, and the rapid initial decrease in viscosity on heating is due to the destruction of these aggregates, held together by secondary forces.

One method of testing this theory and of establishing the type of bond broken during the rapid initial decrease in viscosity on heating is to measure the activation energy of the process. The secondary forces holding such an aggregate to-