Reaction of Dimethylsulphoxonium Methylid with N-Arenesulphonylimines: A One-Pot Synthesis of 2-Aryl-N-arenesulphonylazetidines Upender K. NADIR*, Veerinder K. KOUL Chemistry Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India Azetidines have received considerable attention in recent years¹ in spite of the paucity of good synthetic methods. In particular, 2-aryl-*N*-arenesulphonylazetidines are either inaccessible or obtained only in poor yields² by the usual approaches³⁻⁷. In addition, these procedures involve several steps and difficult to obtain starting materials. Recently, we have shown that methylene transfer to *N*-arenesulphonylaziridines is a successful route to azetidines⁸. As aziridines can be obtained from suitable imines or azomethines and dimethyl-sulphoxonium methylid⁹, a one-pot synthesis should be possible. In this communication, we report on such a synthesis of the title compounds 3 through the reaction of dimethylsulphoxonium methylid (2) with N-arenesulphonylimines 1a-d. The reaction was carried out simply by adding the azomethine 1a-d to a solution of the ylid 2 (3 equiv) under nitrogen at ambient temperature and stirring for 12-15 h. they are much better than those by other known methods. Besides, the procedure is mild, involves only one-step, and is based on easily available starting materials. The method, however, is limited only to *N*-arenesulphonylazetidines; thus, when *N*-benzylideneaniline was reacted with **2**, no four-membered heterocycle was obtained. The N-arenesulphonylimines 1a-d were obtained according to the method of Refs. 10 in yields of 70-100%. ## 2-Phenyl-N-(p-toluenesulphonyl)-azetidine (3b); Typical Procedure: To a dimethyl sulphoxide solution of ylid **2**, obtained by the reaction of trimethylsulphoxonium iodide (1.29 g, 0.0058 mol) with sodium hydride (0.0058 mol) according to the procedure of Ref. ¹¹, is added imine **1b** (0.49 g, 0.0019 mol) under an atmosphere of nitrogen (a positive nitrogen pressure is maintained throughout the course of reaction). The mixture is stirred at room temperature for 13 h and then quenched with water (10 ml). Dilution with excess water (100 ml), followed by extraction with ether (5×30 ml), drying of the extract with sodium sulphate, and evaporation of the solvent, leaves an oil which is loaded on an neutral alumina column. Elution with benzene gives the product **3b**; yield: 0.261 g (47%); m.p. 118-119 °C. C₁₆H₁₇NO₂S calc. C 66.87 H 5.96 N 4.87 (287.4) found 66.69 6.06 5.10 ¹H-N.M.R. (CDCl₃): δ = 2.44 (s, 3 H); 2.3 (m, 2 H); 3.78 (t, 2 H, J = 8 Hz); 4.90 (t, 1 H, J = 9 Hz); 7.5 ppm (m, 9 H_{arom}). M.S.: m/e = 287. Table. 2-Aryl-N-arenesulphonylazetidines 3 prepared | Prod-
uct | Reaction time | Yield
[%] | m.p. ^a
[°C] | Molecular
formula ^b | M.S.
m/e (M ⁺) | 1 H-N.M.R. (CDCl ₃ /TMS, 90 or 100 MHz) δ [ppm] | |--------------|---------------|--------------|----------------------------|--|-------------------------------|---| | 3a | 15 h | 41 | 124-125° | C ₁₅ H ₁₅ NO ₂ S
(273.4) | 273 | 2.3 (m, 2 H); 3.76 (t or dd, 2 H, J =8 Hz or 8 Hz, 6 Hz); 4.90 (t, 1 H, J =8 Hz); 7.6 (m, 10 H) | | 3b | 13 h | 47 | see experimental procedure | | | | | 3c | 12 h | 45 | 148-150° | $C_{15}H_{14}ClNO_2S$ (307.8) | 307 | 2.3 (m, 2 H); 3.84 (t, 2 H, $J = 8$ Hz); 4.94 (t, 1 H, $J = 8$ Hz); 7.5 (m, 9 H) | | 3d | 15 h | 21 | 150-151° | C ₁₅ H ₁₄ ClNO ₂ S
(307.8) | 307 | 2.3 (m, 2 H); 3.84 (dd, 2 H, J =8 Hz, 6 Hz); 4.94 (t, 1 H, J =8 Hz); 7.5 (m, 9 H) | ^a Products recrystallised from benzene/petroleum ether or ethyl acetate/petroleum ether. The products 3 were separated by column chromatography on neutral alumina. The structures of the 2-aryl-N-arenesulphonylazetidines 3 were established by spectroscopic and analytical data. Although the yields of 3 (40-47%) are modest, * Address for correspondence. - ¹ N. H. Cromwell, B. Philips, Chem. Rev. 79, 331 (1979). - ² J. G. Walter, R. K. Walter, J. Org. Chem. 27, 2754 (1962). - W. R. Vaughan, R. S. Klonowski, R. S. McElhinney, B. B. Millward, J. Org. Chem. 26, 138 (1961). Received: December 9, 1982 - ⁴ H. V. Secor, W. B. Edwards, III, J. Org. Chem. 44, 3136 (1979). - ⁵ T. Chen, T. Sanjiki, H. Kato, M. Ohta, Bull. Chem. Soc. Jpn. 40, 2398 (1967). - ⁶ M. M. Hesabi, J. Hill, A. A. Ep-Hamamy, J. Chem. Soc. Perkin Trans. 1 1980, 2371. - E. Testa, L. Fontanella, G. F. Cristiani, Liebigs Ann. Chem. 626, 14 (1959). - * U. K. Nadir, V. K. Koul, J. Chem. Soc. Chem. Commun. 1981, 417. - ⁹ Ref. ¹¹, p. 1355. - ¹⁰ R. Albrecht, G. Kresze, B. Parkar, Chem. Ber. 97, 483 (1964). - ¹¹ E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 87, 1353 (1965). ^b Satisfactory microanalyses obtained: C ± 0.27 , H ± 0.30 , N ± 0.36 .