FULL PAPER

Preparation and reactivity of dihydrogen complexes $[MX(\eta^2-H_2)P_4]BF_4$ (M = Ru or Os; X = halogenide or SEt⁻; P = phosphite)

Gabriele Albertin,* Stefano Antoniutti, Emilio Bordignon and Michela Pegoraro

Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, I-30123 Venezia, Italy

Received 16th June 2000, Accepted 23rd August 2000 First published as an Advance Article on the web 26th September 2000

Monohydride complexes MHXP₄ [M = Ru or Os; X = Cl⁻, Br⁻, I⁻, SEt⁻ or N₃⁻; P = P(OEt)₃, PPh(OEt)₂ or PPh₂OEt] were prepared by treating dihydride species MH₂P₄ first with CF₃SO₃Me and then with an excess of the anionic ligand X. In an argon atmosphere, protonation of MHXP₄ with HBF₄·Et₂O gives dihydrogen cations [MX(η^2 -H₂)P₄]⁺, with X = Cl, Br, I or SEt; the classical dihydride [MH₂(N₃)P₄]⁺ was obtained with the azide ligand. Instead, in a hydrogen atmosphere, protonation of MHXP₄ with HBF₄·Et₂O gives hydride–dihydrogen [MH(η^2 -H₂)P₄]⁺ species, according to a proposed mechanism involving interaction of Brønsted acid with ligand X. Some [MX(η^2 -H₂)P₄]⁺ cations were thermally unstable and fully characterised in solution (¹H and ³¹P NMR, variable temperature *T*₁ measurements), whereas the [OsX(η^2 -H₂){PPh(OEt)₂}₄]BF₄ complexes were stable and isolated as solids. Treatment of [MX(η^2 -H₂)P₄]⁺ which, by reaction with base, afforded the final acetylide M(C=CPh)XP₄ derivatives. Treatment with propargyl alcohols HC=CC(OH)RR' of the [MX(η^2 -H₂)P₄]⁺ cations, instead, gave propadienylidene derivatives [MX(=C=C=CRR')P₄]BPh₄ (M = Ru or Os; R = R' = Ph or R = Ph, R' = Me). Hydrazine complexes [MX(NH₂NH₂)P₄]BPh₄ were also prepared by substitution of the dihydrogen ligand in the new η^2 -H₂ derivatives.

The chemistry of transition metal dihydrogen complexes has extensively been developed in the past fifteen years, and numerous studies on their synthesis, structure bonding and reactivity have been reported.¹⁻⁴ They have also shown how the nature of the ancillary ligands in a η^2 -H₂ complex may have a dramatic influence on the structure and reactivity of the dihydrogen ligand. However, while a large amount of information has been reported on the influence of phosphine, carbonyl, amine or other neutral ligands, relatively little is known about that anionic ligands X (H⁻, Cl⁻, Br⁻, I⁻, N₃⁻, SEt⁻, CN⁻, *etc.*) may have on the properties of $[MX(\eta^2-H_2)L_4]^{n+}$ complexes.¹⁻⁴ Some studies on the effects of hydride H⁻ and halogenide Cl⁻, Br⁻, I⁻ on the H–H distance and J_{HD} values have recently been reported ^{5,6} for $[RuX(\eta^2-H_2)L_2]^+$ (X = Cl⁻ or H⁻; L₂ = bidentate phosphine) and $[OsX(\eta^2-H_2)L_4]^n$ (X = Cl⁻, Br⁻ or I⁻; L = NH₃) derivatives.

We have previously reported ^{7,8} the synthesis and reactivity of dihydrogen complexes stabilised by monodentate phosphite ligands and have shown how the steric and electronic properties of the ligand influence ^{7a,8b} H–H distance and $J_{\rm HD}$ values. As an extension of these studies, we report here the preparation and protonation reactions of a series of MHXP₄ complexes (M = Ru or Os), with the aim of synthesizing new "classical" or "non-classical" [MX(H₂)P₄]⁺ hydride complexes stabilised by monodentate phosphite ligands. Furthermore, study of their chemical and spectroscopic properties should give information on the influence of the anionic ligand on the η^2 -H₂ group and allow comparisons with related hydride⁸ [MH(η^2 -H₂)P₄]⁺ or halogenide ^{5,6} [MCl(η^2 -H₂)(P–P)₂]⁺ derivatives.

Experimental

All synthetic work was carried out in an inert atmosphere using standard Schlenk techniques or a Vacuum Atmosphere drybox. Once isolated, the complexes were found to be relatively

stable in air, but were stored in an inert atmosphere (H₂, argon) at -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuumtight storage flasks. Triethyl phosphite was an Aldrich product, purified by distillation under nitrogen; phosphites PPh(OEt)₂ and PPh2OEt were prepared by the method of Rabinowitz and Pellon.⁹ Salts RuCl₃·xH₂O (ChemPur) and (NH₄)₂OsCl₆ (Johnson Matthey) were used as received. Methyl triflate (CF₃SO₃Me), triflic acid (CF₃SO₃H), HBF₄·Et₂O (54% solution in Et₂O), NaN₃, Na(SEt) and alkynes PhC=CH, HC=CC-(Ph₂)OH and HC≡CC(Me)(Ph)OH were Aldrich products used without further purification. Hydrazine NH_2NH_2 was prepared by decomposition of hydrazine cyanurate (Fluka) following the reported method.¹⁰ Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on Digilab Bio-Rad FTS-40 or Nicolet Magna 750 FT-IR spectrophotometers, NMR spectra (¹H, ¹³C, ³¹P) on a Bruker AC200 spectrometer at temperatures varying between -90 and +30 °C, unless otherwise noted. ¹H and ¹³C spectra are referred to internal tetramethylsilane. ³¹P-{¹H} chemical shifts are reported with respect to 85% H₃PO₄, with downfield shifts considered positive. The SWAN-MR software package¹¹ was used to treat NMR data. Proton T_1 values were measured by the inversionrecovery method between +30 and -90 °C with a standard $180^{\circ}-\tau-90^{\circ}$ pulse sequence: the error in T_1 measurements is typically $\pm 10\%$. The conductivities of 10^{-3} mol dm⁻³ solutions of the complexes in MeNO₂ at 25 °C were measured with a Radiometer CDM 83 instrument.

Synthesis of complexes

Hydrides RuH_2P_4 and OsH_2P_4 [P = PPh(OEt)₂, P(OEt)₃ or PPh₂(OEt)] and [RuH(η^2 -H₂){PPh(OEt)₂}₄]BF₄ were prepared following the methods previously reported.^{8a,b,12,13}

DOI: 10.1039/b004833j

J. Chem. Soc., Dalton Trans., 2000, 3575–3584 3575

 $OsHXP_4$ 1–3 [P = PPh(OEt)₂ 1, P(OEt)₃ 2 or PPh₂OEt 3; $\mathbf{X} = \mathbf{Cl}^- \mathbf{a}, \mathbf{Br}^- \mathbf{b}, \mathbf{I}^- \mathbf{c}, \mathbf{SEt}^- \mathbf{d} \text{ or } \mathbf{N}_3^- \mathbf{e}$]. To a solution of $\mathbf{OsH}_2\mathbf{P}_4$ (0.25 mmol) in 10 cm³ of toluene cooled to -80 °C was added an equimolar amount of CF₃SO₃Me (0.25 mmol, 28 µL) and the reaction mixture, brought to room temperature, was stirred for 1 h. An excess of the appropriate lithium or sodium salt of anionic ligand X⁻ (0.75 mmol of NaX or LiX) in 5 cm³ of ethanol was added, and the resulting solution stirred for 3 h. The solvent was removed under reduced pressure, giving an oil which was triturated with ethanol (2-3 cm³). A white or yellow solid slowly separated from the resulting solution, which was filtered off and crystallised from ethanol; yield between 40 and 70% (Found: C, 47.2; H, 5.8; Cl, 3.65. C₄₀H₆₁ClO₈OsP₄ 1a requires C, 47.1; H, 6.0; Cl, 3.5. Found: C, 45.0; H, 5.7. C₄₀H₆₁-BrO₈OsP₄ 1b requires C, 45.2; H, 5.8. Found: C, 43.4; H, 5.7. C₄₀H₆₁IO₈OsP₄ 1c requires C, 43.25; H, 5.5. Found: C, 48.15; H, 6.5. C₄₂H₆₆O₈OsP₄S 1d requires C, 48.3; H, 6.4. Found: C, 47.0; H, 5.9; N, 4.05. C₄₀H₆₁N₃O₈OsP₄ 1e requires C, 46.8; H, 6.0; N, 4.10. Found: C, 29.1; H, 6.2. C24H61IO12OsP4 2c requires C, 29.3; H, 6.3. Found: C, 56.7; H, 5.1. C₅₆H₆₁BrO₄OsP₄ 3b requires C, 56.4; H, 5.2. Found: C, 54.2; H, 4.9. C₅₆H₆₁IO₄OsP₄ 3c requires C, 54.3; H, 5.0%).

OsHBr[P(OEt)₃]₄ **2b.** This complex was prepared like related species 1-3 resulting, in this case, in an oily product with low yield (about 30%).

RuHXP₄ 4, 5 [P = PPh(OEt)₂ 4 or P(OEt)₃ 5; X = Br⁻ b, I⁻ c or N_3^- e]. These complexes can be obtained by two methods.

