Struktur- und magnetochemische Untersuchungen an KCuGaF₆

P. Dahlke, J. Pebler und D. Babel*

Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften der Philipps-Universität

Bei der Redaktion eingegangen am 5. Oktober 2004.

Inhaltsübersicht. Die Kristallstruktur von KCuGaF₆ wurde auf der Basis röntgenographischer Einkristalldaten bestimmt (wR₂ = 0,084 für 2476 unabhängige Reflexe). Die Verbindung kristallisiert mit a = 728,56(4), b = 989,51(6), c = 676,27(3) pm, β = 93,120(5)°, Z = 4 in der Raumgruppe P2₁/c des pyrochlor-verwandten KCuCrF₆-Typs. Die oktaedrischen [GaF₆]- und [CuF₆]-Koordinationen sind schwach bzw. stark verzerrt (Mittelwerte Ga-F: 188,2 pm bzw. Cu-F: 188,2/200,1/227,6 pm). Die längsten Abstände Ga-F und die kürzesten Cu-F zeigen sich in längs [100] bzw. [001] verlaufenden Oktaederketten der beiden Atomsorten, die auch untereinander verbrückt sind (M-F-M zwischen 114 und 145°). Die

Structural and Magnetochemical Studies on KCuGaF₆

Abstract. The crystal structure of KCuGaF₆ was determined on the base of X-ray single crystal data (wR₂ = 0.084 for 2476 independent reflections). The compound crystallizes with a = 728.56(4), b = 989.51(6), c = 676.27(3) pm, β = 93.120(5)°, Z = 4 in space group P2₁/c of the pyrochlore related KCuCrF₆ type. The octahedral coordinations [GaF₆] and [CuF₆] are slightly resp. strongly distorted (mean values Ga-F: 188.2 pm resp. Cu-F: 188.2/200.1/227.6 pm). The longest distances Ga-F and the shortest ones Cu-F are found within octahedral chains of these two kinds of atoms, running along [100] and [001], resp., and being mutually bridged as well (M-F-M in between 114 and 145°). The magnetic mole susceptibilities measured at powders and at a single crystal follow the

am Pulver und einem Einkristall gemessenen magnetischen Molsuszeptibilitäten lassen sich mit dem isotropen Heisenberg-Modell für S = 1/2 beschreiben, wenn man Kettenabbruchseffekte in Form eines paramagnetischen Anteils berücksichtigt. Hinweise auf eine dreidimensionale magnetische Ordnung konnten bis zu T = 2 K herab und auch bei schwachem Magnetfeld H < 100 G nicht beobachtet werden. Dadurch unterscheidet sich KCuGaF₆ (J/k = -71 K für das Pulver) von den gleichfalls magnetisch untersuchten Kettenverbindungen KCuAlF₆ und Na₂CuScF₇ (J/k = -76 bzw. -59 K), für die sich ähnliche antiferromagnetische Austauschkonstanten J/k ergeben.

isotropic Heisenberg model for S = $^{1}/_{2}$, if effects of chain disrupture are considered in the form of some paramagnetic portion. No indication of threedimensional magnetic order is observed down to T = 2 K and low magnetic fields H < 100 G. KCuGaF₆ (J/k = -71 K for the powder) is distinguished this way from the chain structure compounds KCuAlF₆ und Na₂CuScF₇ (J/k = -76 resp. -59 K) which were also magnetically studied and yield similar antiferromagnetic exchange constants J/k.

Keywords: Structure determination; Chain structure; Magnetism; Pyrochlore; Copper; Gallium; Fluorides

Einleitung

Schon im Rahmen der ersten Untersuchungen an modifizierten Pyrochloren A^IM^{II}M^{III}F₆ hatte sich gezeigt, daß neben dem vorherrschenden kubischen RbNiCrF₆-Typ einige Verbindungen mit erniedrigter Symmetrie existieren [1, 2]. Beispiele orthorhombischer Vertreter sind die gemischtvalenten Eisenverbindungen AFe₂F₆ (A = Rb, Cs, NH₄) [1-4], aber auch CsAgFeF₆ [5] und KCuAlF₆ [6], während die Kupferverbindung KCuCrF₆ monoklin ist [2, 7]. Spätere Einkristall-Strukturbestimmungen [4-7] haben ergeben, daß in diesen niedersymmetrischen Pyrochlorvarianten die beiden Kationen M^{II} und M^{III}, die im Falle des kubischen Typs statistisch über ein und dieselbe Punktlage verteilt sind, wohlgeordnet separate Positionen einnehmen. Innerhalb des pyrochlor-typischen Raumnetzes [M₂F₆] dreidimensional über Ecken verknüpfter [MF₆]-Oktaeder [8, 9]

Fachbereich Chemie der Universität D-35032 Marburg kommt es dadurch neben den gemischten Verbrückungen M^{II} -F- M^{III} zu solchen der ungemischten Art, sowohl M^{II} -F- M^{II} als auch M^{III} -F- M^{III} , die sich in Form unendlicher Ketten ausbilden. Wenn eine der beiden Ionensorten, M^{II} oder M^{III} , dia-, die andere paramagnetisch ist, eignen sich die entsprechenden Kettenverbindungen als Modellsubstanzen für das Studium niederdimensionaler magnetischer Wechselwirkungen [10–14].

