5-Acetyl-2-methyl-4-nitro-6-phenyl-3(2H)-pyridazinone: Versatile Precursor to Hetero-Condensed Pyridazinones V. Dal Piaz,* G. Ciciani, M.P. Giovannoni Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via G. Capponi 9, I-50121, Firenze, Italy Received 17 January 1994 The title compound 2 was found to be a very useful intermediate to synthesize five- and six-membered hetero-condensed pyridazinones in high yields under generally mild and simple reaction conditions 3(2H)-Pyridazinones have aroused great interest in the past few years due to their application in agriculture as herbicides¹ and in medicine as cardiovascular drugs.² In a previous paper we reported the synthesis of the title compound 2, easily available in moderate yield through oxidative cleavage of the isoxazolo[3,4-d]pyridazinone 1 by ceric ammonium nitrate (CAN).3 Compound 1, in turn, was obtained in almost quantitative yield by cyclocondensation of the suitable 3,4-difunctionalized isoxazole with methyl hydrazine.⁴ In compounds of type 2, the nitro group is a very good leaving group and easily undergoes substitution by O-,N-, and S-nucleophiles.⁵⁻ We have previously exploited the high reactivity of the 5-acetyl-4-nitro-3(2H)-pyridazinone (2) to synthesize 1H- and 2H-pyrazolo[3,4-d]pyridazinones by treatment with hydrazine (methylhydrazine) and phenylhydrazine, respectively.8 In addition we have demonstrated that 2 behaves as the dienophilic counterpart in [2+4]Diels-Alder cycloadditions to afford dihydro- and tetrahydrophthalazinones.9 Stimulated by the appearance of a review in the literature by Haider and Heinisch on the cyclocondensation of a variety of heteroaromatics on the 1,2-diazine system,¹⁰ we report here the results of our studies in this field, using compound 2 as the precursor. Reaction of 2 with ethyl thioglycolate anion in alcoholic medium at room temperature smoothly afforded the ethyl thieno[2,3-d]pyridazine-2-carboxylate 3 in excellent yield (Scheme 1). Reaction of 2 with sarcosine ethyl ester gave under similar reaction conditions, as expected in view of the lower acidity of the methylene group, the open chain intermediate 4a in 76% yield. Following the same procedure, condensation of 2 with N-methyl- β -alaninenitrile afforded the 4-(2-cyanoethyl)derivative 4b (83%). Ring closure of 4a and 4b to the corresponding pyrrolo[2,3d]pyridazine **5a** and pyrido[2,3-d]pyridazine **5b** was easily accomplished in good yields by briefly heating with sodium ethoxide in ethanol. Conversion of 2 into 5a and 5b could be directly performed in a single step, without the isolation of the intermediates 4a and 4b, in 70 and 85% yields, respectively. The ring closure of 4b into the isomeric 2-cyanomethylpyrrolo[2,3-d]pyridazinone could be excluded, taking into account the major acidity of the methylene neighbouring the cyano group, as well as the cyclocondensations of similar vic-substituted pyridazines with the same type of reagent, affording pyridopyridazines. 11 Moreover, niether of the two signals for NCH₃ groups overlap at $\delta = 3.77$ in the ¹H NMR spectrum, which could be attributed to the N-methylpyrrole moiety. In fact both the signals found for this type of NCH₃ in Table. Compounds 3-8 and 11 Prepared | Prod-
uct ^a | mp (°C)
(solvent) | Yield (%) | IR (Nujol) v (cm ⁻¹) | ¹ H NMR (CDCl ₃) ^b δ , J (Hz) | |---------------------------|-------------------------------|-----------------|---|---| | 3 | 182–183