(*i*) An equimolar amount of CF₃SO₃Me (0.25 mmol, 28 μ L) was added to a solution of RuH₂P₄ (0.25 mmol) in 10 cm³ of toluene cooled to -80 °C and the reaction mixture, brought to 0 °C, was stirred for 30 min. An excess of the appropriate lithium or sodium salt of anionic ligand X (0.40 mmol of NaX or LiX) in 5 cm³ of ethanol was added, and the solution stirred for 1 h. The solvent was removed under reduced pressure, giving an oil which was treated with 3 cm³ of ethanol. Cooling of the resulting solution to -25 °C gave a white or pale yellow microcrystalline solid, which was slowly separated, filtered off, and dried under vacuum; yield was between 35 and 70%.

(ii) An excess of the appropriate lithium or sodium salt of anionic ligand X (0.4 mmol) and compound [RuH(η^2 -H₂)- $\{PPh(OEt)_2\}_4]BF_4$ (0.2 mmol, 0.20 g) were placed in a 25 cm³ three-necked round-bottomed flask and, after cooling to -80 °C, treated with 10 cm³ of ethanol. The reaction mixture, brought to room temperature, was stirred for 1 h, and the volume of the solution then reduced to about 3 cm³ by evaporation under reduced pressure. Cooling to -25 °C of the resulting solution gave white or pale yellow microcrystals, which were separated, filtered off, and dried under vacuum; yield was between 40 and 70% (Found: C, 49.1; H, 6.4. C₄₀H₆₁BrO₈P₄Ru **4b** requires C, 49.3; H, 6.3. Found: C, 46.95; H, 6.05. C₄₀H₆₁-IO₈P₄Ru 4c requires C, 47.0; H, 6.0. Found: C, 51.4; H, 6.7; N, 4.4. C₄₀H₆₁N₃O₈P₄Ru **4e** requires C, 51.3; H, 6.6; N, 4.5. Found: C, 33.8; H, 7.4. C₂₄H₆₁BrO₁₂P₄Ru 5b requires C, 34.05; H, 7.3%).

[OsX(\eta^2-H₂){PPh(OEt)₂}₄]BF₄ 6 (X = Cl⁻ a, Br⁻ b or l⁻ c). A slight excess of HBF₄·Et₂O (0.137 mmol, 20 µL of 54% solution in Et₂O) was added to a solution of OsHX[PPh(OEt)₂]₄ (0.12 mmol) in 5 cm³ of diethyl ether cooled to -80 °C and allowed to stand under argon. The reaction mixture was brought to room temperature and stirred for about 1 h. A white solid began to separate from the solution at 0 °C, and precipitation was complete after 1 h of stirring at room temperature. The solid was filtered off and dried under vacuum; yield $\geq 90\%$; $\Lambda_{\rm M} = 90.4$ for **6a**, 93.1 for **6b**, 88.9 S cm² mol⁻¹ for **6c** (Found: C, 43.5; H, 5.8; Cl, 3.1. C₄₀H₆₂BClF₄O₈OsP₄ **6a** requires C, 43.4; H, 5.6; Cl, 3.20. Found: C, 41.55; H, 5.5. C₄₀H₆₂BBrF₄O₈OsP₄ **6b**

requires C, 41.7; H, 5.4. Found: C, 40.0; H, 5.3. $C_{40}H_{62}BF_{4}$ -IO₈OsP₄ 6c requires C, 40.1; H, 5.2%).

[Os(SEt)(\eta^2-H₂){PPh(OEt)₂}₄]⁺BF₄⁻ 6d. This compound is thermally unstable and was prepared only in solution by adding 3.9 µL (0.027 mmol) of HBF₄·Et₂O to a solution of OsH-(SEt)[PPh(OEt)₂]₄ (0.025 mmol, 0.026 g) in 0.5 cm³ of CD₂Cl₂ placed in a 5 mm NMR tube cooled to -80 °C. The tube was shaken and brought to -10 °C to complete the reaction, and then ¹H and ³¹P NMR spectra were recorded: \delta_{H}(CD_2Cl_2, 273 K) 3.80–3.21 (18 H, m, CH₂), 1.23 (3 H, t, CH₃ sulfide), 1.13 (24 H, t, CH₃ phosphite) and -10.38 (2 H, br, \eta^2-H₂); \delta_{P}(CD_2Cl_2, 273 K) 105.0 (s); (183 K) A₂BC spin system, \delta_{A} 113.1, \delta_{B} 102.1, \delta_{C} 101.5, J_{AB} = 29.5, J_{AC} = 31.9, J_{BC} = 36.8 Hz.

[OsH₂(N₃){PPh(OEt)₂}₄]⁺BF₄⁻ 6e. This compound too is thermally unstable and decomposes above -5 to -10 °C, both as a solid and in solution. It was therefore prepared only in solution by adding 3.9 µL (0.027 mmol) of HBF₄·Et₂O to a solution of OsH(N₃)[PPh(OEt)₂]₄ (0.025 mmol, 0.026 g) in 0.5 cm³ of CD₂Cl₂ placed in a 5 mm NMR tube cooled to -80 °C. The tube was shaken and brought to -10 °C to complete the reaction, and then ¹H and ³¹P NMR spectra were recorded: $\delta_{\rm H}(\rm CD_2Cl_2, 203 \text{ K})$ 3.35 (16 H, m, CH₂), 1.06 (24 H, t, CH₃) and -15.62 (2 H, br, hydride); $\delta_{\rm P}(\rm CD_2Cl_2, 203 \text{ K})$ 123.0 (s, br).

 $[OsX(\eta^2-H_2){P(OEt)_3}_4]^+BF_4^-$ 7 and $[OsX(\eta^2-H_2)(PPh_2 OEt_{4}^{+}BF_{4}^{-} 8 (X = Br^{-} b \text{ or } I^{-} c)$. These complexes were prepared in CD₂Cl₂ solution at low temperature by protonation with HBF4.Et2O of the corresponding hydrides, but not isolated as solids owing to easy loss of H₂ above 0 °C. A typical preparation involved the addition by microsyringe of HBF₄. Et₂O (0.022 mmol, 3.2 μ L) to a solution of the appropriate hydride (0.020 mmol) in 0.5 cm³ of CD₂Cl₂ placed in a 5 mm NMR tube cooled to -80 °C. The tube was shaken to complete the reaction and then NMR spectra were recorded. [OsBr(η^2 - H_2 {P(OEt)₃}₄]⁺ 7b: δ_H (CD₂Cl₂, 203 K) 4.06, 3.96 (24 H, m, CH₂), 1.27, 1.15 (36 H, t, CH₃); δ_P(CD₂Cl₂, 203 K) A₂B₂ spin system, δ_A 87.2, δ_B 74.4, $J_{AB} = 42$ Hz. [OsI(η^2 -H₂){P(OEt)₃}₄]-BF₄ 7c: δ_H(CD₂Cl₂, 273 K) 4.19, 4.05 (24 H, m, CH₂), 1.33, 1.28 (36 H, t, CH₃); $\delta_P(CD_2Cl_2, 193 \text{ K}) \text{ A}_2B_2$ spin system, δ_A 87.6, $\delta_{\rm B}$ 71.8, $J_{\rm AB}$ = 42 Hz. [OsBr(η^2 -H₂)(PPh₂OEt)₄]⁺ 8b: $\delta_{\rm H}$ (CD₂Cl₂, 203 K) 3.40 (8 H, m, CH₂), 1.11 (12 H, t, CH₃) and -9.35 (2 H, br, η^2 -H₂); $\delta_P(CD_2Cl_2, 203 \text{ K}) 87.0 \text{ (s). } [OsI(\eta^2$ -H₂)(PPh₂OEt)₄]⁺ 8c: δ_H(CD₂Cl₂, 273 K) 3.98 (8 H, qnt, CH₂), 1.35 (12 H, t, CH₃) and -9.07 (2 H, qnt, η^2 -H₂, $J_{PH} = 12$ Hz); $\delta_P(CD_2Cl_2, 298$ K) 108.3 (s).

 $[RuX(\eta^2-H_2)P_4]^+BF_4^-9, 10 (P = PPh(OEt)_2 9 \text{ or } P(OEt)_3 10;$ $\mathbf{X} = \mathbf{Br}^{-} \mathbf{b}$ or $\mathbf{I}^{-} \mathbf{c}$). Owing to easy loss of H₂ above $-10 \,^{\circ}\text{C}$, these complexes too were prepared only at low temperature by protonation with HBF4·Et2O (0.022 mmol, 3.2 µL) of the appropriate hydride RuHXP₄ (0.020 mmol) dissolved in 0.5 cm³ of CD₂Cl₂ placed in a 5 mm NMR tube cooled to -80 °C. After shaking the tube to complete the reaction, the NMR spectra were as follows. [RuBr(η^2 -H₂){PPh(OEt)₂}₄]⁺ 9b: $\delta_{\rm H}$ (CD₂Cl₂, 183 K) 3.36 (16 H, m, CH₂), 1.09 (24 H, t, CH₃) and -10.83 (2 H, br, η²-H₂), (260 K) 3.70, 3.43 (16 H, m, CH₂), 1.18 (24 H, t, CH₃) and -10.75 (2 H, qnt, br, η^2 -H₂); δ_P (CD₂Cl₂, 183 K) 145 (m), (246 K) 145.0 (s, br). $[RuI(\eta^2-H_2){PPh(OEt)_2}_4]^+$ 9c: $\delta_{\rm H}({\rm CD_2Cl_2}, 203~{\rm K})$ 3.37 (16 H, m, CH₂), 1.10 (24 H, t, CH₃) and $\begin{array}{l} -9.66 \ (2 \ H, \ br, \ \eta^2 \text{-}H_2); \ \delta_P(\text{CD}_2\text{Cl}_2, \ 203 \ K) \ 146.0 \ (s, \ br). \\ [\text{RuBr}(\eta^2 \text{-}H_2)\{P(\text{OEt})_3\}_4]^+ \ \textbf{10b}; \ \delta_H(\text{CD}_2\text{Cl}_2, \ 223 \ K) \ 4.03 \ (24 \ H, \ br) \\ \end{array}$ m, CH₂), 1.19 (36 H, t, CH₃) and -11.96 (2 H, br, η^2 -H₂); $\delta_{\rm P}({\rm CD}_2{\rm Cl}_2, 203 \text{ K}) \ 135.5 \text{ (s)}.$

 $[RuH_2(N_3){PPh(OEt)_2}_4]^+BF_4^-$ 9e. This compound was prepared exactly like related species 9 and 10 by protonation with HBF₄·Et₂O of RuH(N₃)[PPh(OEt)_2]₄ in an NMR tube at -80 °C. $\delta_{\rm H}$ (CD₂Cl₂, 203 K) 3.90–3.30 (16 H, m, CH₂), 1.10 (24 H, t, CH₃) and -14.81 (2 H, qnt, br, hydride); $\delta_{\rm P}$ (CD₂Cl₂, 203 K) 167–158 (m).