Im Zusammenhang mit Untersuchungen an den pyrochlorverwandten Kupferweberiten $Na_2CuM^{III}F_7$ ($M^{III} =$ Ga, In [15]; Sc [16]) haben wir uns für Struktur und Magnetismus geeigneter Kupferpyrochlore interessiert. Unsere Wahl fiel auf KCuGaF₆ [17], insbesondere weil für diese Verbindung wegen der Ähnlichkeit der M^{III}-Radien von Ga und Cr [18, 19] die bisher singuläre KCuCrF₆-Struktur [7] zu erwarten war.

Experimentelle Angaben

Darstellung. KCuGa F_6 wurde aus einem fein zerriebenen äquimolaren Gemenge der binären Fluoride, das zuvor im Vakuum ausge-

^{*} Prof. Dr. D. Babel

Tabelle 1 Zellparameter und Bedingungen der Datensammlung und Auswertung für den untersuchten Einkristall von KCuGaF₆ (T = 293(2) K, MoKα-Strahlung, ω -Abtastung)¹⁾

Raumgruppe (Nr. in Int. Tables	s)	$P2_1/c$ (Nr. 14)
Gitterkonstanten	a / pm	728,56(4)
	b/pm	989,51(6)
	c / pm	676,27(3)
	βlô	93,120(5)
Zellvolumen	V / Å3	486,81(5)
Molmasse (Summenformel Cul	F_6GaK)	286,36
Röntgendichte	d / gcm^{-3}	3,907 (Z=4)
Absorptionskoeffizient	μ / cm^{-1}	107,96
emp. Transmissionsfaktoren	T_{min}/T_{max}	0,056/0,124
Kristallabmessungen	/ mm	0,015 x 0,015 x 0,1
F(000)		532
Meßbereich min./max.	θ/°	2,8 / 37,0
	h	0 / 12
	k	-16/0
	1	-11/11
max. Meßzeit pro Reflex	t / s	30
Abtastwinkel im ω-Modus	/ °	$(0,72+0,62tg\theta)$
gemessene/verwendete Reflexe i	insgesamt	2746/2619
davon symmetrieunabhängig		2476 (R _{Mittelung} =0,022)
davon mit $F_o > 4\sigma$ (F_o)		1953
Anzahl verfeinerter Parameter		86
min./max. Restelektronendichte	e/ e·Å ^{−3}	-1,26/1,13
R-Faktoren nach SHELXL-97	[22]:	
für $F_o > 4\sigma$ (F_o):	R ₁ '	0,031
für alle Reflexe:	R ₁	0,051
	wR_2	0,084

¹⁾ Weitere Angaben zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-414455 angefordert werden.

heizt worden war, durch Erhitzen in einer elektrisch verschweißten Platinampulle dargestellt (24 h bei 750 °C, mit 5°/h abgekühlt auf 600°, dann nach 12 h rasch auf Raumtemperatur). Analog wurde KCuAlF₆ präpariert, dessen Kristallstruktur zwar schon bekannt ist [6], das aber magnetisch noch nicht untersucht wurde und deshalb zu entsprechenden Vergleichsmessungen hergestellt wurde. Als binäre Fluoride wurden käufliches KF (Merck, p.a., Nr. 4994) und die aus den Oxiden gewonnenen Trifluoride eingesetzt: Al2O3 (Riedel de Haen, Nr. 31164) wurde nach [20] 8 h bei 650-700 °C im CCl₂F₂-Strom erhitzt, Ga₂O₃ (Merck, Nr.4064) zunächst mit Flußsäure zu GaF₃·3H₂O umgesetzt und dann im HF-Strom entwässert (5 h 500 °C). CuF₂ wurde aus wasserfreiem CuCl₂ (Fluka, Nr.61173) durch Erhitzen im F2-Strom gewonnen (5h 350 °C). Der Fluorgehalt der Edukte und Produkte wurde mittels Pyrohydrolyse [21] überprüft, die Phasenreinheit der Proben durch Röntgenpulveraufnahmen.

Einkristall-Strukturbestimmung. Aus dem farblosen kristallinen Reaktionsprodukt der KCuGaF₆-Präparation konnten unter dem Polarisationsmikroskop einige Einkristalle isoliert werden. Ein nach Voruntersuchung mit Filmmethoden ausgewähltes Exemplar wurde auf einem Vierkreis-Diffraktometer CAD4 (Enraf-Nonius) vermessen. Die verfeinerten Zellparameter und die Bedingungen der Datensammlung sind in Tabelle 1 zusammengestellt. Die nach den Ionengrößen und Zellabmessungen vermutete Isotypie mit KCuCrF₆ [7] bestätigte sich durch die Strukturverfeinerung, für die die Lageparameter der Chromverbindung als Startwerte verwendet worden waren (s. Tabelle 2).

Die kristallographischen Rechnungen erfolgten mit Standardprogrammen [22–24], unter Verwendung der für anomale Dispersion korrigierten Atomformfaktoren der neutralen Atome [25]. Die Ab-

Tabelle 2 Atomkoordinaten und isotrope Äquivalentwerte der anisotrop verfeinerten Auslenkungsparameter in KCuGaF₆, Raumgruppe $P2_1/c$.

Atom	Lage	х	У	Z	$U_{\ddot{a}q}/\mathring{A}^2$
К	4e	0,2415(1)	0,88434(8)	0,4981(1)	0,0314(2)
Cu	4e	0,25512(4)	0,26532(3)	0,81565(4)	0,01328(8)
Gal	2a	0,0	0,0	0,0	0,01145(8)
Ga2	2b	0,5	0,0	0,0	0,01175(8)
F1	4e	0,0215(3)	0,8371(2)	0,1319(3)	0,0216(3)
F2	4e	0,5063(2)	0,8224(2)	0,1014(3)	0,0205(3)
F3	4e	0,2457(2)	0,3310(2)	0,0761(2)	0,0185(3)
F4	4e	0,7538(2)	0,0180(2)	0,0808(3)	0,0208(3)
F5	4e	0,0737(2)	0,4108(2)	0,7374(2)	0,0188(3)
F6	4e	0.4451(2)	0.0633(2)	0.2478(2)	0.0201(3)

sorption des Kristalls wurde empirisch korrigiert und bei der Verfeinerung auch die Extinktion berücksichtigt [22].