(EtOH) | 79° | 1740 (COOEt), 1670 ^g | 1.40 (t, 3H, OCH ₂ CH ₃ , $J = 7.0$), 2.12 (s, 3H, CH ₃ C), 3.91 (s, 3H, NCH ₃), 4.38 (q, 2H, OCH ₂ CH ₃ , $J = 7.0$), 7.40–7.60 (m, 5H, C ₆ H ₅) | | 4a | 112-114
(cyclohexane) | 76° | 1750 (COOEt),
1690, ^h 1645 ^g | | | 4b | 95
(EtOH/H ₂ O) | 83° | 2250 (CN), 1690, ^h 1640 ^g | 2.07 (s, 3H, $\stackrel{\bullet}{\text{COCH}}_3$), 2.77 (t, 2H, $\stackrel{\bullet}{\text{NCH}}_2$, $J=7.1$), 2.83 (s, 3H, 4-NCH ₃), 3.82 (s, 3H, 2-CH ₃), 3.86 (t, 2H, $\stackrel{\bullet}{\text{CH}}_2\text{CN}$, $J=7.1$), 7.30–7.45 (m, 5H, $\stackrel{\bullet}{\text{C}}_6\text{H}_5$) | | 5a | 275 (dec)
(EtOH) | 70° | 3700-3100 (OH),
1730 (COOH), 1640 ⁸ | | | 5b | 171–172
(EtOH) | 85° | 2230 (CN), 1665 ^g | 1.64 (s, 3H, CCH_3), 3.75 (s, 3H, NCH_3), 3.78 (s, 3H, NCH_3), 3.92 (s, 2H, CH_2), 7.42 (s, 5H, C_6H_5) | | 6 | 191–193
(EtOH) | 67° | 3400-3100 (OH),
1710, ^h 1650 ^g | | | 7 | 195 (dec)
(EtOH) | 87 ^d | 3300-3100 (OH),
1640 ^g | 1.90 (s, 3 H, COCH ₃), 3.77 (s, 3 H, NCH ₃), 7.30–7.50 (m, 5 H, C_6H_5), 11.10 (br s, 1 H, NOH) | | 8 | 164-166 (dec)
(EtOH) | 75° | 1670 ^g | 2.77 (s, 3H, CH ₃ C), 4.01 (s, 3H, NCH ₃), 7.40–7.60 (m, 3H _{arom}), 8.20–8.35 (m, $2H_{arom}$) | | 11 | 191–193
(EtOH) | 23 ^f | 3420, 3320 (NH ₂), 1670 ^g | | Satisfactory microanalyses obtained C \pm 0.33, H \pm 0.27, N \pm 0.29. ^b Compounds 7 and 11 were measured in DMSO- d_6 . ^c Based on starting nitro ketone 2. d Based on 6. e Based on 7. f Based on actually converted 2. ⁸ Amide carbonyl. h Keto carbonyl. 670 Short Papers SYNTHESIS the ¹H NMR spectrum of **5a** ($\delta = 4.55$), and the signals for similar *N*-methyl five-membered-condensed pyridazinones, like 1-methyl-1*H*-pyrazolo[3,4-*d*]pyridazinones ($\delta = 4.32-4.33$), appear notably shifted downfield⁸ (Table). The isoxazolo [4,5-d] pyridazine derivative 8 was obtained, in a three-step procedure, starting from the same precursor 2 through the 4-hydroxypyridazinone 6 and the corresponding oxime 7. It is noteworthy that the isolation of the intermediates 6 and 7 is unnecessary: compound 8 can also be prepared in a single one-pot procedure starting from 2 in 46% yield. On the other hand, it is impossible to obtain 8 by treatment of 2 with hydroxylamine because this reagent, both as free base and as hydrochloride, attacks preferentially the pyridazine 4carbon rather than the carbonyl carbon in alcoholic medium. Thus the isomeric isoxazolo[3,4-d]pyridazine derivative 1, which represents the synthetic precursor of 2, was obtained. Therefore the above reaction sequence allowed the conversion of the isoxazolo[3,4-d]pyridazine derivative 1 into the isomeric isoxazolo[4,5-d]pyridazine 8 through the key intermediate 2. We encountered unexpected difficulties in the synthesis of pyrimido[4,5-d]pyridazinone 11 by cyclocondensation of 2 with guanidine as free base in a variety of solvents and experimental conditions. However, the desired product 11 was obtained in low yield (23%) by refluxing 2 with guanidine hydrochloride in ethanol for a long period of time (Scheme 2). From the reaction mixture we have recovered the starting material 2 (16%) by column chromatography, besides an unresolved fraction in which the 4-chloro derivative 10⁷ (48%) and the 4-ethoxypyridazinone 9¹² (13%) were identified by their ¹H NMR data. Both the products clearly arise from a competitive nucleophilic displacement of the nitro group in 2 by the chlorine anion and by the solvent, respectively. Evidence for this hypothesis was obtained from the reaction between 2 and benzyltriethylammonium chloride (TEBA) in acetonitrile to form compound 10 in almost