OsBr(C=CPh)[PPh(OEt)_2]_4 11b. An excess of PhC=CH (0.45 mmol, 50 μ L) was added to a solution of [OsBr(η^2 -H₂)-{PPh(OEt)_2}_4]BF₄ (0.15 mmol, 0.170 g) in 10 cm³ of CH₂Cl₂ under an argon atmosphere, and the reaction mixture stirred for about 1 h. Triethylamine (1.5 mmol, 208 μ L) was added and, after 2 h of stirring, the solvent removed under reduced pressure giving an oil which was treated with ethanol (2 cm³). Cooling to -25 °C gave a solution from which a yellow solid separated, this was filtered off and crystallised from toluene (1 cm³) and ethanol (5 cm³); yield ≥60% (Found: C, 49.7; H, 5.7. C₄₈H₆₅BrO₈OsP₄ requires C, 49.5; H, 5.6%).

RuBr(C=CPh)[PPh(OEt)₂]₄ 12b. To a solution of RuHBr-[PPh(OEt)₂]₄ (0.15 mmol, 0.15 g) in 10 cm³ of CH₂Cl₂, cooled to -80 °C, was added a slight excess of HBF₄·Et₂O (0.165 mmol, 24 µL) and the resulting solution, brought to -40 °C, stirred for 30 min. An excess of PhC=CH (0.45 mmol, 50 µL) was added and, after 30 min of stirring, triethylamine (0.45 mmol, 62 µL). The reaction mixture was brought to room temperature and, after 1 h, the solvent removed under reduced pressure giving an oil which was treated with 5 cm³ of ethanol. Stirring the resulting solution gave a yellow solid which was separated, filtered off, and crystallised from ethanol; yield ≥40% (Found: C, 53.75; H, 6.0. C₄₈H₆₅BrO₈P₄Ru requires C, 53.6; H, 6.1%).

[OsBr(=C=C=CPh₂){PPh(OEt)₂}₄]BF₄ 13b and [OsBr{=C= C=C(Me)Ph}{PPh(OEt)₂}₄]BF₄ 14b. An excess of the appropriate alkyne [HC=CC(Ph₂)OH or HC=CC(Me)(Ph)OH] (0.15 mmol) was added to a solution of [OsBr(η²-H₂){PPh(OEt)₂}₄]-BF₄ (0.15 mmol, 0.17 g) in 10 cm³ of CH₂Cl₂, and the reaction mixture stirred for about 3 h. The solvent was removed under reduced pressure, giving an oil which was treated with 5 cm³ of ethanol. Vigorous stirring of the resulting solution caused the separation of a reddish brown solid which was filtered off and dried under vacuum; yield ≥70%; $\Lambda_{\rm M}$ = 93.6 for 13b, 90.9 S cm² mol⁻¹ for 14b (Found: C, 49.5; H, 5.4. C₅₅H₇₀BBrF₄O₈OsP₄ 13b requires C, 49.30; H, 5.3. Found: C, 46.9; H, 5.5. C₅₀H₆₈-BBrF₄O₈OsP₄ 14b requires C, 47.00; H, 5.4%).

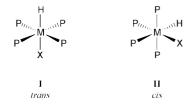
[RuBr(=C=C=CPh₂){PPh(OEt)₂}₄]BPh₄ 15b. A slight excess of HBF₄·Et₂O (0.165 mmol, 24 µL) was added to a solution of RuHBr[PPh(OEt)₂]₄ (0.15 mmol, 0.15 g) in 10 cm³ of CH₂Cl₂ cooled to −80 °C, and the reaction mixture, brought to −40 °C, was stirred for 30 min. 1,1-Diphenyl-2-propyn-1-ol (HC=CCPh₂-OH, 0.15 mmol, 0.031 g) was then added and the solution, brought to room temperature, stirred for about 3 h. The solvent was removed under reduced pressure, giving an oil which was treated with ethanol containing an excess of NaBPh₄ (0.3 mmol, 0.10 g). A reddish orange solid slowly separated from the resulting solution, which was filtered off and crystallised from CH₂Cl₂ (3 cm³) and ethanol (5 cm³); yield ≥60%; $\Lambda_{\rm M}$ = 53.4 S cm² mol⁻¹ (Found: C, 64.1; H, 6.3. C₇₉H₉₀BBrO₈P₄Ru requires C, 64.0; H, 6.1%).

[OsBr(NH₂NH₂){PPh(OEt)₂}₄]BPh₄ 16b. To a solution of [OsBr(η^2 -H₂){PPh(OEt)₂}₄]BF₄ (0.15 mmol, 0.17 g) in 10 cm³ of CH₂Cl₂ was added a slight excess of NH₂NH₂ (0.30 mmol, 10 µL) and the reaction mixture stirred for about 3 h. The solvent was removed under reduced pressure, giving an oil which was treated with ethanol containing an excess of NaBPh₄ (0.30 mmol, 0.10 g). A white solid separated from the resulting solution, which was filtered off and crystallised from CH₂Cl₂ (2 cm³) and ethanol (5 cm³); yield \geq 70%; $\Lambda_{\rm M}$ = 51.7 S cm² mol⁻¹ (Found: C, 54.2; H, 6.1; N, 2.0. C₆₄H₈₄BBrN₂O₈OsP₄ requires C, 54.4; H, 6.0; N, 2.0%). **[RuBr(NH₂NH₂){P(OEt)₃}₄]BPh₄ 17b.** To a solution of Ru-HBr[P(OEt)₃]₄ (0.15 mmol, 0.13 g) in 10 cm³ of CH₂Cl₂ cooled to −80 °C was added HBF₄·Et₂O (0.165 mmol, 24 µL) and the reaction mixture, brought to −40 °C, stirred for 2 h. An excess of NH₂NH₂ (0.30 mmol, 10 µL) was slowly added, then the solution was brought to room temperature and stirred for 30 min. The solvent was removed under reduced pressure, giving an oil which was treated with ethanol containing an excess of NaBPh₄ (0.30 mmol, 0.10 g). A white solid separated from the resulting solution, and was filtered off and crystallised from CH₂Cl₂ (2 cm³) and ethanol (5 cm³); yield ≥70%; $\Lambda_{\rm M}$ = 52.6 S cm² mol⁻¹ (Found: C, 48.35; H, 7.3; N, 2.2. C₄₈H₈₄BBrN₂O₁₂-P₄Ru requires C, 48.2; H, 7.1; N, 2.3%).

Oxidation reactions. The oxidation of hydrazine complexes was carried out at low temperature $(-30 \,^{\circ}\text{C})$ using Pb(OAc)₄ as oxidant. In a typical experiment, a sample of the appropriate complex (0.1 mmol) was placed in a 25 cm³ three-necked flask fitted with a solid-addition sidearm containing an equimolar amount or an excess of Pb(OAc)₄. Dichloromethane was added, the solution cooled to $-40 \,^{\circ}\text{C}$, and the oxidant added portionwise, in about 20–30 min, to the cold stirred solution. The reaction mixture was brought to 0 °C, stirred for 10 min, and the solvent then removed under reduced pressure, giving an oil which was treated with ethanol (3 cm³) containing an excess of NaBPh₄ (0.2 mmol, 0.070 g). A white solid slowly separated out, which was filtered off and dried under vacuum.