Magnetische Untersuchungen. Pulvermessungen wurden an KCu-GaF₆ (Probenmenge 80,93 mg), KCuAlF₆ (69,04 mg) und an dem früher von uns röntgenographisch charakterisierten Weberit Na2-CuScF₇ (77,89 mg) [16] durchgeführt, außerdem Messungen an einem Einkristall (4,75 mg) von KCuGaF₆. Der Einkristall wurde orientiert in Araldit eingebettet und die Probe zu einem kleinen Würfel geschliffen. Innerhalb eines geschätzten Justierfehlers von maximal 10° wurden sukzessive alle drei kristallographischen Achsen parallel zum Feld ausgerichtet und so gemessen. Diese Meßwerte wurden anschließend normiert, indem für alle drei Orientierungen bei T = 200 K der Wert der am Pulver gemessenen Suszeptibilität festgesetzt wurde. Die magnetischen Untersuchungen an den Pulvern wie am Einkristall erfolgten mit einem SQUID-Magnetometer MPMS-2 (Quantum Design) im Feldstärke- und Temperaturbereich von $0 \le H/kG \le 55$ bzw. $2 \le T/K \le 300$. Die Meßwerte wurden für den Diamagnetismus der Ionen und der Probenhalter korrigiert.

Ergebnisse und Diskussion

Strukturchemie

Die mit KCuCrF₆ isotype Struktur von KCuGaF₆ kann durch Symmetrieabbau vom Aristotyp der kubischen RbNiCrF₆-Struktur (Fd3m) abgeleitet werden. Die Gruppe-Untergruppe-Beziehung [26] führt über mehrere Zwischenstufen, von denen zwei orthorhombische auch realisiert sind – der CsNi₂F₆-Typ (Imma) einerseits [27], der NH₄Fe₂F₆-/CsAgFeF₆-Typ (Pnma) andererseits [4, 5] –, zur hier erneut bestätigten Stufe bisher niedrigster, monokliner Symmetrie (P2₁/c). Es ist anzunehmen, daß nicht nur der Jahn-Teller-Effekt des Cu²⁺-Ions [28], sondern auch die für die Alkali-Koordinationsverhältnisse im kubischen RbNiCrF₆-Typ unzureichende Größe des Kaliumions für diesen weitgehenden Symmetrieabbau verantwortlich ist. So ist zu verstehen, daß z.B. CsCuGaF₆, für das der letztgenannte Grund entfällt, noch kubisch kristallisiert [19].

Die niedrige kristallographische Symmetrie von KCu-GaF₆ ändert aber nichts daran, daß die pyrochlortypische Topologie der Struktur [2, 8], wie in den Abbildungen 1 bis 3 veranschaulicht, im wesentlichen erhalten geblieben ist. Abbildung 1 zeigt die kleinste Einheit der räumlichen Verknüpfung der [CuF₆]- und [GaF₆]-Oktaeder in Form eines

(hier verzerrten) Tetraeders [Cu₂Ga₂] der Kationen, deren verbrückende F-Atome über den sechs Tetraederkanten liegen. Im kubischen CsCuGaF₆ (a = 1028,9 pm) [19] sind diese Tetraeder unverzerrt und statistisch gleichverteilt mit M = Cu, Ga besetzt (M-M: 363,8 pm). Ein hypothetisches "kubisches KCuGaF₆" dieser Struktur, aber gleichen Molvolumens mit der monoklinen Verbindung, hätte eine Gitterkonstante von a = $(2 \cdot V)^{1/3} = 991,1$ pm und Abstände M-M: 350,4 pm. Demgegenüber variieren in der tatsächlichen Struktur wegen der geordneten Besetzung und der unterschiedlichen Verzerrung der Oktaeder die Abstände im Kationentetraeder von Cu-Cu: 339,5, Ga1-Ga2: 364,3 bis Cu-Ga: 348,6-368,1 pm, bei einem Mittelwert von 353,0 pm.

Aus Abbildung 1 ist die mit der Cu/Ga-Ordnung verbundene Kettenbildung der [CuF₆]-Oktaeder in c-Richtung, der [GaF₆]-Oktaeder in a-Richtung ebenso ersichtlich, wie die starke Jahn-Teller-Verzerrung der [CuF₆]-Oktaeder. Die in Tabelle 3 zusammengestellten Winkel und Abstände entsprechen weitgehend den Verhältnissen in KCuCrF₆. Die kürzesten Cu-F-Abstände liegen jeweils in Richtung der [CuF₆]-Oktaederketten. Bei fast übereinstimmendem Mittelwert Cu-F ist jedoch in der Galliumverbindung die Aufspaltung zwischen den mittellangen und längsten Abständen signifikant größer. Eine solche Dreiteilung der Abstände mit Werten um 188/200/228 pm findet sich ähnlich

Abb. 2 Die von den Metallatomen in KCuGaF₆ gebildete Teilstruktur: Eine diamantartige Anordnung der K-Atome durchdringt ein räumliches Netz [CuGa] eckenverknüpfter Tetraeder [Cu₂Ga₂], wie unverzerrt in der Struktur der Laves-Phase MgCu₂ realisiert.

ausgeprägt bei $Cs_4Cu_3F_{10}$ [29] und bei $ACuF_3$ (A = Na, Rb) [30]. Die beiden kristallographisch unabhängigen [GaF₆]-Oktaeder in der Struktur von KCuGaF₆ sind dagegen nur wenig verzerrt. Mittelwerte und Aufspaltung der Abstände Ga-F liegen im Bereich der von KGaF₄ [31], Ba-GaF₅ [32] und vielen polynären Galliumfluoriden [33, 34] bekannten, relativ engen Spanne.

