Received: October 10, 1975

SOME NEW PERFLUOROALKYL DERIVATIVES OF SeF, and SeF,

CLEMENT LAU and JACK PASSMORE*

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

To Professor George H. Cady on his 70th birthday.

SUMMARY

 $(CF_3)_2SeF_2$ and $(C_2F_5)_2SeF_2$ are prepared by the reactions of the corresponding bis(perfluoroalkyl) monoselenide with chlorine monofluoride, and $C_2F_5SeF_3$ by reacting bis(perfluoroethyl) diselenide with ClF. Trans $C_2F_5SeC1F_4$ is made by the reactions of either $C_2F_5SeF_3$, $CsF.C_2F_5SeF_3$, or $(C_2F_5)_2SeF_2$ with chlorine monofluoride, and $C_2F_5SeF_5$ is produced by direct fluorination of $CsF.C_2F_5SeF_3$. $(C_2F_5)_2SeF_2$ and $C_2F_5SeF_3$ form the adducts $(C_2F_5)_2SeF_2.AsF_5$ (or SbF_5), $C_2F_5SeF_3.SbF_5$ and $CsF.C_2F_5SeF_3$.

The ¹⁹F n.m.r. and vibrational spectra of the neutral perfluoroalkyl selenium(IV) derivatives have been recorded, and the results show their structures to be based on a trigonal bipyramid with the perfluoroalkyl group(s) preferentially occupying equatorial positions. The vibrational spectrum of $CsF.C_2F_5SeF_3$ is consistent with an ionic formulation, and the spectra of the pentafluoride adducts suggest a substantial ionic contribution, with anion-cation interaction.

The trans configuration of $C_2F_5SeC1F_4$ is consistent with its vibrational spectrum and is confirmed by the ^{19}F n.m.r study. The structure of $C_2F_5SeF_5$ is deduced from its ^{19}F n.m.r spectrum.

INTRODUCTION

Perfluoroalkyl derivatives of sulphur tetrafluoride and hexafluoride are well known [1-5]. Chlorine monofluoride has been shown to act as a mild fluorinating agent in a number of reactions. In particular, it has been successfully used in the preparation of perfluoroalkyl sulphur(IV) and (VI) derivatives [6,7], however, analogous selenium derivatives have not been prepared [2,3,8-10]. Various alkyl and aryl selenium(IV) halides, where the halides are chlorine. bromine and iodine, are well known [9,10]. The structure of these compounds can take a variety of forms and have been the subject of much investigation [11-18]. Bis(alky1) and bis(aryl) selenium difluorides have been reported [19] and the vibrational spectrum of bis(perfluoromethy1) selenium difluoride investigated [20]. A preliminary report of some aryl selenium trifluoride has been given [21]. Organic derivatives of selenium hexafluoride have not been prepared as far as we are aware. We wish to report the preparation and characterization by spectroscopic methods of some perfluoroalkyl derivatives of SeF_4 and SeF_6 by using chlorine monofluoride as a mild oxidizing agent, a preliminary account of part of this work has been reported [22-3].

EXPERIMENTAL

Apparatus

Volatile materials were manipulated in a Monel vacuum line equipped with stainless steel valves (Whitey 1KS4) and Swagelok compression fittings or a Pyrex glass vacuum line equipped with "Rotaflo" valves. Solids and involatile compounds at room temperature were transferred in a Vacuum Atmospheres Corp. Dri-Lab fitted with a Dri-train (HE-493). Reaction vessels were constructed from Kel-F tubing (1/2" O.D.; 5/16" I.D.) connected to a Whitey valve via a brass reducing Swagelok junction; or glass tubing, vol. 30 c.c. equipped with "Rotaflo" valves. High pressure reactions were carried out in Monel vessel, vol. 30 c.c. equipped with

removable lids and Teflon gaskets. In general, all reactions were carried out in Kel-F vessels unless otherwise specified.

Infrared spectra were recorded on a Perkin-Elmer 457 grating spectrometer in the range $4000-250 \text{ cm}^{-1}$. The instrument was calibrated by comparison with a standard polystyrene sheet. Gaseous spectra were obtained using a stainless steel 10 cm cell equipped with AgCl windows. Spectra of solids were obtained as fine powders between silver chloride plates.

Raman spectra were recorded on a Spex Ramalab spectrometer using a Spectra Physics 2W Ar-Kr ion laser as a source with exciting line at 5145Å. The spectrometer was calibrated against the known bands of carbon tetrachloride and indene, and was believed to have an accuracy ± 3 cm⁻¹ for those of sharp bands, and ± 8 cm⁻¹ for the broad bands. The slit width was 4 cm⁻¹ for both solid and liquid samples unless otherwise specified. Samples were sealed either in glass capillary or in FEP thin walled tubing of 0.D. 4 mm. Polarization measurements were carried out by means of an Ednalite polarization rotator.

¹⁹F n.m.r. spectra were recorded using a Varian Associate: HA-60 spectrometer operating at 56.4 Mc. Trichlorofluoromethane was used as an internal standard. Samples were sealed either in standard size thin wall n.m.r. tubes or in FEP thin walled tubing.

Preparative chromatography was carried out by means of a model 2465T Dohrmann Envirotech gas chromatograph equipped with a manual collection unit using a 1/4" X 10' stainless steel column containing 10% Kel-F wax (Applied Science Laboratories) on 45/60 mesh Chromasorb W (Applied Science Laboratories). Programs were run isothermally at 80°C with a helium gas flow rate of about 33 ml/min.

Mass spectra were obtained using a Hitachi Perkin Elmer RMU-6D mass spectrometer routinely run at 70 e.v. by the indirect introduction port.

Elemental analyses were performed by Alfred Bernhardt Mikroanalytisches Laboratorium, West Germany. Chemicals

Selenium (Fisher Scientific Co.), silver oxide (Anachemia Chemical Ltd.), pentafluoropropionic acid and trifluoromethyl hypofluorite (P.C.R.), tetrafluoroethylene (Columbia Organic Chemicals), trifluoroacetic acid (Aldrich Chemical Co.), arsenic pentafluoride and cesium fluoride (Ozark, Mahoning Co.) and fluorine (Matheson Co.) were directly used without purification.

Chlorine monofluoride (Ozark, Mahoning Co.) was purified by vacuum distillation at room temperature.

Bis(pentafluoroethyl) monoselenide and bis(trifluoromethy monoselenide were prepared by the reactions of selenium powder with corresponding perfluoroalkyl silver salts [24]. The bis(pentafluoroethyl) monoselenide contained about 5% of trifluoromethyl pentafluoroethyl monoselenide. Both monoselenides were stored over P_2O_5 before use. Bis(pentafluoroethyl) diselenide was prepared by the reaction of tetrafluoroethylene with octaselenium bis(hexafluoroarsenate) [25].

Preparation and Reactions

(i) Preparation of (CF₃)₂SeF₂.

In a typical reaction, ClF (5.88 mmole) was reacted with $(CF_3)_2$ Se (2.72 mmole) at room temperature for about 1 hr. The product was a yellow liquid and was separated with the vessel held at -78°C. The infrared spectrum of the volatile fraction at -78°C showed the presence of unreacted ClF and some fluoro-carbon bands. Chlorine was probably present; the involatile fraction was a colorless liquid at room temperature correspondi 2.67 mmole of $(CF_3)_2$ SeF₂ (98% yield). The mass spectrum of this compound contained peaks at M/e 237*, $(CF_3)_2$ SeF⁺ (4); 218, $(CF_3)_2$ Se⁺ (5); 187, CF_3 SeF₂⁺ (4); 168, CF_3 SeF⁺ (9); 149, CF_3 Se⁺ (25); 130, CF_2 Se⁺ (17); 99, SeF⁺ (10); 80, Se⁺ (12); 69, CF_2^+ (100); 50, CF_2^+ (23); 31, CF^+ (15). *Based on Se⁸⁰, peaks attributable to the other selenium isotopes were also observed.

(ii) Preparation of (C₂F₂)₂SeF₂.

 $(C_2F_2)_2SeF_2$ is prepared by the reaction of $(C_2F_2)_2Se$ with C1F either at -78°C or room temperature. C1F (4.6 mmole) was reacted with $(C_2F_5)_2Se$ (2.18 mmole) at -78°C for about 30 min. giving a yellow liquid product. The volatile materials were removed from the product (held at -45°C) by distillation and were shown to contain traces of fluorocarbons and $(C_2F_5)_2Se$ Chlorine was probably also a product. The involatile product was a clear liquid at ambient temperature corresponding 2.19 mmole of $(C_2F_5)_2SeF_2$ (100% yield). The ¹⁹F n.m.r. spectrum of this liquid indicated that it contained about 5% $CF_3SeF_2CF_2CF_3$. A pure sample of $(C_2F_5)_2SeF_2$ was obtained by preparative v.p.c.

Reactants in different ratios, reaction vessels and temperatures gave the same product (Table 1). The chemical analysis of this compound is given in Table 3. The mass spectrum showed peaks at M/e 337, $(C_2F_5)_2SeF^+$ (1); 318, $(C_2F_5)_2Se^+$ (4.0); 299, $C_2F_5SeC_2F_4^+$ (<1); 249, $C_2F_5SeCF_2^+$ (1); 237, $C_2F_5SeF_2^+$ (1); 218, $C_2F_5SeF^+$ (2); 199, $C_2F_5Se^+$ (5); 180, $C_2F_4Se^+$ (20); 161, $C_2F_3Se^+$ (6); 130, CF_2Se^+ (11); 119, $C_2F_5^+$ (72); 111, $CFSe^+$ (19); 100, $C_2F_4^+$ (4.0); 80, Se^+ (6); 69, CF_3^+ (100); 50, CF_2^+ (6); 31, CF^+ (23).

Table 1. Preparations of $(C_2F_5)_2SeF_2$

(C ₂ F ₅) ₂ Se:C1F	Conditions	(C ₂ F ₅) ₂ SeF ₂ ^a
2.18 ^c :4.6 ^c	r.t. for 30 min.	2.19 ^c ca. ^a 100% ^b
1.36:2.8	-78°C overnight	1.37 ca.100%
1.17:5.56	-78°C 2 days	1.15 ca.98% + C1F
2.93:5.92	r.t. overnight	2.88 ca. 99%
2.36:7.22	r.t. 30 min.	2.31 ca. 98%

^aThe product contained about 5% $C_2F_5SeF_2CF_3$. ^bYield.

