Spectral Assignments and Reference Data

Complete assignment of ¹H and ¹³C NMR spectra of some α-arylthio and α-arylsulfonyl substituted N-methoxy-N-methyl propionamides

Nelson L. C. Domingues,¹ Mirta G. Mondino,² Adriana K. C. A. Reis,³ Roberto Rittner,³ Filipe S. Lima¹ and Paulo R. Olivato¹*

¹ Conformational Analysis and Electronic Interactions Laboratory, Instituto de Química, USP, Caixa Postal 26077, 05513-970 São Paulo, São Paulo, Brazil

 ² F.C.F.B.-Faculdades Oswaldo Cruz, 01151-000, São Paulo, Brazil
 ³ Physical Organic Chemistry Laboratory, Chemistry Institute, State University of Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo, Brazil

Received 3 August 2006; revised 5 September 2006; accepted 29 September 2006

The complete assignments of the ¹H and ¹³C NMR spectra of the some α -arylthio and α -arylsulfonyl substituted *N*-methoxy-*N*-methyl propionamides, bearing methoxy, methyl, chloro, and nitro as substituents at the phenyl ring are reported. Copyright © 2006 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; *N*-methyl propionamides

INTRODUCTION

N-methoxy-*N*-methylamides¹ (commonly named *Weinreb amides*) are important carboxylic acid derivatives that have been widely used for the preparation of ketones, whose synthetic utility has been extensively demonstrated.^{2–4} The efficiency of the reaction involving these compounds has been attributed to the formation of an intermediate stable tetrahedral lithium chelate,⁵ which precludes the second nucleophilic addition to the carbonyl group. This important characteristic of the chelate allowed us to synthesize some ketone derivatives of β -lactams in good yields, which had not been possible through traditional methods employing other carboxylic acid derivatives.⁶

The aim of this work was to prepare some 4'-substituted *N*-methoxy-*N*-methyl-2-phenylthio- and 4'-substituted *N*-methoxy-*N*-methyl-2-phenylsulfonyl-propionamides (Scheme 1) and to characterize them through their ¹H NMR and ¹³C NMR spectra.

EXPERIMENTAL

Compounds

The mild acylating agents 4'-substituted *N*-methoxy-*N*-methyl-2phenylthio-propionamides are easy to prepare and are very stable for a long time.

Initially, the 4'-substituted 2-phenylthiopropionic acids were obtained from the reaction of 2-bromopropionic acid with an aqueous solution of 4-substituted thiophenols and two equivalents of sodium hydroxide.⁷ These acids were converted to the corresponding acyl chlorides, which led to the 4'-substituted *N*-methoxy-*N*-methyl-2-phenylthiopropionamides by their reaction with *N*,*O*-dimethylhydroxylamine hydrochloride.

The obtained amides were oxidized to the corresponding sulfones using oxone [potassium peroxymonosulfate (2KHSO₅. KHSO₄.K₂SO₄)] in acetone solution and five equivalents of sodium

Scheme 1. Structures and numbering for compounds 1-10.

bicarbonate. These compounds were obtained in 85–97% yield. Elemental analyses were carried out on a Perkin-Elmer 2400 CHN-standard analyzer (Table 1).

Spectra

¹Ĥ NMR and ¹³C NMR spectra were recorded on a Varian Inova 300 spectrometer (10% in CDCl₃ solutions) operating at 299.947 MHz and 75.423 MHz, respectively. Data processing was carried out on a Solaris workstation.

 $^{1}\mathrm{H}$ NMR parameters were as follows: spectral width, 4000 Hz; data points, 32K, zero-filled to 64K; pulse width 45°, acquisition time, 4.10 s; digital resolution, 0.25 Hz. $^{13}\mathrm{C}$ NMR parameters were as follows: spectral width, 18860 Hz; data points, 64K, zero-filled to 128 K; pulse width 90°; acquisition time, 1.76 s; digital resolution, 0.57 Hz, with a delay of 2.05 s between transients.

¹H and ¹³C chemical shifts are given on the δ scale (ppm) and were referenced to TMS, and coupling constants *J* are reported in Hz. The following abbreviations were used: s, d, q and m, for singlet, doublet, quartet and multiplet, respectively.