Die Kaliumionen in der KCuGaF₆-Struktur bilden für sich ein verzerrtes Diamantgitter, das das Tetraedernetz der Cu- und Ga-Atome durchdringt (Abb. 2). Insgesamt ist das Ensemble aller Metallatome so angeordnet, wie die Atome Mg und Cu in der Laves-Phase MgCu₂ [35], deren kubische Symmetrie hier allerdings deformiert ist. Die im hypothetischen "kubischen KCuGaF₆" gleichen Abstände K-K: 429,2 pm bzw. K-M: 410,9 pm sind in der monoklinen Struktur aufgespalten in K-K: 419,9-440,7 (Mittel: 430,2 pm) bzw. K-M: 368,3-458,2 (Mittel: 412,3 pm). Gravierender ist die Symmetrieerniedrigung in ihrer Auswirkung auf die Fluorumgebung der Kaliumionen, die im Vergleich mit den Gegebenheiten im kubischen Pyrochlor in Abbildung 3 veranschaulicht ist. Wie dort erläutert, ist die hochsymmetrische 6+12-Koordination der Alkaliatome im RbNiCrF₆-Typ in KCuGaF₆ irregulär in 9+9 aufgespalten. Gegenüber den bemerkenswert wenig differierenden Abständen der inneren [KF₉]-Koordination (K-F: < 301 pm, siehe Tab. 3) fallen aber die weit gestreuten Abstände zu den ferneren F-Nachbarn (K-F: > 344) kaum mehr ins Gewicht. Allenfalls machen sie sich in dem leicht erhöhten Mittelwert K-F bemerkbar, der etwas über der Radiensumme für neunfach koordinierte Kaliumionen [18] liegt und auch den für die [KF₉]-Koordination in den Verbindungen K2MF4 und K3M2F7 beobachteten Bereich zwischen K-F: 278 pm (M = Mg) und 287 pm (M = Mn) [36] überschreitet. Der mittlere K-F-Abstand in KCuGaF₆ stimmt aber bestens mit den Werten für [KF₉]-Koordination in KCuCrF₆ (291,6 pm) [7] und im orthorhombischen KCuAlF₆ (292,2 pm) [6] überein, wo ähnliche Verhältnisse herrschen. In diesem Zusammenhang sei daran erinnert,

Abb. 3 Die Umgebung der Kaliumionen in der Struktur von KCuGaF₆ (links) im Vergleich zu der der Alkaliionen im RbNiCrF₆-Typ (rechts). In einer volumgleich gedachten kubischen KCuGaF₆-Phase dieses Typs mit unverzerrten [MF₆]-Oktaedern (M = Cu, Ga) wäre die oktaedrische [KF₆]-Koordination, die mit dicken Stäben eingezeichnet ist (K-F: 309,7 pm), durch eine zweite Koordinationssphäre [KF₁₂] ergänzt (K-F: 355,9 pm). Diese Außensphäre wird von den Brückenliganden der vier das K-Atom tetraedrisch umgebenden [M₃F₃]-Einheiten gebildet, (den Basen entsprechender [M₄F₆]- bzw. [M₄F₆F_{12/2}]-Tetraeder). In der monoklinen KCuGaF₆-Struktur rücken fünf F-Atome dieser Zwölfersphäre in den Nahbereich (dünne Stäbe, K-F: 287,2–300,5 pm, Mittel 293,5 pm). Nur vier F-Atome der im Idealfall oktaedrischen Sphäre verkürzen ihre Distanz ebenfalls (dicke Stäbe, K-F: 283,0–291,4, Mittel 288,1 pm). Gemeinsam bilden sie eine unregelmäßige [KF₉]-Koordination, im Vergleich zu der alle übrigen neun F-Atome deutlich größere Abstände haben (K-F: > 344 pm).

Tabelle 3 Ausgewählte interatomare Abstände/pm und Winkel/° in der Struktur von KCuGaF₆. Die Atome der [KF₉]-Koordination sind wie in Abbildung 3 bezeichnet.