^cmmole.

(iii) Preparation of C₂F₅SeF₃.

In a typical experiment ClF (46 mmole) in small aliquots was reacted with $(C_2F_5)_2Se_2$ (7.6 mmole) in a glass vessel. The mixture was held at -130°C for 15 min.; then at -78°C for 20 min. and finally warmed up to room temperature in order to let any solid melt prior to the next addition of C1F. (Caution! If too much of C1F is used each time, a violent reaction occurs.) The yellow diselenide turned red; later orange and finally slightly yellow when the full amount of CIF has been used. The product (held at -22°C for 3 hr.) was separated by distillation and the volatile fraction was shown by its infrared spectrum to contain small amounts of C_2F_6 , SiF_A and a trace of fluorocarbons. The vapour pressure measurements and colour of this fraction at various temperatures were consistent with the presence of chlorine. The involatile fraction was a white solid at -22°C, which melted to a clear liquid at room temperature, corresponding at 15.2 mmole of $C_2F_5SeF_7$ (100% yield).

Similar results were obtained in other preparations (Table 2). The chemical analysis of this compound is given in Table 3.

Table 2. <u>Preparations of C₂F₅SeF₃</u>

(C ₂ F ₅) ₂ Se ₂ :C1F	Reaction vessel	C ₂ F ₅ SeF ₃
7.6 ^a :46 ^a	glass tube	15.2 ^a , ca. ^b 100%
10.36:77.5	glass tube	20.7, ca. 100%
2.25:17.8	Kel-F vessel, vol.13c.c.	4.9*
17.62:112.8	glass bulb, vol.60c.c.	35.4, ca. 100%

*Based on the weight, assuming pure $C_2F_5SeF_3$. The liquid was yellow and probably contained elemental chloriné. ^a mmole ^b yield

(iv) Reaction of (C₂F₅)₂SeF₂ with CsF.

Cesium fluoride did not react detectably with $(C_2F_5)_2SeF_2$ at 80°C for 2 hours. $(C_2F_5)_2SeF_2$ (1.66 mmole) was condensed onto powdered CsF (1.25 mmole) and the mixture held at 120°C for 90 min. with bubbling. The product was then cooled to room temperature. The volatile product was 0.52 g. clear liquid at room temperature which was identified by its infrared spectrum as mainly $(C_2F_5)_2SeF_2$ with traces of C_2F_6 . There was 0.26 g. of solid remaining in the vessel, the infrared spectrum of this solid showed absorptions attributable to CsF.C₂F₅SeF₃.

(v) Preparation of $(C_2F_5)_2$ SeF₂.AsF₅ and $(C_2F_5)_2$ SeF₂.SbF₅.

 $(C_2F_5)_2SeF_2$ (1.12 mmole) was reacted with excess AsF₅ (1.53 mmole) at room temperature for 30 min. The product was a white solid. The unreacted AsF₅ was removed by pumping the product at ambient temperature leaving 1.06 mmole of $(C_2F_5)_2SeF_2$.AsF₅ (about 95% yield).

Excess $(C_2F_5)_2SeF_2$ (1.15 mmole) was reacted with SbF_5 (0.78 mmole) at room temperature for 30 min. The product was a white solid. The unreacted $(C_2F_5)_2SeF_2$ was removed by distillation at room temperature leaving 0.77 mmole of $(C_2F_5)_2SeF_2$.SbF₅ (99% yield).

(vi) Preparation of CsF.C₂F₅SeF₃.

 $C_2F_5SeF_3$ (2 mmole) was condensed onto ground powdered CsF (1.9 mmole). The mixture was held at ca. 50°C for 1 hr. and a new white solid formed. Trace volatile materials were shown by i.r. to contain $(C_2F_5)_2Se$, and were removed by pumping at room temperature, $CsF_5C_2F_5SeF_3$ (1.9 mmole) remaining in the vessel (100% yield). The chemical analysis of this compound is given in Table 3.

(vii) Preparation of C₂F₅SeF₃.SbF₅.

Excess $C_2F_5SeF_3$ (4.78 mmole) was reacted with SbF_5 (3.35 mmole) at room temperature with occasional shaking for 2 hr. The product was a white solid. Traces volatile materials were identified by infrared as SiF_4 and fluorocarbons, and were removed by pumping the product at room temperature to constant weight. The solid product corresponded to 3.58 mmole of $C_2F_5SeF_3.SbF_5$. The chemical analysis of this compound is given in Table 3. and suggests the compound was either not completely pure or suffered some decomposition before analysis.

(viii) Preparation of trans $C_2F_5SeC1F_4$.

(a). By the reaction of $\rm C_2F_5SeF_3$ with C1F Chlorine monofluoride (2.75 mmole) was reacted with $\rm C_2F_5SeF_3$ (2.36 mmole) at room temperature overnight. The product was a yellow liquid. The fraction volatile at -78°C was found by infrared to contain C_2F_6 , C_2F_5C1 and trace $FC10_2$. Chlorine was probably present; the fraction between -78°C and -22°C consisted of 1.58 mmole trans $C_2F_5SeClF_4$; and the fraction between -22°C and room temperature was 0.55 mmole of unreacted C₂F₅SeF₃.

An excess of chlorine monofluoride and longer reaction times resulted in different products. When $C_2F_5SeF_3$ (2.78 mmole) was reacted with C1F (6.1 mmole) at room temperature for 4 days, the product included mainly $SeClF_5$ in addition to C_2F_5Cl and C_2F_6 ; $C_2F_5SeC1F_4$ was not detected.

(b). By the reaction of $CsF.C_2F_5SeF_5$ with ClF

Chlorine monofluoride (16 mmole) was condensed onto ground powdered $CsF.C_2F_5SeF_3$ (2.43 mmole) at -78°C overnight. The volatile products at -78°C were found by infrared to contain unreacted C1F, C_2F_6 and trace of trans $C_2F_5SeC1F_4$. The product vola between -78°C and room temperature was a colorless liquid corresponding to 1.75 mmole of trans $C_2F_5SeClF_4$ (ca. 70% yield). An X-ray powder diffraction picture showed the remaining solid to be $Cs^+ClF_2^-$, an authentic sample was prepared by the method given in reference 26.

The chemical analysis of this compound is given in Table 3.

> (c). By the reaction of $(C_2F_5)_2SeF_2$ with ClF (refer to reaction (xii)).

Compound С F Se Cs Sb C1 Tota1 $(C_2F_5)_2SeF_2$ (a) 13.52 64.23 22.25 100 (b) 13.30 63,96 21.94 99.20 $C_2F_5SeF_3$ (a) 59.6 30.97 9.41 100 9.28 59.19 30.59 99.06 $CsF.C_{2}F_{5}SeF_{3}$ (a) 5.90 42.03 19.41 32.67 100 5.94 41.77 19.24 32.26 (b) 99.21 $C_{2}F_{5}SeF_{3}.SbF_{5}$ (a) 5.09 52.36 16.74 25.81 100 (b) 3.04 49.12 18.58 28.63 99.37 $C_2F_5SeC1F_4$ (a) 7.76 55.26 25.52 11.46 100 (b) 7.63 55.27 25.24 11.33 99.47

Table 3. Analytical data for perfluoroethyl selenium derivatives.

(a) Cal. %

(b) Found %

(ix) Preparation of C2F5SeF5.

Fluorine (2.1 mmole) was added (in small aliquots) to ground powdered $CsF.C_2F_5SeF_3$ (0.52 mmole). The mixture was held at -196°C for 20 minutes then at -78°C for 30 minutes prior to next addition of fluorine. The unreacted fluorine was removed by pumping the product at -196°C via a soda-lime trap. The volatile product at room temperature was distilled out from the reaction vessel and shown by infrared and ¹⁹F n.m.r. spectra to contain CF_4 , C_2F_6 , SeF_6 and $C_2F_5SeF_5$. The remaining solid was unidentified.

(x) Reaction of trans $C_2F_5SeC1F_4$ with Hg.

 $C_2F_5SeC1F_4$ (0.9 mmole) was condensed onto Hg (1.25 mmole) at room temperature for 2 hours. Bubbles were evolved and some solid formed. The volatile products were found by their infrared and ¹⁹F n.m.r. spectra to contain mainly $C_2F_5SeF_3$ and small amount of $C_2F_5SeC1F_4$, the solid products were probably mercuric chloride and fluoride.

(xi) Reaction of trans $C_2F_5SeClF_4$ with ClF at 90°C.

Chlorine monofluoride (2.75 mmole) was reacted with $C_2F_5SeClF_4$ (0.65 mmole) at 90°C overnight. Both infrared and 19 F n.m.r. spectra of the products showed it to contain C_2F_6 , C_2F_5Cl and $SeClF_5$.

(xii) Attempts to prepare $(CF_3)_2SeF_4$ and $(C_2F_5)_2SeF_4$.

Reactions attempting to prepare $(R_f)_2SeF_4$ $(R_f = CF_3, C_2F_5)$ are listed in Table 4. Neither $(CF_3)_2SeF_4$ nor $(C_2F_5)_2SeF_4$ were detected.