Results and discussion

Monohydride complexes


The new monohydride complexes MHXP₄ 1–5 were prepared by allowing the MH_2P_4 species to react first with CF₃SO₃Me and then with the appropriate anionic ligand X, as shown in Scheme 1. The reaction of dihydride MH_2P_4 with methyl triflate

$$\mathsf{MH}_2\mathsf{P}_4 + \mathsf{CF}_3\mathsf{SO}_3\mathsf{CH}_3 \xrightarrow{-\mathsf{CH}_4} \mathsf{MH}(\eta^1 - \mathsf{OSO}_2\mathsf{CF}_3)\mathsf{P}_4 \xrightarrow{\mathsf{excess}}_{\mathsf{LiX} \text{ or } \mathsf{NaX}} \mathsf{MHXP}_4 \xrightarrow{\mathsf{P}_4} \mathsf{1-5}$$

proceeds with the evolution of CH₄ (by ¹H NMR) and formation of the triflate complex ¹⁴ MH(η^1 -OSO₂CF₃)P₄ which, by substitution with anionic ligand X, gives the final complexes MHXP₄ 1–5. Alternatively, ruthenium complexes RuHXP₄ can be prepared by substituting the η^2 -H₂ ligand in [RuH(η^2 -H₂)-P₄]⁺ cations^{8a} with the appropriate ligand X, as shown in Scheme 2.

$$[\operatorname{RuH}(\eta^2 - H_2)P_4]^{\dagger} \xrightarrow{\operatorname{excess LiX or NaX}} H_2 \xrightarrow{\operatorname{RuHXP_4}} H_2 \xrightarrow{\operatorname{RuHXP_4}} H_3 \xrightarrow{\operatorname{RuHXP_4}} H_4 \xrightarrow{\operatorname{Scheme 2}} H_2 \xrightarrow{\operatorname{RuHXP_4}} H_3 \xrightarrow{\operatorname{RuHX$$

All the new hydride complexes 1-5 were isolated as white or pale yellow solids, stable in air (except 3), diamagnetic and nonelectrolytic. Analytical and spectroscopic data (Table 1) support the proposed formulations. Furthermore, IR and NMR data allowed *trans* geometry I to be established in solution for hydride complexes 1, 3, 4 and 5; *cis* geometry II was shown by

J. Chem. Soc., Dalton Trans., 2000, 3575–3584 3577

 Table 1
 Selected infrared and NMR data for osmium and ruthenium complexes

Compound		IR ^{<i>a</i>}		¹ H NMR ^{<i>b,c</i>}		S	³¹ P-{ ¹ H}
		ĩ∕/cm ^{−1}	Assignment	δ (J/Hz)	Assignment	Spin system	$\frac{\rm NMR^{\textit{b,d}}}{\delta (J/\rm Hz)}$
la	trans-OsHCl[PPh(OEt) ₂] ₄	2089w	v(OsH)	3.72 (qnt) 3.35 (m) 1.01 (t) -19.20 (qnt)	CH ₂ CH ₃ OsH	A ₄	121.1 (s)
				$J_{\rm PH} = 18$ 3.97 (qnt) ^e 3.57 (m)	CH ₂	A4e	120.5 (s)
				1.08 (t) -18.47 (qnt) $J_{\rm PH} = 18$	CH ₃ OsH		
b	trans-OsHBr[PPh(OEt)2]4	2098w	v(OsH)	$3.98 (qnt)^{e}$ 3.60 (qnt) 1.08 (t)	CH ₂ CH ₃	A4 e	119.2 (s, t
				-18.10 (qnt) $J_{PH} = 18$	OsH		
c	trans-OsHI[PPh(OEt) ₂] ₄	2122w	v(OsH)	3.96 (qnt) ^e 3.62 (qnt) 1.09 (t)	CH ₂ CH ₃	A_4^{e}	117.6 (s)
				-16.53 (qnt) $J_{\rm PH} = 18$	OsH		
d	trans-OsH(SEt)[PPh(OEt)2]4	2006w	v(OsH)	3.70 (m) 3.34 (m)	CH ₂	A ₄	121.1 (s)
				1.26 (t) 1.00 (t) -19.21 (qnt) $J_{\rm PH} = 18$	SCH ₂ CH ₃ POCH ₂ CH ₃ OsH		
e	trans-OsH(N ₃)[PPh(OEt) ₂] ₄	2099w 2070m	v(OsH) $v(N_3)$	3.59 (s) 3.23 (m)	CH ₂	A_4	123.8 (s)
				1.01 (t) -18.47 (qnt) $J_{\rm PH} = 18$	CH ₃ OsH	$A_2B_2^{f}$	$\begin{array}{l} \delta_{\rm A} \ 129.7 \\ \delta_{\rm B} \ 123.5 \\ J_{\rm AB} = 38 \end{array}$
2b	cis-OsHBr[P(OEt) ₃] ₄	1960m	v(OsH)	4.15–3.80 (m) 1.22 (t) 1.17 (t) 1.01 (t)	CH ₂ CH ₃	AB ₂ C	$\delta_{A} 120.3$ $\delta_{B} 116.6$ $\delta_{C} 103.9$ $J_{AB} = 31.3$
				-8.71 to -9.57 (m)	OsH		$J_{\rm AC} = 23.0$ $J_{\rm BC} = 39.1$
lc	<i>cis</i> -OsHI[P(OEt) ₃] ₄	1966m	v(OsH)	4.21 (m) ^{e} 1.31 (m) -9.57 to -10.42 (m)	CH ₂ CH ₃ OsH	AB ₂ C ^e	$\delta_{A} 105.7 \\ \delta_{B} 102.2 \\ \delta_{C} 93.5 \\ J_{AB} = 33.8 \\ J_{AC} = 21.6 $
3b	trans-OsHBr(PPh2OEt)4			3.02 (m) 0.52 (t) -18.34 (qnt)	CH ₂ CH ₃ OsH	$A_4{}^f$	$J_{\rm BC} = 38.3$ 101.5 (s, b
sc	trans-OsHI(PPh2OEt)4	2118w	v(OsH)	$J_{PH} = 18$ 3.06 (m) 0.62 (t) - 16.60 (qnt)	CH ₂ CH ₃ OsH	A ₄	96.2 (s, bi
b	trans-RuHBr[PPh(OEt)2]4	1992m	v(RuH)	$J_{\rm PH} = 18$ 3.75 (m) 3.42 (m)	CH ₂	A ₄	161.2 (s)
				1.03 (t) -16.45 (qnt)	CH₃ RuH		
				$J_{\rm PH} = 22$ 3.99 (m) ^e 3.66 (m)	CH ₂	A_4^{e}	160.8 (s)
				1.09 (t) -15.77 (qnt) $J_{\rm PH} = 22$	CH₃ RuH		
c	trans-RuHI[PPh(OEt)2]4	2027m	v(RuH)	3.77 (m) 3.47 (m)	CH ₂	A ₄	161.5 (s)
				1.07 (t) -14.65 (qnt) L = 20	CH ₃ RuH		
le	$\mathit{trans}\text{-}RuH(N_3)[PPh(OEt)_2]_4$	2087s 1983w	v(N ₃) v(RuH)	$J_{\rm PH} = 20$ 3.60 (m) 3.25 (m)	CH ₂	A ₄	162.8 (s)
				1.00 (t) -16.94 (qnt) $J_{\rm PH} = 22$	CH₃ RuH		
b	trans-RuHBr[P(OEt) ₃] ₄	2027m	v(RuH)	4.11 (m) 1.27 (t) 1.22 (t)	CH ₂ CH ₃	A ₄	134.8 (s)
				-17.46 (qnt) $J_{\rm PH} = 22$	RuH		

Table 1(Contd.)

		IR ^{<i>a</i>}		¹ H NMR ^{<i>b,c</i>}		S	$^{31}P-\{^{1}H\}$
Compound		ṽ∕cm ^{−1}	Assignment	δ (J/Hz)	Assignment	Spin system	$\frac{\rm NMR}{\delta (J/\rm Hz)}$
6a	$\textit{trans-}[OsCl(\eta^2\text{-}H_2)\{PPh(OEt)_2\}_4]BF_4$			3.72 (m) 3.54 (m) 1.16 (t)	CH ₂ CH ₃	A ₄	105.0 (s)
6b	trans-[OsBr(η^2 -H ₂){PPh(OEt) ₂ } ₄]BF ₄			-10.31 (qnt) $J_{PH} = 12$ 3.67 (m) 1.17 (t) -10.34 (qnt, br)	$\begin{array}{l} \eta^2 \text{-} \text{H}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \eta^2 \text{-} \text{H}_2 \end{array}$	A_4	102.8 (s)
6c	$\textit{trans-}[OsI(\eta^2\text{-}H_2)\{PPh(OEt)_2\}_4]BF_4$			$J_{PH} = 12$ 3.60 (m) 1.19 (t)	CH ₂ CH ₃	A ₄	100.3 (s)
				-10.13 (qnt, br)	η^2 -H ₂	$A_2B_2^{f}$	$\delta_{A} 112.5$ $\delta_{B} 100.0$ $J_{AB} = 30$
1b	cis-OsBr(C=CPh)[PPh(OEt) ₂] ₄	2083m	v(C=C)	$J_{PH} = 12 4.10-3.60 (m) 1.40 (t) 1.27 (t) 1.23 (t) 1.11 (t)$	CH ₂ CH ₃	AB ₂ C	$ \begin{aligned} &\delta_{A} \ 118.5 \\ &\delta_{B} \ 109.8 \\ &\delta_{C} \ 107.3 \\ &J_{AB} = 31 \\ &J_{AC} = 17 \end{aligned} $
2b	trans-RuBr(C=CPh)[PPh(OEt) ₂] ₄	2091s	v(C≡C)	3.89 (m) 3.76 (m)	CH ₂	A ₄	$J_{\rm BC} = 33$ 163.8 (s)
3b	cis -[OsBr(=C=C=CPh ₂){PPh(OEt) ₂ } ₄]-BF ₄	1969s	v(C=C=C)	1.30 (t) 3.86 (m) 3.67 (m) 1.32 (t) 1.29 (t) 1.25 (t)	CH ₃ CH ₂ CH ₃	AB ₂ C	$\delta_{A} 117.6$ $\delta_{B} 96.8$ $\delta_{C} 94.3$ $J_{AB} = 47$ $J_{AC} = 24$ $J_{BC} = 26$
4b	cis -[OsBr{=C=C=C(Me)Ph}- {PPh(OEt) ₂ } ₄]BF ₄	1973s	v(C=C=C)	3.81 (m) 3.61 (m) 1.35–1.20 (m)	CH ₂ CH ₃	AB ₂ C	$\delta_{A} 117.0 \\ \delta_{B} 97.6 \\ \delta_{C} 94.7 \\ J_{AB} = 45 \\ J_{AC} = 25$
5b	trans-[RuBr(=C=C=CPh ₂){PPh(OEt) ₂ } ₄]- BPh ₄	1952s	v(C=C=C)	3.86 (m) 3.75 (m)	CH ₂	A_4	$J_{\rm BC} = 26$ 163.9 (s)
6b	cis-[OsBr(NH ₂ NH ₂){PPh(OEt) ₂ } ₄]BPh ₄	3332m 3317w 3263w 1595sh	$v(\rm NH)$ $\delta(\rm NH_2)$	1.30 (t) 4.48 (br) 4.00–3.50 (m) 3.25 (br) 1.34 (t) 1.28 (t) 1.25 (c)	$\begin{array}{c} \mathrm{CH}_{3}\\ \mathrm{OsNH}_{2}\\ \mathrm{CH}_{2}\\ \mathrm{NH}_{2}\\ \mathrm{CH}_{3} \end{array}$	A ₂ BC	$\delta_{A} 112.8$ $\delta_{B} 106.1$ $\delta_{C} 100.0$ $J_{AB} = 32$ $J_{AC} = 33$
7b	cis-[RuBr(NH ₂ NH ₂){P(OEt) ₃ } ₄]BPh ₄	3344sh 3335m 3263m	v(NH)	1.25 (t) 4.41 (br) 4.20–3.90 (m) 2.93 (br) 1.30 (m)	RuNH ₂ CH ₂ NH ₂ CH ₃	ABC ₂	$J_{BC} = 31 \\ \delta_{A} \ 134.8 \\ \delta_{B} \ 126.6 \\ \delta_{C} \ 121.6 \\ J_{AB} = 63 \\ J_{AC} = 59 \\ J_{BC} = 59$