Cu-F3		187,8(2)	F3-Cu-F3		168,9(1)
Cu-F3		188,2(2)	F3-Cu-F2		90,7(1)
Cu-F2		199,6(2)	F3-Cu-F2		87,9(1)
Cu-F5		200,6(2)	F3-Cu-F5		98,3(1)
Cu-F6		225,2(2)	F3-Cu-F5		86,7(1)
Cu-F1		230,0(2)	F2-Cu-F5		159,7(1)
Cu-F Mittel	6x	205,2	F3-Cu-F6		101,6(1)
			F3-Cu-F6		89,1(1)
Ga1-F1	2x	184,5(2)	F2-Cu-F6		81,3(1)
Ga1-F5	2x	188,5(2)	F5-Cu-F6		79,0(1)
Ga1-F4	2x	191,2(2)	F3-Cu-F1		85,3(1)
Ga1-F Mittel	6x	188,1	F3-Cu-F1		86,0(1)
			F2-Cu-F1		121,5(1)
Ga2-F6	2x	185,3(2)	F5-Cu-F1		77,7(1)
Ga2-F2	2x	188,6(2)	F6-Cu-F1		156,4(1)
Ga2-F4	2x	190,8(2)			
Ga2-F Mittel	6x	188,2	F1-Ga1-F4	2x	90,0/90,0(1)
			F1-Ga1-F5	2x	89,1/90,9(1)
K-F6	*	283,0(2)	F4-Ga1-F5	2x	86,6/93,4(1)
K-F3	*	286,6(2)	F2-Ga2-F4	2x	88,8/91,2(1)
K-F2		287,2(2)	F2-Ga2-F6	2x	89,3/90,7(1)
K-F1		288,9(2)	F4-Ga2-F6	2x	87,9/92,1(1)
K-F6′		291,1(2)			
K-F5'	*	291,2(2)	Cu-F3-Cu		129,1(1)
K-F1'	*	291,4(2)	Cu-F1-Ga1		114,0(1)
K-F5		299,8(2)	Cu-F5-Gal		135,6(1)
K-F4		300,5(2)	Cu-F2-Ga2		120,7(1)
K-F Mittel	9x	291,1	Cu-F6-Ga2		127,2(1)
* "oktaedrisch" im kubischen Fall			Ga2-F4-Ga1		145,0(1)

daß z.B. KNiCrF₆, in dem kein Jahn-Teller-Ion die Umformung der großen F_{18} -Kavität der Pyrochlore entsprechend den bescheideneren Koordinationsbedürfnissen des Kaliumions begünstigt, instabil ist: Die Verbindung hydratisiert sich an (feuchter) Luft spontan zu einem "normalen" Pyrochlor K \Box NiCrF₆·H₂O, in dem sich eine Achterkoordination [K(H₂O)₂F₆] ausbildet [2].

Magnetochemie

Abbildung 4 zeigt das magnetische Verhalten der pulverförmigen KCuGaF₆-Probe in Form des Temperaturverlaufs der Molsuszeptibilität und ihres Reziproken. Eingezeichnet ist auch die Curie-Weiss-Gerade, die sich durch Extrapolation des oberhalb etwa 120 K linearen Teils der reziproken Suszeptibilitätskurve ergibt. Die zugehörigen Curie-Weiss-Parameter μ_{cw} und θ_{p} sowie weitere Angaben sind in Tabelle 4 mit den Daten verwandter Kettenverbindungen verglichen. Die magnetischen Momente liegen im üblichen, gegenüber dem spin-only-Wert für S = $\frac{1}{2}$ (μ_{so} = 1,73 B.M.) oft deutlich erhöhten Bereich. Der Rückschluß auf antiferromagnetische Wechselwirkungen gründet sich vor allem auf den stark negativen Wert von θ_p . Denn statt eines Minimums wird in der reziproken Suszeptibilitätskurve von KCuGaF₆ nur ein Sattel oberhalb der Curie-Weiss-Geraden beobachtet, mit einem Wendepunkt bei einer Temperatur von etwa 50 K, unterhalb der die Werte wieder stärker abfallen.

Für unendlich ausgedehnte Ketten miteinander in Austauschwechselwirkung stehender Atome mit $S = \frac{1}{2}$ ist nach dem isotropen Heisenberg-Modell ein breites Suszeptibilitätsmaximum zu erwarten, dessen Lage von der Austauschkonstanten J/k abhängt. In Abbildung 4 sind die nach *Fisher* [37, 38] berechneten Suszeptibilitätskurven für drei ausgewählte Werte von J/k (-50, -75 und -100 K; jeweils $S = \frac{1}{2}$ und g = 2,3) eingezeichnet, deren Maxima sich in der genannten Folge von 35 nach 72 K verschieben. Eine akzeptable Übereinstimmung zwischen diesem Idealmodell und der für KCuGaF₆ beobachteten Suszeptibilität ergibt sich oberhalb der Temperatur des erwähnten Sattels bei Annahme einer Austauschkonstante von J/k = -70 K.

Eine bessere Angleichung des Kurvenverlaufs auch im Tieftemperaturbereich ist zu erreichen, wenn man – wie früher bereits am Beispiel der Weberite Na_2CuGaF_7 und

Abb. 4 Temperaturverlauf der bei H = 30 kG an pulverförmigem KCuGaF₆ gemessenen Molsuszeptibilität und ihres Reziproken. Die durchgezogenen Suszeptibilitätskurven sind für unendliche Ketten nach dem isotropen Heisenberg-Modell für verschiedene Werte der Austauschkonstanten J/k berechnet (s. Text).

Tabelle 4 Kennzahlen zum magnetischen Verhalten von KCuGaF₆ und verwandten Kettenverbindungen, geordnet nach dem Brückenwinkel Cu-F-Cu. Die (gegebenenfalls gemittelten) Abstände beziehen sich auf diese Brücke. Die angegebenen Werte μ_{eff} gelten für T = 300 K, μ_{cw} und θ_p für die Curie-Weiss-Gerade $1/\chi = (T-\theta_p)/C$ mit $\mu_{cw} = 2,828 \sqrt{C}$. Als Anpassungsparameter an die experimentellen Pulversuszeptibilitäten diente die Austauschenergie J/k nach dem isotropen Heisenberg-Modell und ein paramagnetischer Anteil y in der Probe (bei jeweils g = 2,3).