RESULTS AND DISCUSSION

As a first step, the ¹H NMR spectra of compounds **3** and **8** (Y = H) were fully assigned and are in agreement with literature data.⁸ The remaining compounds were then assigned by analogy. For compounds **1–10**, the doublet signal at $\delta \sim 1.4-1.6$ ppm corresponds to the H-3 methyl group, attached to the chiral carbon (C-5), with a coupling constant of ~7.0 Hz. (Table 2). The singlets at $\delta \sim 3.2$ ppm and $\delta \sim 3.6-3.8$ ppm correspond to H-1 and H-2 methyl groups, respectively, and the quartet at $\delta \sim 4.1-4.8$ ppm to the H-5 methine group, which has the chiral carbon (C-5). The low-frequency multiplet signals at $\delta 6.8-9.0$ ppm were identified as the aromatic protons chemical shifts.

The ¹³C NMR chemical shifts are presented in Table 3. The signals at $\delta \sim 32$ ppm and at $\delta \sim 61$ ppm, for the whole series, correspond to C-1 and C-2, respectively. The deshielding for the chiral carbon C-5 ($\delta \cong 60$ ppm) in compounds **6–10**, in relation to **1–5** ($\delta \cong 41$ ppm), may be ascribed to the larger inductive effect of the arylsulfonyl group ($\sigma_I = +0.56$),⁹ in comparison to the arylthio group ($\sigma_I = +0.31$).⁹ The inverse effect was observed for the C-3 methyl carbon attached to the chiral carbon and for the C-4 carbonyl carbon, where the corresponding shifts are deshielded in compounds **1–5** ($\delta \cong 17$ ppm and $\delta \cong 173$ ppm, respectively). in relation to **6–10** ($\delta \cong 13$ ppm and $\delta \cong 166$ ppm, respectively).

The C-6 and C-9 aromatic carbons at $\delta \sim 120-140$ and $\delta \sim 130-160$ ppm, respectively, were largely dependent on the substituent in the aryl group, as expected, while less pronounced effects were observed for C-7/C-11 and C-8/C-10 chemical shifts, which are in agreement with reported values.¹⁰

^{*}Correspondence to: Paulo R. Olivato, Instituto de Química – USP, Caixa Postal 26077, 05513-970 São Paulo, SP, Brazil. E-mail: prolivat@iq.usp.br

Spectral Assignments and Reference Data

Compound						1	Analysis (%	%)	
	Y	m.p./b.p. (°C/mmHg)	Molecular formula	FW		С	Н	N	
1	MeO	a	C ₁₂ H ₁₇ NO ₃ S	255.3	Calc.	56.45	6.71	5.49	
					Found	56.46	6.51	5.73	
2	Me	а	$C_{12}H_{17}NO_2S$	239.3	Calc.	60.22	7.16	5.85	
					Found	60.43	7.14	6.14	
3	Н	113/0.07	$C_{11}H_{15}NO_2S$	225.3	Calc.	58.64	6.71	6.22	
					Found	58.68	6.65	6.52	
4	Cl	а	$C_{11}H_{14}ClNO_2S$	259.7	Calc.	50.86	5.43	5.39	
					Found	51.11	5.36	5.56	
5	NO ₂	а	$C_{11}H_{14}N_2O_4S$	270.3	Calc.	48.88	5.22	10.36	
					Found	48.90	5.25	10.15	
6	MeO	113.5-116.8	$C_{12}H_{17}NO_5S$	287.3	Calc.	50.16	5.96	4.87	
					Found	49.79	5.85	4.69	
7	Me	64.2-67.4	$C_{12}H_{17}NO_4S$	271.3	Calc.	53.12	6.32	5.16	
					Found	52.82	6.20	4.83	
8	Н	92-93	$C_{11}H_{15}NO_4S$	257.3	Calc.	51.35	5.88	5.44	
					Found	51.50	5.88	5.78	
9	Cl	81.1-84.5	C ₁₁ H ₁₄ ClNO ₄ S	291.7	Calc.	45.28	4.84	4.80	
					Found	45.26	4.83	5.20	
10	NO ₂	105.7-107.8	$C_{11}H_{14}N_2O_6S$	302.3	Calc.	43.70	4.67	9.27	
					Found	44.01	4.73	9.59	

 Table 1. Physical data for compounds 1–10

^a As an oil/b.p. not measurable.