the P(OEt)₃ derivatives OsHX[P(OEt)₃]₄ 2b and 2c. In the hydride region, the ¹H NMR spectra showed a quintet for the trans complexes and a multiplet for the cis. The ³¹P-{¹H} NMR spectra are consistent with the proposed geometries, showing only one sharp singlet for trans complexes 1, 3, 4 and 5, while an AB_2C multiplet appears in the spectra of *cis* derivatives 2. It may be observed, however, that the spectra of some trans complexes do not remain unchanged between +30 and -90 °C, and the sharp singlet observed to -60 °C resolves, in the case of 1e, into an A2B2 multiplet at -90 °C. This result implies the presence of inequivalent phosphorus nuclei, and seems to be in contrast with both the proposed trans and cis geometry, for which an AB₂C multiplet should be expected. However, the spectra may be interpreted on the basis of trans geometry, in which the four PPh(OEt)₂ ligands are made inequivalent by restricted rotation around M-P as the temperature is lowered. The probable different arrangement of the phenyl and ethoxy groups of one phosphite with respect to the other may give the

observed ³¹P spectra. Examples of inequivalent phosphorus nuclei in octahedral complexes containing four PPhMe₂¹⁵ or PPh(OEt)₂ ligand ^{7c,16} in a plane have recently been reported and these precedents further support the *trans* geometry proposed for complexes 1, 3, 4 and 5.

Protonation reactions

Protonation reactions of monohydrides $MHXP_4$ with HBF_4 . Et₂O were studied at low temperature in both argon and hydrogen atmospheres. The results are summarised in Schemes 3 and 4.

In an argon atmosphere, hydrides $MHXP_4$ **1–5** react with HBF_4 ·Et₂O to give dihydrogen complexes $[MX(\eta^2-H_2)P_4]^+$ **6–10** which are stable at room temperature only in the case of osmium with PPh(OEt)₂ (6), and were isolated as BF_4^- salts and characterised. Instead, the related $[OsX(\eta^2-H_2)P_4]^+$ **7**, **8** and $[RuX(\eta^2-H_2)P_4]^+$ **9**, **10** cations are thermally unstable and lose

MHXP ₄	HBF ₄ •Et ₂ O	$[MX(\eta^2-H_2)P_4]^+$	
1-5	Argon, – 80 °C	6–10	
MH(N ₃)P ₄	HBF ₄ •Et ₂ O	$[MH_2(N_3)P_4]^+$	

1e, **4e Argon**, $-80 \degree C$ **6e**, **9e Scheme 3** M = Os **6**, **7**, **8** or Ru **9**, **10**; P = PPh(OEt)₂ **6**, **9**, P(OEt)₃ **7**, **10**

Scheme 3 $1_{12} = 0.50$, *i*, o of Ku 9, 10, $r = rrn(OEt)_2 0$, 9, $r(OEt)_3$ *i*, 1 or PPh₂OEt 8; X = Cl⁻ a, Br⁻ b, I⁻ c or SEt⁻ d.

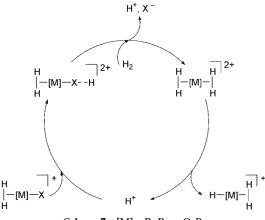
$$\begin{array}{c} \text{OsHXP}_{4} \quad \frac{\text{HBF}_{4} \cdot \text{Et}_{2}\text{O}}{\text{H}_{2}, -80 \ ^{\circ}\text{C}} \quad \left[\text{OsH}(\eta^{2} \cdot \text{H}_{2})\text{P}_{4}\right]^{+} \\ \\ \text{RuHXP}_{4} \quad \frac{\text{HBF}_{4} \cdot \text{Et}_{2}\text{O}}{\text{H}_{2}, -80 \ ^{\circ}\text{C}} \quad \left[\text{RuH}(\eta^{2} \cdot \text{H}_{2})\text{P}_{4}\right]^{+} + \text{ decomp. products} \\ \\ \text{Scheme 4} \quad X = \text{Cl}^{-}, \text{ Br}^{-}, \text{ I}^{-} \text{ or SEt}^{-}. \end{array}$$

 H_2 even at temperatures below -10 °C, preventing their separation as solids. In solution, however, they are stable to -5 to -10 °C and were characterised spectroscopically.

Azido complexes $MH(N_3)P_4$ also react with $HBF_4 \cdot Et_2O$ but, in this case, they afford the classical dihydride species $[MH_2(N_3)P_4]^+$ 6e, 9e, which are thermally unstable and were characterised in solution at low temperature.

Surprisingly, operating in a hydrogen atmosphere, protonation of OsHXP4 gives hydride-dihydrogen cations [OsH(n2- H_2) P_4]⁺, which were isolated as BF_4^- salts in very high yields (Scheme 4). Protonation of the related RuHXP₄ also afforded $[RuH(\eta^2\text{-}H_2)P_4]^+,$ but in low yield and with some decomposition products. The formation of hydride-dihydrogen species under H_2 may be due to substitution of ligand X with H_2 in the starting complex MHXP4. In order to test this hypothesis, we treated all MHXP₄ species with H₂, but no reaction was observed after 24 h at room temperature, and only further addition of HBF₄·Et₂O caused the formation of $[MH(\eta^2-H_2)P_4]^+$ derivatives. It may also be noted that the addition of even a small amount (less than the 1:1 ratio) of HBF₄·Et₂O or another Brønsted acid to a solution of MHXP4 under H2 led to $[MH(\eta^2-H_2)P_4]^+$ cationic species. These results may be interpreted on the basis of labilisation of ligand X in MHXP₄, caused by interaction with the Brønsted acid (or with H⁺) and subsequent substitution of X with H₂, affording the final complex shown in Scheme 5.

Although this mechanism, involving the interaction of H⁺ with one or two M–X fragments, is plausible, it is probably not the only possible or only operating one in this transformation, because treatment of MHXP₄ with an acid, even in H₂, and at least in small amounts, should give $[MX(\eta^2-H_2)P_4]^+$ species. In fact, the potential protonation sites present in the MHXP₄ complexes are the X ligand, the metal, the oxygen atoms of the phosphites and the hydride ligand, whose protonation gives the $[MX(\eta^2-H_2)P_4]^+$ cation. Instead, no trace of any halide–dihydrogen complex was detected when the protonation reaction was carried out under H₂.


These results prompted us to study the stability of $[MX(\eta^2 - H_2)P_4]^+$ under different conditions, and we observed that the compounds were quite stable in solution, even under H_2 , but the

addition of even a small amount of HBF₄·Et₂O gave rise to the transformation of all the starting complexes into the [MH- $(\eta^2-H_2)P_4$]⁺ cations (Scheme 6). The presence of acid seems to

$$[MX(\eta^{2}-H_{2})P_{4}]^{+} \xrightarrow{H_{2}} CH_{2}CI_{2}$$

$$[MX(\eta^{2}-H_{2})P_{4}]^{+} \xrightarrow{H_{2}, HBF_{4}} [MH(\eta^{2}-H_{2})P_{4}]^{+}$$
Scheme 6

be crucial for the formation of hydride–dihydrogen complexes and, also in this case, interaction of the Brønsted acid with ligand X of $[MX(\eta^2-H_2)P_4]^+$ may be invoked to explain its formation, according to the path shown in Scheme 7. The

Scheme 7 $[M] = RuP_4$ or OsP_4 .

substitution of ligand X labilised by interaction with acid (H⁺) gives the bis(dihydrogen) dicationic complex $[M(\eta^2-H_2)_2P_4]^{2+}$, which must be very acidic and can easily lose H⁺ to give the final $[MH(\eta^2-H_2)P_4]^+$ derivative. Therefore, both the mechanisms of Schemes 5 and 7 may operate to give the final hydride–dihydrogen complexes, by protonation of $MHXP_4$ under H₂. However, the experimental data do not distinguish the two paths, which may also be concurrent.