Verbindung, Raumgruppe		Cu-F-Cu/°	Cu-F/pm	$\theta_{\rm p}$ /K	$\mu_{\rm cw} / \! \mu_{\rm B}$	$\mu_{\mathrm{eff}}/\mu_{\mathrm{B}}$	J/k /K	У
KCuAlF ₆	Pnma	128,1	187,7	-115	2,15	1,83	-76	0,085
KCuGaF ₆	$P2_1/c$	129,1	188,0	-112	2,14	1,83	-71	0,072
Na ₂ CuGaF ₇ [15]	C2/c	135,7	193,5	-180	2,13	1,70	-80	0,088
Na ₂ CuScF ₇	Pmnb	145.6	190.0	-54	2.11	1.94	-59	0.19
Na_2CuInF_7 [15]	Pmnb	148,6	190,0	-400	2,43	1,60	-120	0,125

Na₂CuInF₇ mit ihren ähnlichen Kettenstrukturen durchgeführt [15] – zusätzlich Kettenabbruchseffekte in Form paramagnetischer Anteile y berücksichtigt. In Abbildung 5 ist gezeigt, wie sich die beobachtete Suszeptibilitätskurve von KCuGaF₆ durch Anpassung aus den Idealkurven des isotropen Heisenberg-Modells und des paramagnetischen Normalverhaltens zusammensetzen läßt (J/k = -71(2) K, g = 2,3, y = 0,072, vgl. Tabelle 4).

Die an einem Einkristall von KCuGaF₆ vorgenommenen Messungen vermitteln einen Eindruck von der gleichwohl vorhandenen Anisotropie der magnetischen Eigenschaften. Abbildung 6 zeigt die Suszeptibilitätskurven für Feldrichtungen entlang den drei kristallographischen Achsen. Bei höheren Temperaturen ist das Verhalten im Rahmen der Meßgenauigkeit gleich, also näherungsweise isotrop. Aber unterhalb etwa 100 K unterscheiden sich die Kurven signifikant. Die größten Meßwerte ergeben sich für H||c, d.h. bei Feldorientierung entlang der Kettenrichtung. Senkrecht zu dieser Richtung ist die Magnetisierung für H||b am kleinsten und die zugehörige Kurve zeigt das ausgeprägteste Profil, in dem sich ein flaches Maximum bei $T_{\gamma max} \approx$ 68(5) K abzeichnet. Es ist daher anzunehmen, daß sich die antiferromagnetisch gekoppelten Spinmomente etwa parallel zur b-Achse orientieren und jedenfalls senkrecht zu den Ketten die leichte Richtung (der bevorzugten Momenteinstellung) liegt, wie auch bei anderen Kettenverbindungen üblich [39, 40].

Auf der Grundlage eines Modells für anisotrope magnetische Systeme [14] wurden auch die drei Suszeptibilitätskurven für den KCuGaF₆-Einkristall angepaßt. Für die leichte Richtung ergibt sich unter Berücksichtigung einer isotropen 1D-Korrelationslänge (vgl. Gleichungen (8) und (10) in [14]) mit den Parametern J/k = -87(3) K, g = 2,3 und y = 0,025 eine befriedigende Anpassung an die Meßwerte χ_b . Die Relation kT_{χ max}/|J| = 1,28 bestätigt die Erwartung für 1D-Heisenberg-Antiferromagnete mit S = $1/_2$. Ein im Vergleich zur Pulvermessung geringerer paramagnetischer Anteil y, der ja "Kettenabbruchseffekte" der verschiedensten Art – Leerstellen, Substitution, Korngrenzen – "simuliert", ist für den Einkristall plausibel. Wird dieser paramagnetische Anteil y = 0,025 auch für χ_a und χ_c akzeptiert, so kann das bei tiefen Temperaturen stärkere Anwachsen

Abb. 5 Die Idealkurven der Molsuszeptibilität für normalen Paramagnetismus und für das isotrope Heisenberg-Modell, mit den in Tabelle 4 genannten Parametern zusammengesetzt und den bei H = 30 kG am KCuGaF₆-Pulver ermittelten Meßpunkten angepaßt.

Abb. 6 Temperaturverlauf der bei H = 30 kG an einem KCuGaF₆-Einkristall bei Feldrichtungen parallel zu den Zellachsen gemessenen Molsuszeptibilitäten. Die durchgezogenen Kurven entsprechen den berechneten Werten.

der Suszeptibilitäten in den beiden anderen Raumrichtungen mit einer Moriya-Wechselwirkung [41] (wie in Gleichung (11) von [14]) zufriedenstellend beschrieben werden. Die letztgenannte Wechselwirkung führt zu einer geringen Verkantung der antiferromagnetisch gekoppelten Momente senkrecht zur Richtung der Teilgittermagnetisierung infolge (leichter) kristalliner Anisotropie. Aus der Anpassung ist für KCuGaF₆ ein Kantungswinkel der Cu-Momente von etwa 0,25(3)° zu ermitteln, wobei das resultierende Moment näherungsweise in der c-Richtung der Ketten liegt.