quantitative yield. The IR and ¹H NMR data listed in the Table are in full agreement with the proposed structures. In particular the occurrence of the CO vibration at $v = 1640-1680 \, \mathrm{cm}^{-1}$ in the IR and the typical singlet observed at about $\delta = 3.80$ in the ¹H NMR spectra for the 2-methyl group of the pyridazinonic system confirm that in all the reaction products a cyclic lactamic structure is preserved. Moreover the singlets observed at about $\delta = 2.10$ for the CCH₃ groups in five-membered-condensed pyridazinones 3 and 5a agree with the values found for structurally related compounds, ⁸ whereas the same signals appeared shifted highfield ($\delta = 1.64$ and 1.70) for the six-membered fused analogues 5b and 11. In conclusion, the easy availability of the precursor 2 (obtained in 3 steps from commercial products) has made the present method an effective alternative synthetic approach to hetero-condensed pyridazinones by cyclocondensation¹⁰ of suitable substituted heteroaromatics with hydrazine. Scheme 1 Scheme 2 Melting points were determined on a Büchi 510 melting points apparatus and are uncorrected. IR spectra were measured as nujol mulls with a Perkin-Elmer 681 spectrometer. ¹H NMR spectra were recorded with Varian Gemini 200 instrument; Chemical shifts are reported in ppm, using the solvent as internal standard. Extracts were dried over Na₂SO₄ and solvents were removed under reduced pressure. Silica gel plates (Merck F254) were used for analytical TLC and silica gel (Merck 70–230 mesh) for column chromatography. ## Ethyl 6,7-Dihydro-3,6-dimethyl-7-oxo-4-phenylthieno[2,3-d]pyridazine-2-carboxylate (3): To a solution of sodium ethyl thioglycolate, prepared from NaOEt (170 mg, 2.5 mmol) and ethyl thioglycolate (300 mg, 2.5 mmol) in absolute EtOH (5 mL), was added compound 2 (110 mg, 0.4 mmol) at r.t. The mixture was stirred for 10 min, cooled at 0 °C and filtered. The residue, after washing with $\rm H_2O$, was purified by recrystallization from EtOH to give colorless crystals (Table). ## 4-Disubstituted Amino-5-acetyl-2-methyl-6-phenyl-3(2H)-pyridazinones 4a,b; General Procedure: A mixture of 2 (110 mg, 0.4 mmol) and the appropriate reagent (sarcosine ethyl ester, 70 mg, 0.6 mmol for 4a or N-methyl β -alanine-nitrile, 60 mg, 0.7 mmol for 4b) in EtOH (3 mL) was stirred at r.t. for 15–30 min. The suspension was diluted with H_2O (30 mL) and extracted with CH_2Cl_2 (3 × 20 mL). Evaporation of the solvent afforded the desired products which were purified by recrystallization to give colorless crystals of 4a and 4b (Table). #### Ring Closure of 4a,b; General Procedure: To a solution of NaOEt [from Na (55 mg, 2.4 mmol) and absolute EtOH (4 mL)] was added 4a or 4b (0.3 mmol) and the mixture was heated at $60-80\,^{\circ}$ C for 30 and 60 min, respectively. After evaporation of the solvent, 5a was extracted with 5% aq NaHCO₃ filtered and precipitated with 2 N HCl. The product was purified by recrystallization to give colorless crystals. Compound 5b was obtained as yellow crystals after precipitation with $\rm H_2O$ (30 mL), filtration and recrystallization (Table). # 6,7-Dihydro-1,3,6-trimethyl-7-oxo-4-phenyl-1*H*-pyrrolo[2,3-*d*]pyridazine-2-carboxylic Acid (5a) and 1,2,7,8-Tetrahydro-3-cyano-1,4,7-trimethyl-7-oxo-5-phenylpyrido[2,3-*d*]pyridazine (5b); General Procedure for One-Pot Synthesis: After treatment of 2 (110 mg, 0.4 mmol) with the appropriate reagent (0.6 mmol), as described above, a solution of NaOEt (200 mg, 2.9 mmol) in absolute EtOH (4 mL) was added and the mixture heated at 80 °C for 1 h. After evaporation of the solvent in vacuo, compounds 5a, b were isolated as above (Table). #### 5-Acetyl-4-hydroxy-2-methyl-6-phenyl-3(2H)-pyridazinone (6): To a stirred solution of 2 (200 mg, 0.73 mL) in MeCN (2 mL) and $\rm H_2O$ (0.2 mL) was added dropwise NEt₃ (1 mL) at r.t. After 2 h the mixture was evaporated in vacuo, and the residue treated with EtOAc (30 mL) and extracted with 1 N NaOH (3 × 10 mL). The combined aqueous layers were acidified with 3 N HCl to afford compound 6 which was purified by recrystallization to give colorless crystals (Table). ## 5-Acetoxyhydroximoyl-4-hydroxy-2-methyl-6-phenyl-3(2*H*)-pyridazinone (7): To a solution of NH₂OH prepared from NH₂OH · HCl (500 mg, 17.2 mmol) in H₂O (1 mL) and NaOMe (390 mg, 7.2 mmol) in MeOH (4 mL) was added compound 6 (100 mg, 0.41 mmol) and the mixture stirred at r.t. for 15 min. After evaporation in vacuo, the residue was treated with $\rm H_2O$ (7 mL) to afford 7 which was purified by recrystallization to give colorless crystals (Table). #### 3,6-Dimethyl-4-phenylisoxazolo[4,5-d]pyridazin-7(6H)-one (8): The oxime 7 (140 mg, 5.4 mmol) was heated with Ac₂O (2 mL) at 100 °C for 1 h under stirring. After cooling the solution was stirred with brine (15 g) for 30 min. The solid obtained was purified by recrystallization from EtOH to give colorless crystals (Table). ## 2-Amino-4,7-dimethyl-5-phenylpyrimido[4,5-d]pyridazin-8(7H)-one A suspension of 2 (200 mg, 0.73 mmol) and guanidine hydrochloride (900 mg, 9.4 mmol) in EtOH (7 mL) was stirred at reflux under N_2 for 35 h. After concentration in vacuo, the excess of guanidine hydrochloride was removed by filtration and the solution was further concentrated and chromatographed on silica gel (eluent: cyclohexane/EtOAc, 1:1). The starting material was recovered in the first fraction; then an unresolved mixture of 9 and 10 was collected. Compound 11 was obtained from the last fraction and purified by crystallization from EtOH to give colorless crystals (Table). #### 5-Acetyl-4-chloro-2-methyl-6-phenylpyridazin-3(2H)-one⁷ (10): A mixture of 2 (55 mg, 0.2 mmol) and TEBA (114 mg, 0.5 mmol) in MeCN (3 mL) was refluxed for 1 h. Evaporation of the solvent afforded a residue which was treated with H_2O (3 mL) and filtered. The product was identified as 10 by comparison of its IR and 1H NMR spectra with those of an authentic specimen. Support of this work by the MURST and CNR is gratefully acknowledged. - (1) Shober, B.O.; Megyeri, G.; Kappe, J. J. Heterocycl. Chem. 1989, 26, 169. - (2) Heinisch, G.; Frank, H. In *Progress in Medicinal Chemistry*; Ellis, G. P.; West, G. B., Ed.; Elsevier: Amsterdam, 1992; Vol. 29, Part 2, p142. - (3) Dal Piaz, V.; Ciciani, G.; Turco, G. Synthesis 1989, 213. - (4) Renzi, G.; Pinzauti, S. Il Farmaco ed. Sci. 1969, 24, 885. - (5) Dal Piaz, V.; Ciciani, G.; Turco, G.; Giovannoni, M. P.; Miceli, M.; Pirisino, R.; Perretti, M. J. Pharm. Sci. 1991, 80, 341. - (6) Ciciani, G.; Dal, Piaz, V.; Giovannoni, M.P. Il Farmaco 1991, 46, 876. - (7) Dal Piaz, V.; Giovannoni, M.P.; Laguna, R.; Cano, E. Eur. J. Med. Chem. 1994, 29, 249. - (8) Dal Piaz, V.; Ciciani, G.; Giovannoni, M.P.; Turco, G. Heterocycles 1989, 29, 1595. - (9) Dal Piaz, V.; Giovannoni, M. P.; Ciciani, G.; Giomi, D.; Nesi, R. Tetrahedron Lett. 1993, 34, 161. - (10) Haider, N.; Heinisch, G. Heterocycles 1993, 35, 519. - (11) Boamah, P. Y.; Haider, N.; Heinisch, G. Arch. Pharm. (Weinheim) 1990, 323, 207. - (12) Dal Piaz, V., unpublished work.