In order to obtain further information on these reactions and to support the mechanism proposed in Schemes 5 and 7, we studied the reactions by ¹H and ³¹P NMR spectra, but no new species, apart from the starting MHXP₄ or $[MX(\eta^2-H_2)P_4]^+$, were observed in the spectra of the reaction mixture, and even the use of deuteriated species such as D₂ and CF₃SO₃D did not give any further information on the possible mechanism. However, the formation of $[MH(\eta^2-H_2)P_4]^+$ by protonation of both MHXP₄ and $[MX(\eta^2-H_2)P_4]^+$ under H₂ may reasonably be explained on the basis of Schemes 5 and 7: although other mechanisms may be operating, the proposed labilisation of ligand X by interaction with Brønsted acid is plausible and fits experimental data.

Characterisation of complexes

The spectroscopic data of new classical and non-classical complexes **6–10** are listed in Tables 1 and 2. Some complexes were obtained as pale yellow solids (**6**), stable in air and in solution of polar organic solvents, where they behave as 1:1 electrolytes;¹⁷ the others (**7–10**) are thermally unstable and were characterised only in solution. However, the presence of η^2 -H₂ ligand in [MX(η^2 -H₂)P₄]⁺ and of H⁻ in [MH₂(N₃)P₄]⁺ derivatives was confirmed by ¹H NMR spectra and variabletemperature T_1 measurements: in the low-frequency region of the proton spectra of all the η^2 -H₂ complexes a slightly broad quintet at δ -9.11 to -10.75 is present, due to the H₂ ligand coupled with four equivalent phosphorus atoms (Fig. 1). The

Table 2 ¹H NMR data at 200 MHz in the hydride region for some osmium and ruthenium complexes

Compound		T/K	δ (M–H ₂)	δ (M–H)	T_1/ms	r(H–H) ^{<i>a</i>} /Å fast rotation	
1b	OsHBr[PPh(OEt) ₂] ₄	210		-16.75 (qnt)	191 ± 20		
3b	OsHBr(PPh ₂ OEt) ₄	208		-11.9 (br)	161 ± 16		
6b	$[OsBr(\eta^2-H_2){PPh(OEt)_2}_4]^+$	206	-10.37 (qnt)		22 ± 2	1.01 ± 0.02	
6c	$[OsI(\eta^2-H_2){PPh(OEt)_2}_4]^+$	209	-10.33 (qnt)		21 ± 2	1.00 ± 0.02	
6d	$[Os(SEt)(\eta^2-H_2)\{PPh(OEt)_2\}_4]^+$	206	-10.30 (qnt)		22 ± 2	1.01 ± 0.02	
6e	$[OsH_2(N_3){PPh(OEt)_2}_4]^+$	203	· • · ·	-15.6 (br)	233 ± 20		
8b	$[OsBr(\eta^2-H_2)(PPh_2OEt)_4]^+$	203	-9.2 (br)		28 ± 3	1.05 ± 0.02	
9b	$[RuBr(\eta^2-H_2){PPh(OEt)_2}_{4}]^+$	209	-10.8 (br)		9 ± 1	0.87 ± 0.02	
9c	$[RuI(\eta^2-H_2)\{PPh(OEt)_2\}_4]^+$	203	-9.7 (br)		9 ± 1	0.87 ± 0.02	
9e	$[RuH_2(N_3){PPh(OEt)_2}_4]^+$	203		-14.8 (br)	449 ± 40		
	$[OsH(\eta^2-H_2){PPh(OEt)_2}_{4}]^{+b}$	209	-7.0 (br)		32 ± 3	1.07 ± 0.02	
	$[OsH(\eta^2-H_2)(PPh_2OEt)_4]^{+b}$	215	-4.7 (br)		10 ± 1	0.89 ± 0.02	
	$[\operatorname{RuH}(\eta^2-\operatorname{H}_2)\{\operatorname{PPh}_2(\operatorname{OEt})_2\}_{4}]^+$	200	-3.8 (br)		4 ± 0.5	0.76 ± 0.02	

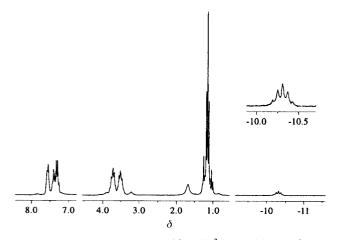


Fig. 1 Proton NMR spectrum of $[OsCl(\eta^2-H_2){PPh(OEt)_2}_4]BF_4$ 6a (in CD₂Cl₂ at 295 K).

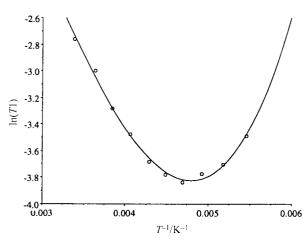
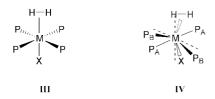


Fig. 2 Plot of $\ln(T_1)$ vs 1/K for $[OsI(\eta^2-H_2){PPh(OEt)_2}_4]BF_4$ 6c.


presence of a quintet for the signal of the η^2 -H₂ ligand, which also determines the J_{PH} value of 12 Hz, is rather surprising, because a broad signal is always observed for dihydrogen complexes¹⁻⁴ of the iron triad and a well resolved signal is often associated with the classical hydride. However, variabletemperature T_1 measurements (Fig. 2) gave $T_1(min.)$ values of 9–28 ms (Table 2), consistent with the non-classical nature of the H₂ ligand.¹⁸ Hydride precursors MHXP₄ **1b** and **3b** give $T_1(min.)$ values of 191 and 161 ms, respectively. We also attempted to support the attribution further by determining the J_{HD} values of isotopomers [MX(η^2 -HD)P₄]⁺, prepared either by treating MHXP₄ with CF₃CO₂D or [MX(η^2 -H₂)P₄]⁺ in solution with gaseous HD. Unfortunately, the proton spectra of the isotopomers could not unambiguously determine the $J_{\rm HD}$ values for these compounds. However, $T_1({\rm min.})$ values and comparisons with values obtained for the MHXP₄ precursors support the non-classical nature of these [MX(η^2 -H₂)P₄]⁺ species. It may be noted that the ¹H NMR spectra of osmium complexes [OsX(η^2 -H₂){P(OEt)₃}_4]⁺ 7 containing P(OEt)₃ ligands do not show any signal between +20 and -80 °C, easily attributable to η^2 -H₂ resonance. This absence may be due to the loss of H₂, with formation of an unsaturated complex [MXP₄]⁺, but treatment of 7 with NEt₃ gave the starting MHXP₄ complexes, thus confirming the presence of the η^2 -H₂ ligand (Scheme 8). A

$$[MX(\eta^2-H_2)P_4]^+$$
 \longrightarrow $MHXP_4$

Scheme 8 $M = Ru \text{ or } Os; P = P(OEt)_3, PPh(OEt)_2 \text{ or } PPh_2OEt.$

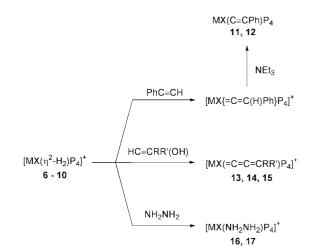
similar deprotonation reaction was observed for all the new dihydrogen complexes. Therefore, the absence of the η^2 -H₂¹H NMR signal of 7 may be attributed to fluxionality of the molecule, which even at -80 °C does not give a low-exchange spectrum, or to a very short T_1 value of the η^2 -H₂ proton, giving a very broadened signal difficult to observe.

In the temperature range between +30 and -70 °C, the ³¹P-{¹H} NMR spectra of all η^2 -H₂ complexes **6**–10 show sharp singlets (Table 1), suggesting *trans* geometry **III**. In some cases,

however, the ³¹P-{¹H} NMR spectra at temperatures below -70 °C begin to broaden and resolve (about at -90 °C) into multiplets which, for some compounds, are of A2B2, or A2BC type. The magnetic inequivalence of the phosphine ligands at very low temperatures may be explained, as proposed for the related MHXP₄ 1-5 precursors, on the basis of restricted rotation of the phosphite ligand around the M-P bond. However, the A_2B_2 spectra observed for $[OsX(\eta^2-H_2){P(OEt)_3}_4]^+$ 7 may also be explained on the basis of a distorted trans octahedral geometry of type IV and previously proposed for the related hydride-dihydrogen $[MH(\eta^2-H_2)P_4]^+$ derivatives.⁸ In every case, the A_2B_2 -type ³¹P spectra observed for 7 do not seem to be consistent with cis geometry, for which an AB₂C or A₂BC spectrum is expected, but rather with trans which, at very low temperatures, displays two-by-two equivalent phosphorus nuclei (geometry IV).

Both azido derivatives $[MH_2(N_3)P_4]^+$ 6e and 9e are thermally unstable and could not be obtained in the solid state owing to

their decomposition above 0 °C. However, NMR data in solution support their formulation and suggest, in contrast with related complexes **6**–**9**, the presence of a classical dihydride with the central metal in the formal oxidation state of +4 [M^{IV}]. The ¹H NMR spectra, in the hydride region, do show a broad signal at δ –15.6 for osmium **6e** and at δ –14.8 for ruthenium **9e**, the T_1 measurements of which, at variable temperatures, give $T_1(\text{min.})$ of 232 (**6e**) and 449 ms (**9e**), consistent ¹⁸ with the classical nature of H₂ ligands. The protonation reaction of the azido derivative MH(N₃)P₄ thus proceeds through oxidative addition of H⁺, giving a dihydride species [MH₂(N₃)P₄]⁺ of M^{IV}.