Anzeichen für das Eintreten einer dreidimensionalen Ordnung konnten aber weder beim Einkristall noch beim Pulver von KCuGaF₆ beobachtet werden. Im Unterschied zur Ga-Verbindung zeigt das ebenfalls von uns magnetisch untersuchte KCuAlF₆ [17] eine Dispersion der im schwachen Feld (H = 50 G) bei steigender bzw. abnehmender Temperatur gemessenen Magnetisierung. Die Disper-

Abb. 7 Temperaturverlauf der bei H = 30 kG an Pulvern von KCuAlF₆ und Na₂CuScF₇ gemessenen reziproken Molsuszeptibilitäten und die zugehörigen Curie-Weiss-Geraden im Vergleich zu derjenigen von Na₂CuF₄ [12]. Die durchgezogenen Kurven entsprechen den für KCuAlF₆ bzw. Na₂CuScF₇ berechneten Werten (vgl. Tabelle 4).

sionstemperatur $T_D = 7(1)$ K läßt sich als Néelpunkt T_N deuten, bei dem in KCuAlF₆ eine dreidimensionale magnetische Ordnung eintritt.

Obwohl nicht isostrukturell und sogar ein Beispiel für gestauchte [CuF₆]-Oktaeder [6], sind die strukturellen und für Superaustausch-Wechselwirkungen entscheidenden Gegebenheiten in der Al-Verbindung fast gleich mit den für KCuGaF₆ ermittelten. Dies steht in bestem Einklang mit den praktisch gleichen Meßwerten für die Molsuszeptibilitäten der beiden Pyrochlore. Dem in Abbildung 7 gezeigten Temperaturverlauf der reziproken Suszeptibilitäten von KCuAlF₆ läßt sich die ebenfalls dargestellte theoretische Kurve mit ganz ähnlichen Parametern anpassen, wie sie für die Pulvermessung von KCuGaF₆ resultieren (vgl. Tab. 4).

Zum Vergleich ist in Abbildung 7 auch die reziproke Suszeptibilitätskurve von Na2CuScF7 [16, 17] eingetragen. Diese liegt im Bereich zwischen den Kurven von KCuAlF₆ (und KCuGaF₆) auf der einen Seite und dem linearen paramagnetischen Normalverhalten auf der anderen Seite, wie es z.B. von Na₂CuF₄ bekannt ist, das als wechselwirkungsfrei gelten kann ($\mu_{cw} = 1,98 \ \mu_{B}, \theta = -11 \ K$) [12]. Dementsprechend haben auch θ_p und der bei der Kurvenanpassung resultierende Parameter J/k für Na2CuScF7 die kleinsten Absolutwerte unter den in Tabelle 4 aufgeführten Fluoriden. Die Kettenverbindung Na₂CuScF₇, die ein mit Na₂-CuInF₇ [15] isostruktureller Weberit ist, erweist sich so unerwartet als viel schwächer antiferromagnetisch, als die Indiumverbindung, obwohl die elektronischen und strukturellen Bedingungen für Superaustausch bei beiden Vertretern fast gleich und deutlich günstiger sind, als für stärker gewinkelte Ketten.

Auffällig ist für Na₂CuScF₇ allerdings der ungewöhnlich hohe paramagnetische Anteil, der bei der Simulation der Suszeptibilitätskurve resultiert. Wenn nicht ein Artefakt vorliegt, wäre eine mögliche Erklärung hierfür, daß die Radien (und mittleren M-F-Abstände) für Sc³⁺ und Cu²⁺ ungeachtet der Jahn-Teller-Verzerrung sehr ähnlich sind, so daß trotz des Ladungsunterschieds eine höhere wechselseitige Substitution, also im Vergleich zu den anderen Verbindungen eine größere Fehlordnung auf den beiden M-Positionen denkbar erscheint. Nachträgliche Proberechnungen mit den alten Intensitätsdaten für Na₂CuScF₇ [16] schließen dies im Rahmen von bis zu fast 10 % gegenseitiger Substitution nicht aus. Das würde sich magnetisch doppelt, nämlich auf beiden Metallpositionen bemerkbar machen, den Wechselwirkungen allerdings auch in gewissem Umfang dreidimensionalen Charakter verleihen.

Vielleicht hängt damit auch ein weiterer Unterschied zwischen den beiden genannten Weberiten zusammen: die Feldstärkenabhängigkeit der Suszeptibilität, die für Na2- $CuScF_7$ unterhalb von T = 11 K auftritt und möglicherweise Indiz für einen bei Na2CuInF7 nicht beobachteten Übergang zu dreidimensionaler Ordnung ist. Durch lineare Extrapolation auf H = 0 ergab sich im M-H-Diagramm nach M(H) = $M_0 + \chi H$ für T = 5 K eine kleine Spontanmagnetisierung von $M_0 \approx 0.04 \mu_B$, die als ferrimagnetischer Anteil bzw. als Folge einer Verkantung bei der antiferromagnetischen Spineinstellung verständlich wäre und auch schon im Vorordnungsbereich ferromagnetische Kopplungskomponenten wirksam werden lassen könnte. Größere Spontanmagnetisierungen sind für andere Kettenverbindungen gefunden worden, z.B. für die geordnete Modifikation des dimorphen Pyrochlors NH₄CoAlF₆ [42], die mit NH₄Fe₂F₆ [4] und KCuAlF₆ [6] isotyp ist und ein komplexes magnetisches Verhalten zeigt [43].

Für Mangan(III)-Fluorverbindungen mit Ketten- und Schichtstrukturen ist die lineare Abhängigkeit der magnetischen Austauschenergie von $\cos^2\beta$ des Brückenwinkels M-F-M = β an vielen Beispielen gezeigt worden [13]. Obwohl analoge Korrelationen auch für manche Kupferverbindungen gelten, scheint es hier mehr Ausnahmen zu geben, die eingehendere Untersuchungen wünschenswert machen.