Table 4. Attempted preparations of $(R_f)_2 SeF_4$ $(R_f = CF_3, C_2F_5)$

Reactant	Conditions ^b	Product
(CF ₃) ₂ Se (3.7) ^a ClF (19.8)	overnight (A)	C1F, CF ₃ C1, (CF ₃) ₂ SeF ₂ (3.53)
(CF ₃) ₂ SeF ₂ (1.4) C1F (3.7)	5 days (B)	$(CF_3)_2SeF_2$ mainly $SeClF_5$ *, CF_4 CF_3C1
$(CF_3)_2SeF_2$ (0.9) C1F (14.3)	3 days (A)	ClF, mainly SeClF ₅ , CF ₄
(C ₂ F ₅) ₂ SeF ₂ (2.9) C1F (5.9)	15 hours (A)	C1F, $(C_2F_5)_2SeF_2$, (2.8) traces of fluorocarbons
$(C_2F_5)_2SeF_2$ (1.5) C1F (5.5)	80°C 2 days (A)	C1F, $(C_2F_5)_2SeF_2$ mainly $C_2F_5SeC_2F_6$ and C_2F_5C1
$(C_2F_5)_2SeF_2$ (1.3) C1F (16.3)	2 days (A)	ClF, $(C_2F_5)_2SeF_2$, mainly C_2F_5 ? C_2F_6 and C_2F_5C1
$(C_2F_5)_2SeF_2$ (0.9) CF_3OF (1.1)	3 hours (B)	No reaction
$(C_2F_5)_2SeF_2$ (0.9) CF_3OF (1.2)	70°C 2 hrs. (B)	$(C_2F_5)_2SeF_2$, C_2F_6 , COF_2 , SeF_6 and unidentified
* SeC1F ₅ is charac reference [27].	cterized by its	¹⁹ F n.m.r. which is reported in
A. Monel vessel	B. Kel-F v	essel
a mmole given in bracket.	n b carried wise sta	out at room temperature unles: ated.

Preparations

Bis(perfluoroethyl) monoselenide and bis(perfluoromethyl) monoselenide both react with chlorine monofluoride in a 1:2 rati at -78°C or at room temperature to give the corresponding difluoride in essentially quantitative yield according to the equation (1).

(1)
$$(R_f)_2 \text{Se} + 2\text{ClF} \rightarrow (R_f)_2 \text{SeF}_2 + \text{Cl}_2$$

 $R_f = \text{CF}_3, \text{C}_2 \text{F}_5$

Traces of $CF_3SeC_2F_5$ in $(C_2F_5)_2Se$ starting material yielded corresponding amounts of $CF_3SeF_2C_2F_5$ product. A ¹⁹F n.m.r. spectrum of a 1:1 mixture of $(C_2F_5)_2Se$ and ClF at room temperature gave no evidence for an intermediate $(C_2F_5)_2SeClF$.

Bis(perfluoroethyl) diselenide reacts with chlorine monofluoride in about 1:6 ratio at -78°C to give perfluoroethyl selenium trifluoride essentially quantitatively according to equation (2). The reaction was much more vigorous than the

(2) $(C_2F_5)_2Se_2 + 6C1F \rightarrow 2C_2F_5SeF_3 + 3C1_2$

corresponding reaction of chlorine monofluoride and bis(perfluoroalky1) monoselenide, and was carefully controlled.

Presumably the selenium-selenium bond is cleaved to yield C_2F_5SeCl [consistent with observations that a red intermediate is formed during the reaction], and C_2F_5SeF . The monofluoride may disproportionate to the diselenide and the trifluoride, by analogy with the sulphur analogue [28,29]. Perfluoroethyl selenium chloride may be further oxidized by chlorine monofluoride to finally yield perfluoroethyl selenium trifluoride.

Trans perfluoroethyl selenium chloride tetrafluoride may be prepared by three routes. (a) The reaction of chlorine monofluoride in a slight excess with perfluoroethyl selenium trifluoride at room temperature. The reaction went in about 90% yield according to equation (3).

(3) $C_2F_5SeF_3 + CIF \xrightarrow{r_t} C_2F_5SeCIF_4$

Presumably this reaction proceeds by direct addition of C1F. When the reaction was carried out with an excess of C1F for four days, selenium chloride pentafluoride is formed, essentially quantitatively (equation 4).

(4)
$$C_2F_5SeClF_4 + ClF \xrightarrow{r_t} SeClF_5 + C_2F_5Cl$$

The reaction goes to completion in a shorter time at higher temperatures (e.g. 90°C). Selenium chloride pentafluoride has been previously reported [27,30]. (b) Trans $C_2F_5SeClF_4$ is also prepared by the reaction of $CsF.C_2F_5SeF_5$ with chlorine monofluoride at -78°C, in about 70% yield according to (5).

(5) $CsF.C_2F_5SeF_3 + 2CIF^{-7} \stackrel{\circ}{P}^{\circ}C$ <u>Trans</u> $C_2F_5SeCIF_4 + Cs^{+}CIF_2^{-1}$ This may be a displacement reaction and is perhaps the best way to prepare the compound since unreacted chlorine monofluoride is readily removed at -78°C and other products are involatile solids at ambient temperature. (c) The reaction of bis(perfluoroethyl) selenium difluoride with chlorine monofluoride can also produce trans C₂F₅SeClF₄. Bis(perfluoroethyl) selenium difluoride did not react with C1F in a 1:2 ratio overnight, but the reaction occurred slowly with ClF in a 1:12.7 ratio at room temperature for 2 days. Unreacted starting material was recovered in this reaction. A similar result was obtained when $(C_2F_5)_2SeF_2$ was reacted with CIF in a 1:3.8 ratio for 2 days at 80°C and in a 1:2.9 ratio in the presence of cesium fluoride overnight. It is clear that bis(perfluoroethyl) selenium difluoride is much less reactive toward chlorine monofluoride than perfluoroethyl selenium trifluoride. Reaction of $(C_2F_5)_2SeF_2$ may proceed by addition of ClF across a carbon-selenium bond with formation of $C_2F_5SeF_3$ and C_2F_5C1 , or by an oxidative addition with formation of $(C_2F_5)_2$ SeClF₃ which may disproportionate, decompose, or further react with C1F to give trans $C_2F_5SeClF_4$ and other products. The analogous reaction of bis(perfluoroalky1) sulphides led to the formation of bis(perfluoroalky1) sulphur tetrafluoride [31]. We have been unable to detect the selenium analogues in any of our preparations. Selenium-carbon bonds may be expected to be weaker than the corresponding sulphur-carbon bonds,

and selenium(IV) seems to be the preferred oxidation state of the element [3]. Thus it is not unexpected that the selenium analogues of <u>cis</u> and <u>trans</u> $(R_f)_2SF_4$ should be more difficult to prepare.

Perfluoroethyl selenium pentafluoride was formed with SeF₆, C_2F_6 , CF_4 by the fluorination of CsF. C_2F_5 SeF₃ at -78°C. This material was not isolated but characterized by ¹⁹F n.m.r. spectroscopy.

Properties

 $(C_2F_5)_2SeF_2$, $(CF_3)_2SeF_2$, $(C_2F_5)SeF_3$ and <u>Trans</u> $C_2F_5SeC1F_4$ are colourless liquids at room temperature with vapour pressures of ca. 25, 35, 10 and 75 torr at room temperature. All are stable at room temperature in Kel-F vessels over periods of months. The trifluoride is more reactive than the difluoride towards glass and meaningful mass spectra were not obtained. The perfluoroethyl trifluoride, like selenium tetrafluoride, reacts with both as a fluoride ion donor and acceptor and forms 1:1 complexes with cesium fluoride and antimony pentafluoride quantitatively according to equation (6) and (7).

(6) $CsF + C_2F_5SeF_3 \xrightarrow{r_5t} CsF_2F_5SeF_3$

(7) $SbF_5 + C_2F_5SeF_3^{r} \rightarrow t \cdot C_2F_5SeF_3.SbF_5$

Unlike perfluoroethyl selenium trifluoride, bis(perfluoroethyl) selenium difluoride does not form a complex with cesium fluoride; however 1:1 adducts are formed with arsenic and antimony pentafluoride quantitatively according to equation (8). These adducts decompose at room

(8) $(C_2F_5)_2SeF_2 + MF_5 \rightarrow (C_2F_5)_2SeF_2.MF_5$ (M = As, Sb)

temperature like the similar related adduct $(C_6H_5)_2SeCl_2.BCl_3$ [32]. Boron trifluoride has also been reported to cause decomposition of $(C_6H_5)_2SeF_2$ [33].

 $\underline{\rm Trans}\ {\rm C_2F_5SeClF_4}$ is reduced by elemental mercury to ${\rm C_2F_5SeF_3}$ at room temperature.

¹⁹F n.m.r. Spectra

1 0

The 19 F n.m.r. spectra data for the various neutral compounds prepared in this work are given in Table 5. Chemical shifts are compared with the analogous sulphur compounds in Table 6, and coupling constants compared in Table 7, perfluoroethyl selenium trifluoride is not included as the corresponding sulphur analogue has not been prepared.

The fluorine chemical shift found for $(CF_3)_2$ Se is comparable with that recently reported by Marsden [37]. High resolution spectra were obtained for $CF_3SeC_2F_5$, $(C_2F_5)_2SeF_2$, $(CF_3)_2SeF_2$, $Trans C_2F_5SeC1F_4$ and $C_2F_5SeF_5$. The n.m.r. data establishes the configuration of the latter two compounds unambiguously and the Se⁷⁷-F couplings are in the range for that expected for Se⁷⁷(VI)-F. The spectrum of $C_2F_5SeF_5$ closely resembles that of various pentafluorosulphur containing compounds [38-40] and SeC1F₅ [27] despite the further couplings with the C_2F_5 group. The J_{AB} coupling constant 184 \pm 5 Hz in the AB₄ part of the spectrum was deduced by application of the equation given in reference 38.