For further structural information in solution of these sevenco-ordinate complexes $[MH_2(N_3)P_4]^+$ **6e** and **9e**, we recorded ³¹P-{¹H} NMR spectra in the temperature range between +30 and -90 °C. Unfortunately, the spectra appear as broad signals which do not resolve, even at -100 °C.

The results obtained on the protonation reaction of MHXP₄ complexes indicate the influence that ligand X has, not only on the reaction course, but also on the H–H distance and stability to the loss of H₂ from $[MX(\eta^2-H_2)P_4]^+$ derivatives. First of all, protonation gives an η^2 -H₂ complex for all the halogenide Cl⁻, Br⁻ and I⁻ and thiol SEt⁻ species, whereas a classical dihydride $[MH_2(N_3)P_4]^+$ was obtained only in the case of the azide derivative. Instead, stability to the loss of H₂ in the dihydrogen complexes does not depend on the nature of ligand X, but on the central metal and the nature of the phosphite ligands, as only osmium complexes **6** containing the PPh(OEt)₂ ligand are stable and capable of being isolated. Furthermore, all the η^2 -H₂ complexes are stable in solution in an H₂ atmosphere, but give hydride–dihydrogen $[MH(\eta^2-H_2)P_4]^+$ derivatives even in the presence of small amounts of Brønsted acids.

 T_1 measurements allow H–H distances to be calculated,¹⁹ and values are listed in Table 2. Although these values can be considered as an estimate of the H-H distance, a comparison among similar compounds such as our $[MX(\eta^2-H_2)P_4]^+$ cations can reasonably be made. This shows that the H-H distances are not influenced by the nature of the halogenide ligand and that, in the case of osmium bound to PPh(OEt)₂ ligand, the same value of 1.01 Å (fast rotation) was found for both halogenide and thiol derivatives. A longer distance of 1.07 Å was calculated for the related hydride $[OsH(\eta^2-H_2){PPh(OEt)_2}_4]^+$, indicating that the effect of trans halogenide or thiol ligands is to shorten the H-H bonds relative to hydride trans ligands. These results contrast those of the related ruthenium complexes [RuX(η^2 -H₂){PPh(OEt)₂}₄]⁺ 9, which have a longer H–H distance (0.87 Å) than the hydride-hydrogen $[RuH(\eta^2-H_2){PPh(OEt)_2}_4]^+$ derivatives (0.76 Å). In our ruthenium complexes, therefore, the effect of trans halogenide ligands is to lengthen the H-H bond relative to trans hydride ligands, in agreement with similar results^{5a} obtained on other η^2 -H₂ ruthenium complexes of the type $[RuCl(\eta^2-H_2)(dppe)]^+$ [dppe = 1,2-bis(diphenylphosphino)ethane]. However, this lengthening does not seem to be a general trend in η^2 -H₂ complexes, but only concerns ruthenium complexes. In related osmium derivatives $[OsX(\eta^2 H_2 P_4$ ⁺ the opposite trend was observed, which may suggest that it is the nature of the central metal which determines the influence of the *trans* ligand X in η^2 -H₂ complexes, although only a few complexes have been studied so far.

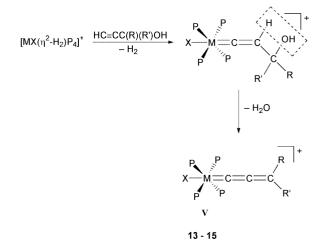
Reactivity

Some reactivity studies of new η^2 -H₂ complexes **6–10** are summarised in Scheme 9. The η^2 -H₂ ligand is rather labile in all complexes and may easily be substituted by several ligands, affording new derivatives. However, we focused attention on particular molecules such as alkynes and hydrazine, which require the use of appropriate precursors for synthesis of their related complexes.^{20–22} Thus, the reaction with an excess of phenylacetylene gives a pink solution from which, in the case of ruthenium, known vinylidene [RuX{=C=C(H)Ph}P_4]BPh_4

Scheme 9 M = Os 11, 13, 14, 16 or Ru 12, 15, 17; X = Br⁻; P = PPh(OEt)₂ or P(OEt)₃; R = R' = Ph; R = Me, R' = Ph.

complexes²³ can be isolated. In the case of osmium, we were not able to separate any vinylidene species, probably owing to the existence of equilibrium of the type shown in Scheme 10.

$$[MX(\eta^{2}-H_{2})P_{4}]^{+}$$


$$PhC \equiv CH - H_{2}$$

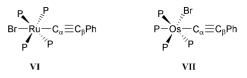
$$[MX\{=C=C(H)Ph\}P_{4}]^{+} \longrightarrow [MXP_{4}]^{+} + PhC \equiv CH$$

$$[A]$$
Scheme 10 M = Ru or Os.

In every case, the addition of an excess of NEt₃ to the pink solution gives acetylides $MX(C=CPh)P_4$ **11** and **12**, which were isolated in high yield and characterised. This reaction and the separation of $[RuX{=C=C(H)Ph}P_4]BPh_4$ strongly suggest, for osmium too, the formation of a vinylidene intermediate [A], which is probably rather unstable towards dissociation of the =C=C(H)Ph ligand,²⁴ thus preventing separation of vinylidene derivatives.

Treatment of $[MX(\eta^2-H_2)P_4]^+$ with propargylic alcohol gives a dark red solution from which propadienylidene complexes $[MX(=C=C=CRR')P_4]BPh_4$ **13–15** were isolated in high yield and characterised. The reaction probably proceeds with evolution of H₂ and tautomerisation of the alkyne HC=CC(R)-(R')OH on the metal centre to give a vinylidene intermediate $[MX{=C=C(H)C(R)(R')OH}P_4]^+$ which, by spontaneous loss of H₂O, gives the final propadienylidene²⁰ derivative (Scheme 11). Propadienylidene complexes of ruthenium and osmium are

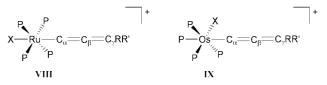
Scheme 11 M = Os 13, 14 or Ru 15; $P = PPh(OEt)_2$; R = R' = Ph 13, 15 or R = Ph, R' = Me 14.


Table 3 $~^{13}\text{C-}\{^1\text{H}\}$ NMR data of some osmium and ruthenium complexes

Compound	$\delta (J/\text{Hz})^a$	Assignment
11b	122.3 (s, br)	C ₆
	107.9 (dm)	$\begin{array}{c} \mathrm{C}_{\mathrm{eta}} \ \mathrm{C}_{\mathrm{lpha}} \end{array}$
	64.7 (m)	CH ₂
	16.7 (m)	CH ₂
13b	302.6 (dm)	C _a
	201.4 (dm)	$\tilde{C_{\beta}}$
	167.2 (s)	C'_{γ}
	66.6 (t)	$\begin{array}{c} C_{\alpha}\\ C_{\beta}\\ C_{\gamma}\\ CH_{2} \end{array}$
	65.2 (d)	
	63.4 (t)	
	63.1 (d)	
	16.0 (m)	CH3
14b	301.1 (m)	C_{α} C_{β} C_{γ}
	197.2 (m)	C_{β}
	168.7 (s)	C_{γ}
	66.4–63.1 (m)	CH ₂
	16.2 (m)	CH ₃
15b	309.9 (qnt)	C_{a}
	$J_{\rm CP} = 17$	
	199.9 (qnt, br)	$\begin{array}{c} C_{\beta} \\ C_{\gamma} \\ CH_2 \end{array}$
	166.5 (s)	C_{γ}
	63.9 (br)	
	16.3 (s, br)	CH3
^{<i>a</i>} In CD ₂ Cl ₂ at 25 °C. Ph	nenyl carbon resonance	es are omitted.
	•	

reported to contain mainly cyclopentadienyl or arene rings as well as bidentate phosphines as ancillary ligands.²⁰ The use of $[MX(\eta^2-H_2)P_4]^+$ as a precursor allows the preparation of the first propadienylidene derivatives stabilised by phosphite coligands. Hydrazine NH₂NH₂ also substitutes the H₂ ligand in $[MX(\eta^2-H_2)P_4]^+$, giving the related $[MX(NH_2NH_2)P_4]BPh_4$ derivatives **16**, **17**.

All the new complexes 11–17 are air-stable solids and soluble in polar organic solvents. Propadienylidene 13–15 and hydrazine 16, 17 derivatives behave as 1:1 electrolytes.¹⁷ Their analytical and spectroscopic data (Tables 1 and 3) support the proposed formulation.


The infrared spectra of acetylide complexes 11, 12 show medium-intensity ν (C=C) bands at 2083 (11) and 2091 cm⁻¹ (12). The ¹³C-{¹H} NMR spectra (Table 3) are also consistent with the presence of the acetylide ligand, showing the characteristic signals of C_a and C_β carbon atoms. Lastly, in the temperature range between +30 and -80 °C the ³¹P-{¹H} NMR spectrum of the RuBr(C=CPh)P₄ 12b complex shows a sharp singlet, suggesting, as in geometry VI, a mutually *trans* position

of the acetylide and the Br^- ligand. Instead, the ³¹P spectrum of the related OsBr(C=CPh)P₄ **11b** derivative is an AB₂C multiplet, consistent with *cis* geometry **VII**.