Wir danken Herrn *Prof. Dr. W. Massa* für anregende Diskussionen und tatkräftige Unterstützung, Herrn *Dr. K. Harms* für seine Hilfe bei der Sammlung und Übermittlung der Strukturdaten. Dem früheren BMFT (Bonn) sind wir für Sach- und Personalmittel dankbar, dem Fonds der Chemischen Industrie für finanzielle Förderung.

Literatur

- D. Babel, G. Pausewang, W. Viebahn, Z. Naturforsch. 1967, 22 b, 1219.
- [2] D. Babel, Z. Anorg. Allg. Chem. 1972, 387, 161.
- [3] A. Tressaud, R. de Pape, J. Portier, P. Hagenmuller, Bull. Soc. Chim. Fr. 1970, 3411.
- [4] G. Ferey, M. Leblanc, R. de Pape, J. Solid State Chem. 1981, 40, 1.
- [5] B. G. Müller, J. Fluorine Chem. 1981, 17, 317.
- [6] G. Wingefeld, R. Hoppe, Z. Anorg. Allg. Chem. 1984, 516, 223.
- [7] D. Kissel, R. Hoppe, Z. Anorg. Allg. Chem. 1988, 557, 161.

- [8] D. Babel, A. Tressaud, Crystal Chemistry of Fluorides, in: *Inorg. Solid Fluorides*, P. Hagenmuller ed., Academic Press, New York 1985, S. 77.
- [9] W. Massa, D. Babel, Chem. Rev. 1988, 88, 275.
- [10] R. L. Carlin, *Magnetochemistry*, Springer-Verlag, Berlin, Heidelberg, New York 1986.
- [11] H. J. Mikeska, M. Steiner, Adv. Phys. 1991, 40, 161.
- [12] D. Babel, Comments Inorg. Chem. 1986, 5, 285.
- [13] W. Massa, Rev. Inorg. Chem. 1999, 19, 117.
- [14] J. Pebler, C. Frommen, M. Mangold, R. Stief, A. Krimmel, R. van de Kamp, M. Ohl, L. P. Regnault, Z. Anorg. Allg. Chem. 2004, 630, 829.
- [15] N. Ruchaud, J. Grannec, P. Gravereau, P. Nunez, A. Tressaud, W. Massa, G. Frenzen, D. Babel, Z. Anorg. Allg. Chem. 1992, 610, 67.
- [16] P. Dahlke, D. Babel, Z. Anorg. Allg. Chem. 1994, 620, 1692.
- [17] P. Dahlke, Dissertation, Univ. Marburg 1995.
- [18] R. D. Shannom, Acta Crystallogr. 1976, A32, 751.
- [19] D. Babel, F. Binder, Z. Anorg. Allg. Chem. 1983, 505, 153.
- [20] G. Pausewang, W. Rüdorff, Z. Anorg. Allg. Chem. 1969, 369, 89.
- [21] J. C. Warf, W. D. Cline, R. D. Terebough, Analyt. Chem. 1954, 26, 342.
- [22] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Göttingen 1997.
- [23] A. L. Spek, PLATON, Crystallographic Program, University of Utrecht 1994.
- [24] M. Burnett, C. K. Johnson, ORTEP-III, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory 1996.
- [25] D. T. Cromer, J. T. Waber, in *International Tables for X-ray Crystallography*, Vol. IV, Table 2.2 B, Kynoch Press, Birmingham 1974.
- [26] H. Bärnighausen, MATCH, Communications in Mathematical Chemistry 1980, 9, 139.
- [27] T. Fleischer, R. Hoppe, J. Fluorine Chem. 1982, 19, 529.
- [28] D. Reinen, C. Friebel, Struct. Bonding 1979, 37, 1.
- [29] D. Kissel, R. Hoppe, Z. Anorg. Allg. Chem. 1988, 561, 12.
- [30] V. Kaiser, M. Otto, F. Binder, D. Babel, Z. Anorg. Allg. Chem. 1990, 585, 93.
- [31] G. Courbion, J. V. Randrianohavy, J. J. Rousseau, J. Solid State Chem. 1989, 81, 285.
- [32] R. Domesle, R. Hoppe, Rev. Chim. Miner. 1978, 15, 439.
- [33] H. Holler, D. Babel, M. Samouel, A. de Kozak, *Rev. Chim. Miner.* 1984, 21, 358.
- [34] P. Dahlke, B. Peschel, D. Babel, Z. Anorg. Allg. Chem. 1998, 624, 1003.
- [35] T. Ohba, Y. Kitano, Y. Komura, Acta Crystallogr. 1984, C40, 1.
- [36] D. Babel, E. Herdtweck, Z. Anorg. Allg. Chem. 1982, 487, 75.
- [37] M. E. Fisher, Am. J. Phys. 1964, 32, 343.
- [38] J. C. Bonner, M. E. Fisher, Phys. Rev. 1964, 135, A 640.
- [39] M. T. Hutchings, E. J. Samuelsen, G. Shirane, K. Hirakawa, *Phys. Rev.* **1969**, *188*, 919.
- [40] J. Graulich, D. Babel, Z. Anorg. Allg. Chem. 2003, 629, 1223.
- [41] T. Moriya, Phys. Rev. 1960, 120, 91.
- [42] M. A. Subramanian, W. J. Marshall, R. L. Harlow, *Mater. Res. Bull.* 1996, 31, 585.
- [43] N. P. Raju, J. E. Greedan, M. A. Subramanian, C. P. Adams, T. E. Mason, *Phys. Rev. B – Condensed Matter* **1998**, *58*, 5550.