Table	5.	19 _F	n.m.r.	data	of	perfluoroalky1	selenium
				de	eriv	vatives	

Compound	Chemical shifts(p.p.m.)	Coupling constant(Hz)
(CF ₃) ₂ Se	$^{\delta} CF_3 = 31.6$	
CF ₃ SeC ₂ F ₅	$\delta CF_{3}Se = 29.9(3)(t.q.)$ $\delta CF_{2} = 88.31(2)(q.q.)$ $\delta CF_{3}C = 84.7(3)(t.q.)$	$^{J}CF_{3}Se-CF_{2} = 9.19$ $^{J}CF_{3}Se-CF_{3} = 3.06$ $^{J}CF_{3}-CF_{2} = 3.45$
(CF ₃) ₂ SeF ₂	$\delta CF_3 = 53.23(3)(t)$ $\delta SeF_2 = 68.84(1)(s)$	$^{J}CF_{3}-SeF_{2} = 12.99$ $^{J}Se^{77}-F = 377 \pm 10$

Table	5.	(continued)
-------	----	-------------

Compound	Chemical shift(p.p.m.)	Coupling constant(Hz)
C ₂ F ₅ SeF ₂ CF ₃	$\delta CF_3 = 51.53(3)$	
	$\delta SeF_2 = 65.56(2)$	
	$\delta CF_2 = 98.19(2)$	
	$\delta CF_3 C = 80.24(3)$	
(C ₂ F ₅) ₂ SeF ₂	$\delta CF_3 = 79.5(3)(t)$	$^{J}CF_{3}-CF_{2} = 0$
	$\delta CF_2 = 96.7(2)(t?)$	$^{\rm J}{\rm CF}_3$ -SeF $_2$ = 8.1
	$\delta SeF_2 = 63.5(1)(p.s.)$	$^{\rm J}{\rm CF}_2 - {\rm SeF}_2 = 16.23$
C ₂ F ₅ SeF ₃	$\delta CF_3 = 78.8(3)$	
	$\delta CF_2 = 103.5(2)$	
	$\delta SeF_3 = 25.9(3)$	
C ₂ F ₅ SeC1F ₄	$\delta CF_3 = 79.4(3)(t.p.)$	$^{\rm J}{\rm CF}_{3}$ -CF ₂ = 1.50
	$\delta CF_2 = 87.5(2)(q.p.)$	$^{\rm J}{\rm CF}_{3}$ -SeF ₄ (eq) = 7.40
	$\delta SeF_{4(eq)} = 102.4(4)$	$^{\rm J}{\rm CF}_2$ -SeF ₄ (eq) = 14.7
	(t.q.)	$^{\rm J}{\rm Se}^{77} - F(eq) = 1192$
C ₂ F ₅ SeF ₅	$\delta CF_3 = 79.64(3)(t.p.)$	$^{\rm J}{\rm CF}_3 - {\rm CF}_2 = 1.32$
2 5 5	$\delta CF_2 = 86.75(2)(d.q.p.)$	$^{\rm J}{\rm CF}_{\rm 3} - {\rm SeF}_{\rm 4(eq)} = 6.89$
	$\delta SeF_{4(eq)} = -36.23(4)$	$^{\rm J}{\rm CF}_2 - {\rm SeF}_4({\rm eq}) = 13.52$
	$\delta SeF_{(ax)} = 64.41(1)$	J_{CF_3} -SeF(ax) = 0
	δF_{ax} F4(eq) = 1590	$J_{CF_2}^{J} = 2.74$
	<u>+</u> 5(Hz)	$J_{\text{SeF}ax}$. $-SeF_4(eq)^{=}$
		183.7 <u>+</u> 5
		$^{\rm J}{\rm Se}^{77}{}^{\rm -F}{\rm (eq)}^{\rm =}$ 1285.

N.B. Chemical shifts are relative to CC1₃F Figures in bracket stand for areas under the peak d=doublet, t=triplet, q=quartet, p=pentet and s=septet.

Table 6. Comparison of Chemical Shifts ^a of Some	mparisc	n of C	hemical	Shifts	a of Sc	ome					27
Perfluoroalkyl Derivatives of Sulphur and Selenium	yl Deri	vative	s of Su	lphur a	nd Sel(mium					6
Compound	CF_3	SF ₂	SF_4		Ref.	Compound	CF 3	SeF ₂	SeF4		Ref.
$(CF_{3})_{2}^{S}$ $(CF_{3})_{2}^{S}_{2}$ $(CF_{3})_{2}^{SF}_{2}$	38.6 46.9 58.0	14.2			34 34 6	(CF ₃) ₂ Se (CF ₃) ₂ Se ₂ (CF ₃) ₂ SeF ₂	31.6 38.1 53.2	68.8		th 34 th	this work 34 this work
Compound	CF ₃ S	CF ₃ C	CF ₂	SF ₂	Ref.	Compound	CF ₃ Se	сғ ₃ с	CF ₂	SeF ₂	Ref.
$CF_3SCF_2CF_3$ $CF_3SF_2C_2F_5$	36.2 55.8	84.6 80.2	90.4 100.7	13.2	6 35	CF ₃ SeC ₂ F ₅ CF ₃ SeF ₂ C ₂ F ₅	29.9 51.5	84.7 80.2	88.3 98.2	65.6	this work this work
Compound	CF ₃	CF ₂	SF_2	SF4eq.	SF _{ax.}	Ref.Ccmpound	CF ₃	CF ₂	SeF ₂	SeF4eq.	. SeF _{ax} . Ref.
(C ₂ F ₅) ₂ S ₂ (C ₂ F ₅) ₂ SF ₂ C ₂ F ₅ SC1F ₄ ^b C ₂ F ₅ SF ₅	85.4 80.5 81.1 81.5 81.5	97.2 98.9 98.8 99.8	11.2	-109.5 -43.1	109.5 -43.1 -62.5	28 (C ₂ F ₅) ₂ Se ₂ 82.9 6 (C ₂ F ₅) ₂ SeF ₂ 79.5 7 C ₂ F ₅ SeC1F ⁴ ₄ 79.4 7 C ₂ F ₅ SeF ₅ 79.6	e ₂ 82.9 eF ₂ 79.5 Fb 79.4 79.6	90.8 96.7 87.5 86.7	63.5	-102.4	36 this work -102.4 this work - 36.2 -64.1 this work

a chemical shifts are in p.p.m. relative to CCl_3F ,

perfluoroalkyl
some]
of
nstants
coupling co
of
Comparison
Table 7.

derivatives of sulphur and selenium	f sulphur	and selenium				
Compound	^J CF ₃ M-CF ₂		$^{J}CF_{3}-CF_{2}$ J	^J CF ₃ M-CF ₃ C		Reference
CF ₃ SCF ₂ CF ₃	6•6		2.85	2.6		6
$CF_3SeCF_2CF_3$	9.19		3.45	3,06		this work
Compound		JCF	^J CF ₃ -MF ₂			Reference
(CF ₃) ₂ SF ₂		1	19.5			6
$(CF_3)_2 SeF_2$			12.99			this work
Compound	J CF $_{2}$ - MF $_{2}$		^J CF ₃ -CF ₂ J	^J CF ₃ -MF ₂		Reference
$(C_2F_5)_2SF_2$	19.0		9.6			6
$(c_2F_5)_2$ seF ₂	16.23			8.1		this work
Compound	$^{\rm J}{\rm CF}_3$ - ${\rm CF}_2$		^J CF ₃ -MF ₄ J	^J CF ₂ -MF ₄		Reference
$c_2F_5SC1F_4^b$	0.6		8.8	14.3		2
$c_2F_5seclF_4$	1.5		7.4	14.7		this work
Compound J	$^{\rm J}{\rm CF}_{\rm 3}$ - ${\rm CF}_{\rm 2}$	^J CF ₃ -MF4(eq)	^J CF ₂ -MF4 (eq)	$^{\rm J}{}_{\rm CF_2}{}^{\rm -MF}{(ax.)}^{\rm J}{}_{\rm A}{}^{\rm -B}$	J _{A-B}	Reference
C ₂ F ₅ SF ₅		9.0	14.0	4.7	146	2
$c_2F_5SeF_5$	1.32	6.89	13.52	2 。 74	184	this work
^a Coupling constants are in Hz ^b Trans isomer	nstants are	e in Hz ^b Tran	s isomer			

This value appears to be the lowest coupling constant that has been reported for an SeF_5 group in a variety of compounds [41]. It is noted that the J_{AB} values for the perfluoroalkyls of SF_5 are lower than the other sulphur analoguous of the compounds reported in reference 41.

The high resolution spectrum of $(CF_3)_2SeF_2$ appeared to be first order and a Se⁷⁷-F coupling constant of 377 ± 10 Hz was obtained, indicating that if intermolecular fluorine exchaoccurred, it was not rapid. A similar coupling constant was observed by Wynne for some bis(alky1) selenium difluorides [19]. The high resolution spectrum of $(CF_3)(C_2F_5)SeF_2$ was poorly resolved and no interpretation was made. The high resolution spectrum of $(C_2F_5)_2SeF_2$ appeared to be essentially first order but had some features that suggested second order effects were operative although the apparent data is reported in the tables. This spectrum is being further investigated. The related compound $(CF_3)(C_2F_5)SF_2$ has been analysed by Sauer et al as a AA'XX' $Y_{3}Z_{3}$ system, and $(C_2F_5)_2SF_2$ is reported to have a complex spectrum [35]. The n.m.r. data are not inconsistent with an axial disposition of the fluorine in the $(R_f)_2 SeF_2$ compounds, but more direct evidence is given below from vibrational spectra.

Perfluoroethyl selenium trifluoride did not give a high resolution spectrum under conditions of our experiment in contrast to R_fSF_3 (R = CF_3 , $i-C_2F_7$) [28,42]. This may be due to intrinsic association and ready exchange in solution, or the presence of trace impurities (e.g. HF), which may facilitate exchange [43].

Vibrational Spectra

The infrared and Raman spectra of the new perfluoroalkyl derivatives are shown in Figures 1-4; and Tables 8-11, 14, 16-18, list the vibrational assignments for the individual compounds for the major bands made by comparison with the vibrational spectra of $(CF_3)_2Se_n$, (n = 1,2) [37], $(CF_3)_2S_n$, (n = 1,2) [44], SeF_4 [45-6], $(CH_3)_2SeF_2$ [20], $(CH_3)_2Se$ [47], $(CH_3)_2Se_2$ [48], $[(CF_3)_2CF]_2SF_2$ [49], SeF_3SbF_6 [50], SeF_5 [51], $SeC1F_5$ [52], and perfluoroethyl halides [53], the

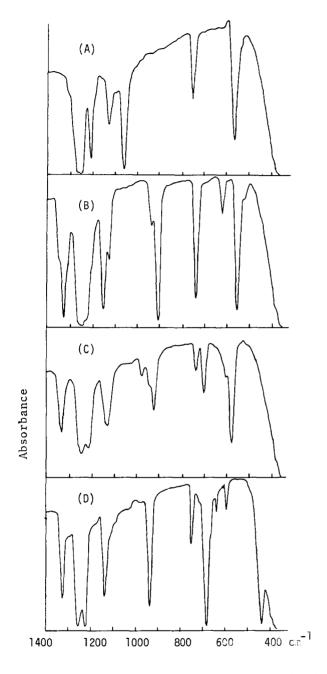


Figure 1. The infrared spectrum of gaseous; (A) $(CF_3)_2SeF_2$; (B) $(C_2F_5)_2SeF_2$; (C) $C_2F_5SeF_3$; (D) <u>Trans</u> $C_2F_5SeC1F_4$.