Table 2. ¹ H NMR chemical shifts (ppm), coupling constants (Hz) and multiplicities for compount	nds 1–10
--	-----------------

Compound	Y	H_1	H ₂	H ₃	H_5	${\rm H_{7}/H_{11}}$	${\rm H_{8}/H_{10}}$	H ₁₂
1	MeO	3.17 s	3.64 s	1.38 d ($J = 6.9$) ^a	4.11 q (J = 6.9)	7.43 m	6.83 m	3.79 s
2	Me	3.19 s	3.66 s	1.41 d ($J = 7.0$)	4.27 q (J = 7.0)	7.37 m	7.11 m	2.33 s
3	Н	3.19 s	3.64 s	1.43 d (J = 6.9)	4.25 q (J = 6.9)	7.30 m	7.50 m	7.30 m
4	Cl	3.19 s	3.67 s	1.42 d (J = 6.7)	4.24 q (J = 6.7)	7.27 m	7.41 m	-
5	NO ₂	3.23 s	3.77 s	1.58 d (J = 6.7)	4.50 q (J = 6.7)	7.49 m	8.14 m	-
6	MeO	3.19 s	3.81 s	1.44 d (J = 6.9)	4.72 q (J = 6.9)	7.80 m	7.00 m	3.88 s
7	Me	3.19 s	3.80 s	1.44 d (J = 7.0)	4.73 q (J = 7.0)	7.77 m	7.38 m	2.44 s
8	Н	3.18 s	3.80 s	1.46 d (J = 6.9)	4.75 q (J = 6.9)	7.57 m	7.90 m	7.66 s
9	Cl	3.19 s	3.82 s	1.45 d (<i>J</i> = 7.2)	4.75 q (J = 7.2)	7.53 m	7.81 m	-
10	NO ₂	3.20 s	3.84 s	1.48 d (<i>J</i> = 6.9)	4.81 q (<i>J</i> = 6.9)	8.08 m	8.39 m	-

 ${}^{a}J = {}^{3}J_{H_3,H_5}$

Table 3.	¹³ C NMR c	hemical	shifts	(ppm)	for	compounds	1-10)
----------	-----------------------	---------	--------	-------	-----	-----------	------	---

Compound	Y	C ₁	C ₂	C ₃	C4	C ₅	C ₆	C_7/C_{11}	C ₈ /C ₁₀	C9	C ₁₂
1	MeO	32.53	61.45	17.43	173.36	41.90	122.89	136.89	114.36	160.22	55.28
2	Me	32.54	61.43	17.68	173.17	41.74	129.22	134.24	129.60	138.28	21.14
3	Н	32.53	61.42	17.81	172.98	41.68	133.26	133.42	128.83	127.94	_
4	Cl	32.42	61.37	17.46	172.64	41.32	128.81	134.91	131.24	134.17	-
5	NO ₂	32.68	61.75	17.81	172.10	40.71	144.51	129.53	123.91	146.11	-
6	MeO	32.31	61.78	13.33	166.81	60.24	132.31	127.72	113.92	164.10	55.66
7	Me	32.30	61.75	13.27	166.59	60.18	133.31	130.07	129.35	145.11	21.70
8	Н	32.24	61.69	13.09	166.43	60.22	136.44	129.97	128.64	133.99	_
9	Cl	32.26	61.77	13.26	166.35	60.37	134.70	131.59	128.97	140.92	_
10	NO ₂	32.31	61.93	13.42	165.96	60.74	141.83	131.79	123.69	151.02	

Copyright © 2006 John Wiley & Sons, Ltd.

Spectral Assignments and Reference Data

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support of this research and for a fellowship (to A.K.C.A.R.), and the Conselho Nacional de Desenvolvimento e Tecnológico (CNPq) for fellowships (to N.L.C.D, P.R.O. and R.R).

REFERENCES

- 1. Mentzel M, Hoffmann HMR. J. Prakt. Chem. 1997; 339: 517.
- 2. Sibi MP. Org. Prep. Proced. Int. 1993; 25: 15.
- Representative examples include: (a) Comins DL. Org. Lett. 2000;
 2: 855; (b) Crich D, Dudkin V. J. Am. Chem. Soc. 2002; 124: 2263;

(c) Crimins MT, Stanton MG, Allwein SP. J. Am. Chem. Soc. 2002; **124**: 5958.

- 4. Nahn S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815.
- 5. Satyamurthi N, Aidhen IS. J. Prakt. Chem. 2000; 342: 340.
- 6. Bouffard FA, Christensen BG. J. Org. Chem. 1981; 46: 2208.
- Mooradian A, Cavalito CJ, Bergman AJ, Lawson EJ, Suter CM. J. Am. Chem. Soc. 1949; 71: 3372.
- 8. Günther H. NMR Spectroscopy. Basic Principles, Concepts and Applications in Chemistry (2nd edn). Wiley: Chichester, 1995.
- 9. Charton M. Prog. Phys. Org. Chem. 1981; 13: 119.
- 10. Breitmaier E, Voelter W. Carbon-13 NMR Spectroscopy. VCH: Weinheim, 1987.