The infrared spectra of propadienylidene complexes 13–15 show strong bands attributed to ν (CCC) of the =C=C=CRR' ligand at 1973–1952 cm⁻¹. However, diagnostic for the presence of the propadienylidene group²⁰ are the ¹³C-{¹H} NMR spectra, which show the characteristic highly deshielded C_a carbon atom at δ 309.9–301.1 and C_β and C_γ at δ 201.4–197.2 and 168.7–166.5, respectively. Furthermore, like related acelylides 11, 12, the ³¹P-{¹H} NMR spectra indicate *trans* geometry VIII for ruthenium 15 and *cis* IX for osmium complexes 13, 14, respectively, showing a singlet for the former and an AB₂C multiplet for the latter.

The infrared spectra of hydrazine complexes 16, 17 show the characteristic²⁵ v(NH) of the NH₂NH₂ ligand at 3344–3263

cm⁻¹ and δ (NH) at 1595 cm⁻¹. However, further support for the presence of the hydrazine ligand comes from the ¹H NMR spectra, which show the NH₂ signals as two broad multiplets at δ 4.48–4.41 and 3.25–2.93, respectively, consistent with the proposed formulation. Furthermore, some structural information can be detected from the ³¹P-{¹H} NMR spectra of **16** and **17** which show the presence of a complicated multiplet in both cases. These patterns may be simulated using an A₂BC model in case **16b**, and an ABC₂ model in **17b**, suggesting a mutually *cis* position of the NH₂NH₂ and Br⁻ ligands, as in geometry **X**. We

studied the reactivity of the hydrazine complexes towards oxidation with $Pb(OAc)_4$ at low temperature, and preliminary results indicate the formation of the 1,2-diazene [MBr(NH= NH)P₄]⁺ derivative. However, the reaction needs further investigation and will be the subject of a forthcoming paper.

Acknowledgements

The financial support of the Ministero della Ricerca Scientifica e Tecnologica, Rome, Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, Cofinanziamento 1998/99, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

References

- G. J. Kubas, Acc. Chem. Res., 1988, 21, 120; P. G. Jessop and R. H. Morris, Coord. Chem. Rev., 1992, 121, 155; R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1993, 92, 789; D. M. Heinekey and W. J., Jr. Oldman, Chem. Rev., 1993, 93, 913.
- 2 M. A. Esteruelas and L. A. Oro, *Chem. Rev.*, 1998, **98**, 577; S. Sabo-Etienne and B. Chaudret, *Chem. Rev.*, 1998, **98**, 2077.
- 3 W. A. King, B. L. Scott, J. Eckert and G. J. Kubas, *Inorg. Chem.*, 1999, **38**, 1069; T. P. Fong, A. J. Lough, R. H. Morris, E. Mezzetti, E. Rocchini and P. Rigo, *J. Chem. Soc., Dalton Trans.*, 1998, 2111; D. G. Gusev, A. J. Lough and R. H. Morris, *J. Am. Chem. Soc.*, 1998, **120**, 13138; V. Rodriguez, B. Donnadieu, S. Sabo-Etienne and B. Chaudret, *Organometallics*, 1998, **17**, 3809; W. S. Ng, G. Jia, M. Y. Hung, C. P. Lau, K. Y. Wong and L. Wen, *Organometallics*, 1998, **17**, 4556; J. Tomas, A. Lledos and Y. Jean, *Organometallics*, 1998, **17**, 4532; J. Hulmann-Vincent, B. L. Scott and G. J. Kubas, *J. Am. Chem. Soc.*, 1998, **120**, 6808; T. A. Luther and D. M. Heinekey, *Inorg. Chem.*, 1998, **37**, 127.
- 4 A. Antiñolo, F. Carrillo-Hermosilla, M. Fajardo, S. Garcia-Yuste, A. Otero, S. Camanyes, F. Maseras, M. Moreno, A. Lledos and J. M. Lluch, J. Am. Chem. Soc., 1997, 119, 6107; D. G. Gusev, R. Hübener, P. Burger, O. Orama and H. Berke, J. Am. Chem. Soc., 1997, 119, 3716; Y. Kim, H. Deng, J. C. Gallucci and A. Wojcicki, Inorg. Chem., 1996, 35, 7166; D. G. Gusev, R. L. Kuhlman, K. B. Renkema, O. Eisenstein and K. G. Caulton, Inorg. Chem., 1996, 35, 6775; G. B. Bacskay, I. Bytheway and N. S. Hush, J. Am. Chem. Soc., 1996, 118, 3753; R. M. Bullock, J.-S. Song and D. J. Szalda, Organometallics, 1996, 15, 2504; J. Eckert, A. Albinati, U. E. Bucher and L. M. Venanzi, Inorg. Chem., 1996, 35, 1292; J. C., Jr. Lee, W. Yao, R. H. Crabtree and H. Rüegger, Inorg. Chem., 1996, 35, 695; B. Ma, C. L. Collins and H. F. Schaefer III, J. Am. Chem. Soc., 1996, 118, 870; J. Li, R. M. Dickson and T. Ziegler, J. Am. Chem. Soc., 1995, 117, 11482; X. L. R. Fontaine, T. P. Layzell and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 917; J. A. Banister, P. D. Lee and P. D. Poliakoff, Organometallics, 1995, 14, 3876.

- 5 (a) B. Chin, A. J. Lough, R. H. Morris, C. T. Schweitzer and C. D'Agostino, *Inorg. Chem.*, 1994, **33**, 6278; (b) P. A. Maltby, M. Schlaf, M. Steinbeck, A. J. Lough, R. H. Morris, W. T. Klooster, T. F. Koetzle and R. C. Srivastava, *J. Am. Chem. Soc.*, 1996, **118**, 5396; (c) E. Rocchini, A. Mezzetti, H. Rüegger, U. Burckhardt, V. Gramlich, A. Del Zotto, P. Martinuzzi and P. Rigo, *Inorg. Chem.*, 1997, **36**, 711.
- 6 Z. Li and H. Taube, J. Am. Chem. Soc., 1991, 113, 8946; T. Hasegawa, Z. Li, S. Parkin, H. Hope, R. K. McMullan, T. F. Koetzle and H. Taube, J. Am. Chem. Soc., 1994, 116, 4352.
- 7 (a) G. Albertin, S. Antoniutti, S. Garcia-Fontán, R. Carballo and F. Padoan, J. Chem. Soc., Dalton Trans., 1998, 2071; (b) S. Garcia-Fontán, A. Marchi, L. Marvelli, R. Rossi, S. Antoniutti and G. Albertin, J. Chem. Soc., Dalton Trans., 1996, 2779; (c) G. Albertin, S. Antoniutti, M. Bettiol, E. Bordignon and F. Busatto, Organometallics, 1997, 16, 4959.
- 8 (a) P. Amendola, S. Antoniutti, G. Albertin and E. Bordignon, *Inorg. Chem.*, 1990, **29**, 318; (b) G. Albertin, S. Antoniutti, D. Baldan and E. Bordignon, *Inorg. Chem.*, 1995, **34**, 6205.
- 9 R. Rabinowitz and J. Pellon, J. Org. Chem., 1961, 26, 4623.
- 10 E. Nachbaur and G. Leiseder, Monatsh. Chem., 1971, 102, 1718.
- 11 G. Balacco, J. Chem. Inf. Comput. Sci., 1994, 34, 1235.
- 12 W. G. Peet and D. H. Gerlach, *Inorg. Synth.*, 1974, **15**, 38; D. H. Gerlach, W. G. Peet and E. L. Muetterties, *J. Am. Chem. Soc.*, 1972, **94**, 4545.
- 13 G. Albertin, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1989, 2353.
- 14 G. Albertin, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1995, 719.

- 15 A. J. Deeming, S. Doherty, J. E. Marshall and N. I. Powell, J. Chem. Soc., Chem. Commun., 1989, 1351.
- 16 G. Albertin, S. Antoniutti and E. Bordignon, J. Organomet. Chem., 1996, 513, 147.
 17 W. L. G. L. Chen, D. 1971, 7 (1)
- 17 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 18 D. G. Hamilton and R. H. Crabtree, J. Am. Chem. Soc., 1988, 110, 4126; M. T. Bautista, K. A. Earl, P. A. Maltby, R. H. Morris, C. T. Schweitzer and A. Sella, J. Am. Chem. Soc., 1988, 110, 7031; P. J. Desrosiers, L. Cai, Z. Lin, R. Richards and J. Halpern, J. Am. Chem. Soc., 1991, 113, 4173.
- 19 K. A. Earl, G. Jia, P. A. Maltby and R. H. Morris, J. Am. Chem. Soc., 1991, 113, 3027.
- 20 M. I. Bruce, Chem. Rev., 1998, 98, 2797.
- 21 M. I. Bruce, Chem. Rev., 1991, 91, 197.
- 22 D. Sutton, Chem. Rev., 1993, 93, 995.
- 23 G. Albertin, S. Antoniutti, E. Bordignon and M. Granzotto, J. Organomet. Chem., 1999, 585, 83.
- 24 G. Albertin, S. Antoniutti, E. Bordignon, E. Del Ministro, S. Iannelli and G. Pelizzi, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 1783; G. Albertin, S. Antoniutti, E. Bordignon, F. Cazzaro, S. Iannelli and G. Pelizzi, *Organometallics*, 1995, **14**, 4114; G. Albertin, S. Antoniutti, E. Bordignon and D. Bresolin, *J. Organomet. Chem.*, 2000, **609**, 10.
- 25 G. Albertin, S. Antoniutti, E. Bordignon and S. Pattaro, J. Chem. Soc., Dalton Trans., 1997, 4445; G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, P. M. Dolcetti and G. Pelizzi, J. Chem. Soc., Dalton Trans., 1997, 4435; G. Albertin, S. Antoniutti, A. Bacchi, M. Bergamo, E. Bordignon and G. Pelizzi, Inorg. Chem., 1998, 37, 479.