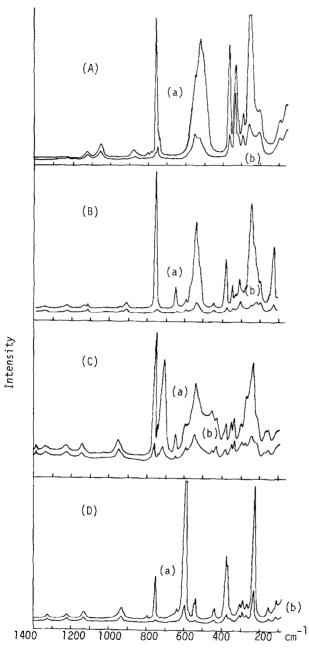


Figure 2. Raman spectrum of liquid; (A) $(CF_3)_2SeF_2$; (B) $(C_2F_5)_2SeF_2$; (C) C, (D) <u>Trans</u> $C_2F_5SeClF_4$. (a) Polarizer parallel (b) Polarizer perpend⁻¹

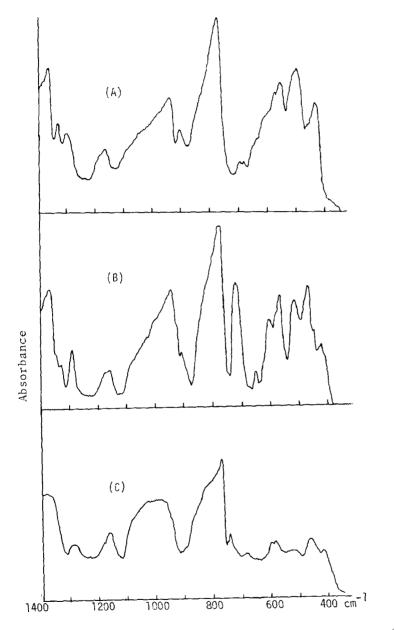


Figure 3. Infrared spectrum of solid; (A) $(C_2F_5)_2SeF_2AsF_5$; (B) $(C_2F_5)_2SeF_2$. (C) $C_2F_5SeF_3SbF_5$.

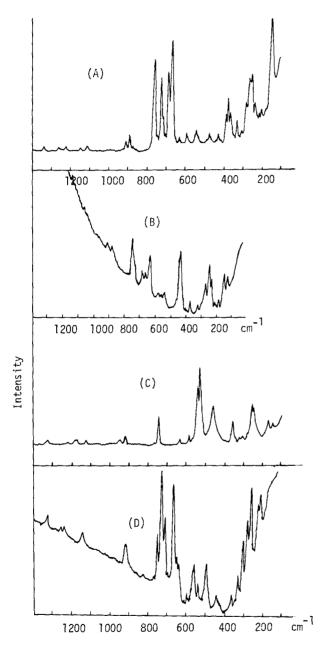


Figure 4. Raman spectra of solid; (A) $(C_2F_5)_2SeF_2.AsF_5$; (B) $(C_2F_5)_2SeF_2$ (C) $CsF.C_2F_5SeF_3$; (D) $C_2F_5SeF_3.SbF_5$.

, Iı	nfrared	7	Raman		
(cm ⁻¹)	I	(cm ⁻¹)	I	pol.	Tentative assignment
1310	w sh			J	
1285	m sh				
1265	vs			ł	. C-F str. and combination
1245	vs	1246	0.2	р	modes
1206	s	1200	<0.1	Р	
1158	VW				
1125	m	1125	0.2	dp	
1090	vw				
1058	S	1051	0.6	р	
		888	0.3	p j	
		802	<0.1	р _г	
		784	<0.1	р	
754	m	760	3.5	p }	\rightarrow CF ₃ deformation
		754(sh)	dp	
		740(sh)	р	
615	vw br	616	0.1	р	
		576(sh)	р	
568	S	558	0.7	dp	asym. Se-F _(ax.) str.
535	w sh	533	10	р	sym. Se-F _(ax.) str.
		519(sh)	р	CF ₃ deformation
		370	2.3	р	C-Se sym. str. CF ₃ rock
		335	1.5	dp	CF ₃ rock
		324	0.4	dp	C-Se asym. str. CF ₃ rock
		301	1.2	dp	F-Se-F asym. bend CF3 roc
		261	7.1	р	CF ₃ rock
		240(sł		p(?)	CF ₃ rock
		211	1.4	dp	F-Se-C deformation
		100	1.4	dp	C-Se-C bend
		43 (1		dp	CF ₃ torsion

Table 8. Vibrational spectrum of $(CF_3)_2 SeF_2$

s=strong, m=medium, w=weak, sh=shoulder, br=broad, v=very

Infr		Ram	an		
(cm ⁻¹)	I	(cm ⁻¹)	I	pol.	Tentative assignments
1348	w sh	1347	0.2	р]
1325	ms	1327	0.1	dp	
1258	S				
1228	m sh	1229	0.5	р	C-F str. and
		1214	0.4	р	Combination modes
1155	ms	1154	0.4	р	
1138	W	1126	0.5	р	-
945	W	944	0.4	р	ÇC-C str.
910	S	908	1.1	р	J
748	m	749	4.9	р	7
632	W	647	0.8	р	<pre>>C2F5 deform.</pre>
		598	0.7	dp	2 0
568	S	568	1.0	р	asym. Se-F(ax.str.
538	w sh	540	10	р	sym. Se- $F(ax.)$
		525	(sh)	р	C ₂ F ₅ deform.
445	w br	442	0.4	dp	C ₂ F ₅ rock
		374	2.3	р	C-Se sym. str. C ₂ F ₅ rock
		346	0.8	р	C ₂ F ₅ rock
		324	0.4	dp	C-Se asym. st. C ₂ F ₅ rocl
		304	1.5	dp	F-Se-F asym.bend
		249	7.4	р	C ₂ F ₅ rock
		225	2.9	dp	C_2F_5 rock
		197	1.2	dp	Z 5 F-Se-C bend
		159	0.3	p	C ₂ F ₅ rock
		129	2.5	p	C-Se-C bend.C ₂ F ₅ rock

Table 9. Vibrational spectrum of $(C_2F_5)_2SeF_2$

vibrational spectra of bis(perfluoroethyl) sulphides $(C_2F_5)_2S_n$ (n = 1,2,3,4), selenides $(C_2F_5)_2Se_n$ (n = 1,2,3) tellurides $(C_2F_5)_2Te_n$ (n = 1,2) [54], and CF_3SF_5 [55].

In all of the spectra there are bands in the 1400-1100 $\rm cm^{-1}$ region which are readily assigned to C-F stretchings and combination modes of the CF3 and C2F5 groups. In general,

	nfrared		man		
(cm ⁻¹)	Ι	(cm ⁻¹)	I	pol.	Tentative assignment
		1380	0.6	dp	FEP tube
1339	ms	1330	0.4	р	C-F str.
		1296	0.4	dp	FEP tube
1255	s				}C-F str.
1220	S	1220	0.6	р	J
		1212	0.3	dp	FEP tube
1136	ms br	1140	0.4	р	C-F str.
985	W				imp?
950	m sh	941	0.6	р	LC-C str.
932	m	926	0.2	dp	-
752	W	751	3.5	р	C ₂ F ₅ deform.
		729	1.0	р	FEP tube
718	m	707	5.8	р	Se-F(eq.) str.
638	w sh	635	0.6	р	C ₂ F ₅ deform.
592	S	588	0.2	dp	asym.Se-F _(ax) str.
540	vw sh	541	10	р	sym. Se-F _(ax.) str.
		480(vbr)		Se-F-Sebridging str.
450	w sh	445	2.2	р	C ₂ F ₅ rock
		420	2.5	р	
		385	0.6	dp	FEP tube
		370	1.6	р	C-Se sym.st.
		343	1.0	dp	C-Se asym.st.
		326	1.0	dp	C ₂ F ₅ rock
		299	1.4	р	sym. FSeF bend
		284	0.6	dp	FEP tube
		269	1.5	dp	C ₂ F ₅ rock
		237	9.4	р	
		201(sh)		dp	F-Se-F deform, C ₂ F ₅ roc
		159	1.3	р	C ₂ F ₅ rock
		143	1.3	dp	C ₂ F ₅ rock
		81	(?)	dp	C_2F_5 torsion

Table 10. Vibrational spectrum of $C_2F_5SeF_3^*$

* spectrum was obtained in an FEP tube

2	8	6
---	---	---

Infrared		Ra	aman				
(cm ⁻¹)	Ι	(cm ⁻¹)	Ι	po1.	Tentative assignment		
1328	m	1330	0.2	р	}		
1258	S	1248	<0.1	dp	C-F str. and		
1227	S	1228	0.2	р	combination modes		
1136	m	1138	0.3	р			
980	VW	980	0.1	dp	C-C str.		
940	S	939	0.4	р			
		802	0.1	р	}C ₂ F ₅ deform		
		780	<0.1	р			
754	m	753	0.7	р			
720	w sh	720	< 0.1	р	ļ		
689	S	682	0.3	dp	asym. SeF ₄ str.		
645	W	645	0.2	р	C ₂ F ₅ deform.		
598	W	596	10	р	sym. SeF ₄ str.		
		585	(sh)	dp(?)	SeF4 out of phase		
		552	0.2	р	C ₂ F ₅ deform.		
		546	0.5	р			
		448	0.1	dp	C ₂ F ₅ rock		
440	S	444	0.3	р	ðs SeF _A		
		378	1.3	р	ðs SeF ₄ Se-Cl ³⁵ Str.		
		371	0.4	р	Se-C1 ³⁷ str.		
		358	(sh)	dp	\tilde{e} s SeF $_4$ in plane		
		308	0.4	dp	⁸ as SeF₄ in plane		
		293	0.5	dp	C ₂ F ₅ rock		
		273	0.4	dp			
		236	4.0	р	C-Se str. C ₂ F ₅ rock		
		157	0.4	р	C1SeF ₄ Wagging		
		115	0.5	р	C ₂ F ₅ rock		

Table 11. Vibrational spectrum of trans C₂F₅SeClF₄

no distinction is made between the CF_3 and CF_2 vibrations. In the 1000-850 cm⁻¹ region, bands due to C-C vibrations of the C_2F_5 are present. There is a strongly polarized Raman band which has a counterpart in the infrared at about 750 cm⁻¹ which is assigned as a CF_3 or C_2F_5 deformations mode. Special attention will be focused on the Se-F stretching regions between 750 and 400 cm⁻¹, in which there are generally no intense bands attributable to other vibrations [37,54]. Many vibrations occur below 400 cm⁻¹, and assignments in this region are of a very tentative nature indeed.

(i) (CF₃)₂SeF₂.

The infrared and Raman spectrum of (CF3)2SeF2 are shown in Figures 1 and 2 respectively and vibrational frequencies and tentative assignments are given in Table 8. In the region between 750-400 cm⁻¹ there is a strong band at 568 cm⁻¹ and a weak shoulder at about 535 cm⁻¹ in the infrared which have counterparts in the Raman spectrum at 558 and 533 $\rm cm^{-1}$. Since the 533 cm^{-1} Raman band in strong and polarized it is assigned as the symmetric F-Se-F stretching vibration, and the depolarized 558 band is assigned as the corresponding asymmetric stretching vibration. By comparison with the vibrational spectrum of monomeric SeF_A [45], the 558 and 533 cm^{-1} vibrations are assigned to the axial asymmetric and symmetric vibrations respectively (See Table 12). The proposed structure of $(CF_3)_2 SeF_2$ is therefore reasonably assigned trigonal bipyramid with a lone pair and perfluoromethyl groups in the equatorial plane and the two fluorine atoms occupying axial positions (I).

Wynne and coworkers [20] assigned the vibrational spectra of $(CH_3)_2SeF_2$ and reported axial asymmetric and symmetric stretching frequencies at 506 and 486 cm⁻¹. It would appear that the selenium fluorine stretching vibrations increase in frequency with increasing electronegativity of substituents.

(ii) (C₂F₅)₂SeF₂.

The infrared and Raman spectrum of $(C_2F_5)_2SeF_2$ are shown in Figures 1 and 2 and the tentative assignments in Table 9.

The infrared spectrum shows a strong band at 568 cm⁻¹ and a weaker shoulder at 538 cm⁻¹ which have counterparts in the Raman of a weak band at 568 cm⁻¹ and a strong polarised band at 540 cm⁻¹. These bands are assigned to the axial asymmetric and symmetric F-Se-F stretching vibrations by

analogy with $(CF_3)_2SeF_2$ and monomeric SeF_4 (Table 12). Since the asymmetric Se-F stretch at 568 cm⁻¹ is polarised, it implies that perhaps the symmetry of $(C_2F_5)_2SeF_2$ (I) may be less than C_{2v} .

(iii) C2F5SeF5.

The infrared and Raman spectra are shown in Figures 1 and and tentative assignments for $C_2F_5SeF_5$ are given in Table 10.

The infrared spectra shows a band at 718 \mbox{cm}^{-1} with a corresponding band at 707 $\rm cm^{-1}$ in the Raman, which is assigned to the equatorial Se-F stretching vibration by comparison with the vibrational spectrum of SeF_A [45] (See Table 12). By analogy to $(CF_3)_2SeF_2$ and $(C_2F_5)_2SeF_2$, the strong band at 592 cm⁻¹ and weak shoulder at 540 cm⁻¹ in the infrared spectrum with counterparts in the Raman at 588 and 541 ${\rm cm}^{-1}$ (strongly polarised) are reasonably assigned to the axial asymmetric and symmetric stretching vibrations respectively. The geometry of $C_2 \mathbb{P}_5 SeF_3$ is therefore reasonably established as being based on a trigonal bipyramid with a lone pair and $\mathrm{C_2F_5}$ group in the equatorial plane, and the other positions being occupied by fluorines (II). There is also a broad band between 600-400 cm^{-1} in the Raman spectrum, which has been observed in liquid SeF $_{A}$ [46], and reported to arise from molecular association. It would appear that the compound is monomeric in the gas phase at lower pressures but is associated in the liquid phase.

Compound	sym. Se-F _(eq)	asym. Se-F _(eq)	sym. Se-E _(ax)	asym.S
SeF ₄ ^a	747	7 3 3	571	62
C ₂ F ₅ SeF ₃	70	7	541	58
(C ₂ F ₅) ₂ SeF ₂		_	540	56
$(CF_3)_2 SeF_2_b$		-	533	55
$(CH_3)_2 SeF_2^{b}$			486	50

Table 12. Comparison of Se-F stretching frequencies (cm^{-1}) in SeF₄ and its derivatives

^a Reference 45.

^b Reference 20.

(iv) Trans C2F5SeC1F4.

The ¹⁹F n.m.r. study of trans $C_2F_5SeClF_4$ confirmed the trans configuration of the molecule. If the C_2F_5 group can be considered as freely rotating then trans $C_2F_5SeClF_4$ has pseudo C_{4v} symmetry (III). The vibrational assignment of trans $C_2F_5SeClF_4$ should show similar Se-E and Se-Cl bands to those observed for SeClF₅ with the exception of those involving the axial fluorine.

The infrared and Raman spectra of trans $C_2F_5SeClF_4$ and the vibrational assignments are shown in Figures 1,2, and Table 11 respectively. The strong polarised band in the Raman at 596 cm⁻¹ with a weak counterpart in the infrared at 598 cm⁻¹ is readily assigned to the symmetric SeF₄(eq.) stretching vibration. The polarised peak in the Raman at 444 cm⁻¹ with a strong counterpart in the infrared at 440 cm⁻¹ is assigned as the symmetric SeF₄(eq.) out of plane bending vibration, and the strongly polarised bands at 378 and 371 cm⁻¹ are assigned to Se-Cl³⁵ and Se-Cl³⁷ stretching vibrations respectively. The isotopic splittings and relative intensities are in good agreement with these assignments. The strong peak in the infrared at 689 cm⁻¹ with a weak counterpart in the Raman at 682 cm⁻¹ is assigned as the asymmetric SeF₄(eq.) vibration. The assignments for the other modes are of a very tentative nature. The corresponding Se-F₄(eq.) frequencies decrease from SeClF₅ [52] to trans $C_2F_5SeClF_4$ as expected, and are compared in Table 13.

(v) CsF.C₂F₅SeF₃.

The Raman spectrum of $CsF.C_2F_5SeF_3$ is given in Fig. 4, and the list of frequencies and assignments in Table 14. The infrared spectrum was obtained with both AgCl and KBr plates but were of poor quality therefore not included. The Raman spectrum is very similar to that observed for $Cs^+SeF_5^-$ [51], and in addition there are bands attributable to the C_2F_5 , group present. The vibrational spectrum of $Cs^+SeF_5^$ was assigned based on C_{4x} symmetry of the SeF_5^- ion.

of	
Comparison of Se-F and Se-Cl stretching frequencies of	
stretching	
Se-Cl	
and	F_4
Se-F	SeCIF
of	C,F
son	and
Compari	SeCIF ₅ and C ₂ F ₅ Se
Table 13.	

$\begin{array}{c} \text{SecIF}_{5}{}^{a} \\ \text{Assignment in point group C_{4V}} i.r.^{b} \end{array}$	SeC] i.r.	lF5a	Raman	c_2F_5 ; i.r.	C ₂ F ₅ SeC1F ₄ i.r. Raman
a ₁ v ₁ v(SeF')	729	ms sh	721 (1.8)p		
$v_2 v_s (SeF_4)$	654	M	656 (10)p	598 w	596 (10)p
$v_{3} \delta_{s} (SeF_{4})$ out of plane	440	VS	443 (2.2)p	440 s	444 (0.4)p
$v_4 v(\text{SeCI}35)$	394	МШ	385 (8.5)p		378 (1. 3)p
$v(\text{SeCl}^{37})$			380		371 (0.4)p
$^{ m b_{1}}$ $^{ m s_{5}}$ $^{ m s}$ (SeF $_{4}$) out of phase			636 (0.6)dp		585 (0.5)
$v_{6} ^{\delta} _{as} ({ m SeF}_4)$ out of plane					ļ
$b_2 v_7 \delta_s(SeF_4)$ in plane			38∪ dp		358 (0.3) dp ?
e v ₈ v _{as} (SeF ₄)	745	VVS	745 (0.3)dp	689 s	682 (0.3)dp
ν ₉ δ(F'SeF ₄)	421	S	424 (0.4)dp		
v ₁₀ ô _{as} (SeF ₄) in plane	334	ш	336 (1.2) dp		308 (0.4)dp ?
$v_{11}\delta(\text{ClSeF}_4)$			213 (1.4)dp		157 (0.4)p ?

^aReference 52

^bAll frequencies given in cm⁻¹

	rared	Ramar	1	
(cm ⁻¹)	Ι	(cm ⁻¹)	Ι	Tentative assignment
1322	S	1320	0.8)
1225	S			[C-F str. and
1170	S	1170	1.0	combination modes
1118	s	1120	0.5	J
942	S	946	1.0	}C-C str.
898	m	902	1.5	}
748	m	745	2.2	ļ
640	W	636	0.3	C ₂ F ₅ deform.
588	W	588	0.4	
		544	3.4	C ₂ F ₅ rock, v _s (SeF ₄)?
530	m	530		v_{s}^{2} (SeF ₄) in plane
		485(sh)		
460	s br	461		$v_{s}^{"}(SeF_{4})$ out of phase, $v_{as}^{"}(SeF_{4})$
		440(sh)		C_2F_5 rock, v_{as} (SeF ₄)?
360	m	358	2.2	\tilde{cs} (SeF ₄) umbrella
		325		C ₂ F ₅ rock, C-Se
		310	0.7	\tilde{vs} (SeF ₄) in plane
		201(1)		,
		258	9.0	C ₂ F ₅ rock
		234(sh)		
		169	2.9	Fas (SeF _A)
		143	2.3	C_2F_5 rock F_{as} (SeF ₄) C_2F_5 rock
		1.0		-2 5

Table 14. Vibrational spectrum of CsF.C₂F₅SeF₃

CsF. $C_2F_5SeF_3$ shows similar bands with the absence of vibrational modes involving axial Se-F' and F'SeF₄(eq.) wagging. The bands involving the SeF₄ part of the spectrum are compared with SeF₅ in Table 14. The band at 544 cm⁻¹ in Raman may be due to C_2F_5 or it may involve an SeF₄(eq.) stretching mode caused by the reduction of symmetry for $C_2F_5SeF_4$ from the idealized C_{4v} , or, perhaps due to solid state effects. However, the strong band at 530 cm⁻¹ in the Raman is clearly due to the SeF₄(eq.) symmetric stretch. There is a strong band in the infrared at 460 cm⁻¹ which

		CstSeF				CsF.C.I	: "SeF,	
Assignment in point group C_{4V} i.r. ^b		S	Raman		i.r.	7	2 5 5 5 Raman	
A, v, v(SeF)	665	V S	666	(10)				
v, v _s (SeF _A) in plane	520	sh	515	(2.5)	530	m	530	(10)
$v_{\tau} \delta_{c}$ (SeF _A) umbrella	335	S	332	(3.2)	360		358	(2.2)
$B_1 v_A v_c$ (SeF _A) out of phase	-		460	(1.0)			[461	(7,2)]
$v_{c} \delta_{ac}$ (Sef _A) out of plane	}		236	(0.6)				
3, v ₆ 8 ₅ (SeF _A) in plane			282	(2.6)			310	(0.7)
$E v_7 v_5 (SeF_A)$	475	vs br	480	(sh)	460	s br	[46]	(7.2)]
vs & (FSeFA)	398	тw	399	(1.9)				
v. ô [SeF.] in plane	}		202	(0.7)			169	

^aReference **S**1

 $^{\rm b}{}_{\rm All}$ frequencies given in (cm⁻¹)

	frai	red	Ra	man		
(cm ⁻¹)	•	Ι	(cm ⁻¹)	I	Tentative assignment
1319	m		1320		1.3)
1255	S	br	1256		0.8	
1225	S	br	1229		1.7	C-F str. and
1138	m	sh	1136		1.2) combination modes
1122	S					
950	W	sh				<pre>C-C str.</pre>
918	S		916		3.8	
758	m		752		2.8	C_2F_5 deform. $C_2F_5SeF_2^+$ (Se-F) str. $C_2F_5SeF_2^+$ (Se-F) str.
740	m		732		10	C ₂ F ₅ SeF ₂ (Se-F) str.
708	S	br	714		5.9	C ₂ F ₅ SeF ₂ ⁺ (Se-F) str.
			690		0.1	$\left. \begin{array}{c} \text{SbF}_6 & \nu_1 \\ \text{and} & \nu_3 \end{array} \right.$
660	S	v br	666		8.2	$\left.\right\}$ SbF ₆ v_1 and v_3
			652	(sh)		
638	S	br	640	(sh)		J
590	W		595		0.9	
555	m		560		5.4	$SbF_6 v_2$
			538		2.5)
490	m		495		6.7	$\begin{cases} \text{SbF}_6 & \text{v}_2 \\ \text{SbF}_6 & \text{, } \text{Sb}_2 \text{F}_{11} & \text{imp} \\ \\ \\ \text{C}_2 \text{F}_5 & \text{rock, } \text{C-Se, } \text{SbF}_6 & \text{v}_4 \end{cases}$
425	m		442		2.9	
			368		1.4	C_2F_5 rock, C-Se, SbF ₆ v_4
			328		1.6)
			303		4.7	
			281		5.0	> SbF ₆ v ₅
			271		0.1	J
			261		6.0	
			225		3.8	$\begin{cases} SbF_6 & v_5 \\ C_2F_5 & rock \end{cases}$
			216		3.4	<u>۲</u>

Table 16. Vibrational Spectrum of C₂F₅SeF₅.SbF₅

* based on octahedral symmetry

has a counterpart at 461 cm⁻¹ in the Raman which may be the asymmetric $\operatorname{SeF}_{4(eq.)}$ stretch and/or it may be the symmetric but of phase stretch corresponding to v_4 of SeF₅, and either shoulders at 485 and 440 cm⁻¹ may be due to the

29	4
----	---

Table 17. Vibrational spectrum of $(C_2F_5)_2SeF_2.SbF_5$

	ıfrai	red	Rama	n	
(cm ⁻¹)		Ι	(cm ⁻¹)	I	Tentative assignment
1338	m				<u>٢</u>
1312	s				
1230	s	br			
1205	s	br			C-F str. and
1125	s	br	1127	0.8	combination modes
1105	s	br)
912	W		911	1.3	} C-C str.
875	s		880	1.9	J
753	m	sh	751	4.8	C ₂ F ₅ deform. C ₂ F ₅ SeF ⁺ (Se-F) str.
733	s		730 (sh)		C ₂ F ₅ SeF ⁺ (Se-F) str.
			694	2.6	
660	s		665	2.9	$\left.\right\}$ SbF ₆ v_1 , v_3 .
638	s		637	4.7	
582	W		582	1.7)
567	W	sh	562	0.5	$> SbF_6 v_2$
532	m		536	3.7	}
485	W				SbF ₆ ?
442	W	sh	437	10	
430	m				$C_2F_5_rock ?$
			372	1.0	$I \text{SbF}_6 v_A?$
			320	0.8	C ₂ F ₅ SeF ⁺ deform? C-Se?
			277	4.2	SbF ₆ v ₅
			250	5.8	· · ·
			236	2.3	$\left\{ C_2 F_5 \text{ rock, C-Se etc.} \right\}$
			211	0.8	
			189	1.3	
			153	4.4	
			132	1.7	J

asymmetric SeF_{4(eq.)} stretch. Despite these ambiguities the Raman spectrum is sufficiently like that of SeF₅, (See Table 15) to show that the adduct very probably has the ionic structure, $Cs^{+}C_{2}F_{5}SeF_{4}$ (IV).

	frared	F	Raman	
(cm ⁻¹)	Ι	(cm ⁻¹)	Ι	Tentative assignment
1349	W	1349	0.3)
1318	W	1301	0.1	
1260	s sh	1259	0.1	C-F str. and
1228	vs br	1232	0.1	combination modes
1148	m	1148	0.2	
1125	s br	1122	0.2)
922	W	923	1.5	
885	m	894	1.9	C-C str.
		882	0.2	J
755	m sh	755	4.1	C ₂ F ₅ deform.
725	s br	731	2.5	C ₂ F ₅ deform. C ₂ F ₅ SeF ⁺ (Se-F) str.
		723(sh)		
690	ms	689	3.6	
670	s	675	6.2	AsF_6 v_1 , v_3
646	m sh	644	0.3	$\begin{cases} AsF_6 & v_1, v_3 \\ AsF_6 & v_2 \end{cases}$
590	VW	593	0.9	AsF_6 v ₂
532	W	542	1.0)
465	m br	477	0.3	?
		442	0.3	C ₂ F ₅ _rock
		384	0.7	AsF_6 4
		375	2.5	$AsF_6^{-1}v_5^{-1}$
		357	1.0) 0 5
		332	1.1)
		287	0.9	
		261	1.9	C ₂ F ₅ rock, C-Se, etc.
		256	2.0	
		241	0.5	
		207	0.6	
		133	10	J

Table 18. Vibrational spectrum of $(C_2F_5)_2SeF_2.AsF_5$

(vi) $(C_2F_5)_2SeF_2$. AsF₅, $(C_2F_5)_2SeF_2$. SbF₅ and $C_2F_5SeF_3$. SbF₅.

The infrared and Raman spectra of C₂F₅SeF₅.SbF₅, (C₂F₅)₂SeF₂.SbF₅ and (C₂F₅)₂SeF₂.AsF₅ are shown in Figures 3 and 4 respectively, and tentative assignments of vibration spectra of these complexes are listed in Tables 16-18. All spectra show bands due to AsF_6^- and SbF_6^- [56,57] however, there are more bands than that expected for full octahedral symmetry. Similar effects have been observed with complexes of selenium tetrafluoride with Lewis acids and attributed by Gillespie and Whitla [50] to cation-anion bridging. This has been confirmed by the crystal structures of $SeF_A.NbF_c$, SeF_{4} . TaF_{5} , and SeF_{4} . $2NbF_{5}$ [58,59] which show that these adduct are predominately ionic with significant interaction through fluorine bridging. The Raman bands at 731 ${\rm cm}^{-1}$ in $(C_2F_5)_2SeF_2.AsF_5$, 730 cm⁻¹ in $(C_2F_5)_2SeF_2.SbF_5$ as well as 732 and 714 cm⁻¹ in $C_2F_5SeF_3.SbF_5$ may be attributed to Se-F stretching of the $(C_2F_5)_2SeF^+$ and $C_2F_5SeF_2^+$ ions (V) and (VI) by comparison with various SeF_3^+ Containing salts (Table 19). The Se-F stretching frequencies of the perfluoroethyl adducts are less than those of SeF_3^+ as expected in replacement of the fluorine by the less electronegative C_2F_5 group. A similar situation is found for SF_3^+ [60,61] relative to the

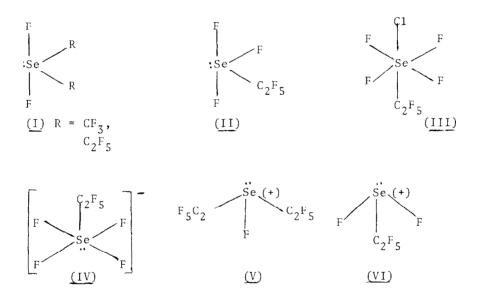

Compound	Se-F (cm^{-1})			Reference
	sym. st.		asym. st.	
SeF ⁺ ₃ SbF ⁻ ₆	775		742	50
SeF $_{3}^{+}$ SbF $_{6}^{-}$ SeF $_{3}^{-}$ AsF $_{6}^{-}$ SeF $_{3}^{-}$ NbF $_{6}^{-}$ SeF $_{3}^{-}$ TaF $_{6}^{-}$ SeF $_{3}^{-}$ BF $_{4}^{-}$	774		754	50
SeF [‡] ₃ NbF ⁶	769		724	50
$\operatorname{SeF}_{3}^{4}\operatorname{TaF}_{6}^{6}$	773		740	50
$\operatorname{SeF}_{2}^{4}\operatorname{BF}_{4}^{-}$	763		730	50
$(C_2F_5)_2SeF^*SbF_6^+$ $(C_2F_5)_2SeF^*AsF_6^-$ $(C_2F_5)SeF_2^*SbF_6^-$		730		this work
$(C_2F_5)_2$ SeF ⁺ AsF ₆		731		this work
C ₂ F ₅ SeF ₂ SbF ₆	732		714	this work

Table 19. Comparison of Se-F stretching frequencies of some Se-F containing cationic complexes

corresponding $CF_3SF_2^+$ salts [62]. The spectra are consistent with the adducts being mainly ionic with substantial anion-cation interaction through fluorine bridging.

Structural Conclusions

The structures of $(CF_3)_2SeF_2$ and $(C_2F_5)_2SeF_2$ have been established (I), as monomeric in the gaseous and liquid phases, whereas $(C_2F_5)_2SeF_3$ (II) is associated in the liquid phase. $C_2F_5SeC1F_4$ is monomeric and has the trans configuration (III). The salt $Cs^+C_2F_5SeF_4^-$ (IV) appears to be an ionic salt, whereas $(C_2F_5)_2SeF^+$ (V) and $(C_2F_5)_2SeF_2^+$ (VI) are essentially ionic but also are fluorine bridged to the corresponding counter ions.

\cknowledgements

We would like to thank the National Research Council and Defence Research Board (Grant No. 9530-128) for financial issistance and Drs. R. Kaiser and R. Hopson for the ¹⁹F n.m.r. ;pectra.

REFERENCES

- 1 A. Haas, "Gmelins Handbuch der anorganischen Chemie", Ergänzungswerk zur 8. Auflage Band 9, Teil 1, Verlag Chemie, Weinheim, (1973).
- 2 A. Haas, "Gmelins Handbuch der anorganischen Chemie", Ergänzungswerk zur 8. Auflage, Band 12, Teil 2, Verlag Chemie, Weinheim, (1973).
- 3 R.E. Banks, "Fluorocarbons and their derivatives", MacDonald Technical and Scientific, London (1970), p. 182.
- 4 W.A. Sheppard and C,M, Sharts, "Organic Fluorine Chemistry' W.A. Benjamin Inc., N.Y., (1969), p. 169.
- 5 R.D. Chambers, "Fluorine in Organic Chemistry", John Wiley and Sons Inc., N.Y. (1973).
- 6 D.T. Sauer and J.M. Shreeve, J. Fluorine Chem., 1 (1971/72)
- 7 T. Abe and J.M. Shreeve, J. Fluorine Chem., 3 (1973/4) 187.
- 8 B. Cohen and R.D. Peacock, "Advances in Fluorine Chemistry' ed. J.C. Tatlow, R.D. Peacock and H.H. Hyman, Butterworths London, Vol. 6 (1970) 343.
- 9 K.W. Bagnall, "The Chemistry of Selenium, Tellurium and Polonium", Elsevier Publishing Co., (1966).
- 10 K.W. Bagnall, "Comprehensive Inorganic Chemistry", ed. J.C Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson, Pergamon Press, Vol. 2 (1973) 935.
- 11 J.B. Lambert, D.H. Johnson, R.G. Keske and C.E. Mixan, J. Amer. Chem. Soc., <u>94</u> (1972) 8172.
- 12 G.C. Hayward and P.J. Hendra, J. Chem. Soc. (A), (1969) 1761
- 13 N.C. Baeziger, R.E. Buckles, P.J. Maner and T.D. Simpson, J. Amer. Chem. Soc., <u>91</u> (1969) 5749.
- 14 H.A. Bent, Chem. Rev., 68 (1968) 590.
- 15 K.J. Wynne, P.S. Pearson, Inorg. Chem., 9 (1970) 106.
- 16 C.K. Prout and J.D. Wright, Angew. Chem. int. Ed., 7 (1968)
- 17 P.S. Pearson, Ph. D. thesis, University of Georgia, Athens Georgia (1971).
- 18 K.J. Wynne, "Sulphur Research Trends", Advances in Chemist Series 110, A.C.S., Washington, D.C. (1972) p. 150.
- 19 K.J. Wynne, Inorg. Chem., 9 (1970) 299.

- 20 R.H. Larkin, H.D. Stidham and K.J. Wynne, Spectrochim. Acta, <u>27A</u> (1971) 2261.
- 21 K.J. Wynne, 7th International Symposium on Fluorine Chemistry Santa Cruz, Calif. (1973) abs. I 22.
- 22 C.D. Desjardins, C. Lau and J. Passmore, Inorg. Nucl. Chem. Lett., <u>9</u> (1973) 1037.
- 23 C.D. Desjardins, J. Passmore and C. Lau, 5th European Fluorine Chemistry Symposium, Aviemore, Scotland, (1974). abs. I 16.
- 24 H.J. Emeleus and N. Welcman, J. Chem. Soc., (1963) 1268.
- 25 C.D. Desjardins and J. Passmore, J. Chem. Soc. (Dalton), (1973) 2314.
- 26 K.O. Christe and J.P. Guertin, Inorg. Chem., 4 (1965) 1785.
- 27 C.J. Schack, R.D. Wilson and J.F. Hon, Inorg. Chem., <u>11</u> (1972) 208.
- 28 C.T. Ratcliffe and J.M. Shreeve, J. Amer. Chem. Soc., 90 (1968) 5403.
- 29 F. Seel and W. Gombler, Agnew Chem. internat. Edit., 8 (1969) 773.
- 30 S. Colton, J.L. Margrave and P.W. Wilson, Syn. in Inorg. and Metal-Org. Chem., <u>1</u> (1971) 149.
- J.M. Shreeve, Accounts Chem. Research, 6, (1973) 387.
- 32 M.E. Peach, Canad. J. Chem., 47 (1969) 1675.
- 33 K.J. Wynne, Ann. N.Y. Acad. Sci., 192 (1972) 107.
- 34 J.W. Emsley, J. Feeney and L.H. Sutcliffe, "Progress in Nuclear Magnetic Resonance Spectroscopy", Pergamon Press, Vol. 7 (1971).
- D.T. Sauer, S-L Yu, W.N. Shepard, J.A. Magnuson,
 R.A. Porter and J.M. Shreeve, Inorg. Chem., <u>14</u> (1975) 1228.
- 36 N. Welcman and H. Regev, J. Chem. Soc., (1965) 7511.
- 37 C.J. Marsden, J. Fluorine Chemistry, 5 (1975) 401.
- 38 R.K. Harris and K.J. Packer, J. Chem. Soc., (1961) 4736.
- 39 C.I. Merrill, S.M. Williamson, G.H. Cady and D.F. Eggers Jr., Inorg. Chem., <u>1</u> (1962) 215.
- 40 M.G. Barlow, R.R. Dean and J. Lee, Trans. Faraday Soc., 65 (1969) 321.

41	K. Seppelt, Z. anorg. allg. Chem., $\underline{399}$ (1973) 65 and references therein.
42	E.L. Muetterties, W. Mahler, K.J. Packer and R. Schmutzler Inorg. Chem., $\underline{3}$ (1964) 1298.
43	J.A. Gibson, D.G. Ibbott and A.F. Janzen, Canad. J. Chem., 51 (1973) 3203.
44	H.A. Carter, S-C Wang and J.M. Shreeve, Spectrochim. Acta., <u>29A</u> (1973) 1479.
45	C.J. Adams and A.J. Downs, Spectrochim. Acta, 28Λ (1972) 1
46	L.E. Alexander and I.R. Beattie, J. Chem. Soc. (Dalton), (1972) 1745.
47	J.R. Allkins and P.J. Hendra, Spectrochim. Acta, <u>22</u> (1966) 2075.
48	S.G. Frankiss, J. Mol. Structure, <u>3</u> (1969) 89.
49	K. Sathianandan and J.L. Margrave, Indian J. Pure Applied Phys., <u>5</u> (1967) 464.
50	R.J. Gillespie and A. Whitla, Canad. J. Chem., <u>48</u> (1970) 657.
51	K.O. Christe, E.C. Curtis, C.J. Schack and D.Pilipovich, Inorg. Chem., <u>11</u> (1972) 1679.
52	K.O. Christe, C.J. Schack and E.C. Curtis, Inorg. Chem., 11 (1972) 583.
53	O. Risgin and R.C. Taylor, Spectrochim. Acta, <u>15</u> (1959) 1036.
54	C.D. Desjardins, private communication.
55	J.E. Griffiths, Spectrochim. Acta, <u>23A</u> (1967) 2145.
56	M. Webster, Chem. Rev., <u>66</u> (1966) 87 and references therei
57	G.M. Begun and A.C. Rutenburg, Inorg. Chem., $\underline{6}$ (1967) 2212
58	A.J. Edwards and G.R. Jones, J. Chem. Soc., (A) (1970) 189
59	A.J. Edwards and G.R. Jones, J. Chem. Soc., (A) (1970) 149
60	D.D. Gibler, C.J. Ad am s, M. Fischer, A. Zalkin and N. Bartlett, Inorg. Chem., <u>11</u> (1972) 2325.
61	M. Azeem, M. Brownstein and R.J. Gillespie, Canad. J. Chem., <u>47</u> (1969) 4159.
62	M. Kramar and L.C. Duncan, Inorg. Chem., <u>10</u> , (1971) 647.