Synthesis of 1-(Trimethylsilyl)alkylamines

Seiji Okazaki, Yoshiro Sato*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Several N,N-dialkyl[1-(trimethylsilyl)alkyl]amines 4 were synthesized by the reaction of a Grignard reagent with 2-dialkylamino-2-(trimethylsilyl)acetonitriles 3 prepared by silylation of (dialkylamino)acetonitriles 1.

No general synthetic method for 1-(trimethylsilyl)alkylamines has yet been reported, whereas (trimethylsilyl) methylamines are conveniently prepared by the reaction

of amines with (chloromethyl)trimethylsilane. 1,2 Although N,N-dialkyl[1-(trichlorosilyl)alkyl]amines obtainable by the reductive silylation of N,N-dialkylamides with trichlorosilane can be converted to N,N-dialkyl[1-(trialkylsilyl)alkyl]amines, 3 the trichlorosilyl analogues are tricky compounds to handle in the laboratory. In this paper we report a convenient new method of synthesi-

37

zing N,N-dialkyl[1-(trimethylsilyl)alkyl]amines 4 from 2-dialkylamino-2-(trimethylsilyl)acetonitriles 3 with Grignard reagents.

Padwa and coworkers⁴ reported that the addition of chlorotrimethylsilane to (benzylmethylamino)acetonitrile (1k) resulted in the formation of silylammonium

1-4	R¹	R ²	R ³
a	Me	Me	CH ₃
b	Et	Me	_a
c	Et	Et	$n-C_4H_9$
d	Et	Et	$n-C_6H_{11}$
e	Et	Et	PhCH ₂
f	Et	Et	Ph
g	-(CH ₂) ₄		PhCH,
ĥ	$-(CH_2)_5$		C ₂ H ₅
i	$-(CH_2)_5$		$n-C_4H_9$
j	-(CH ₂) ₅		Ph
k	PhCH,	Me	CH ₃
1	PhCH ₂	Me	C_2H_5
m	PhCH ₂	Me	$n-C_4H_9$
n	PhCH ₂	Et	CH ₃
0	4-MeOC ₆ H ₄ CH ₂	Me	CH ₃

^a Compound **4b** was not prepared.

salt 2k. Treatment of a suspension of 2k in tetrahydrofuran with lithium diisopropylamide (LDA) gave 2benzylmethylamino-2-(trimethylsilyl)acetonitrile (3k) in high yield. Their attempt to extend the silylation reaction to other (dialkylamino)acetonitriles containing simple alkyl groups, however, failed to produce the expected 2dialkylamino-2-(trimethylsilyl)acetonitriles.

We re-examined the application of this silylation reaction on seven (dialkylamino)acetonitriles 1a-1c, 1g, 1h, 1n, and 1o. When the reaction was carried out in a manner similar to that described by Padwa et al.⁴ and worked-up with a saturated ammonium chloride solution,⁵ high yields of 2-dialkylamino-2-(trimethylsilyl)acetonitriles 3a-3c, 3g, 3h, 3n, and 3o were obtained (Table 1).

Reaction of 3a, 3c, 3g, 3h, 3k, 3n, 3o with various Grignard reagents afforded 4a, 4c-o at room temperature in good yields, except for 4a (Table 2). The low yield of N,N-dimethyl[1-(trimethylsilyl)ethyl]amine (4a) is due to the loss of the volatile product in small-scale distillation. In the preparation of 4f and 4j by the reaction with phenylmagnesium bromide, consumption of the starting nitrile required considerable time.

All reactions were carried out in a N₂ or Ar atmosphere. Et₂O and THF were dried by distillation from sodium benzophenone ketyl prior to use. ¹H-NMR spectra were obtained using a JEOL JNM-PMX 60, JEOL JNM-MH-100, JEOL JNM-FX-100, or JEOL JNM-GSX-400 spectrometer. IR spectra were obtained using a JASCO IRA-2-spectrophotometer. All boiling points are uncorrected. BuLi was purchased from Nakarai Chemicals, Ltd., Kyoto.

2-Dialkylamino-2-(trimethylsilyl)acetonitrile (3); General Procedure: BuLi (15% in hexane, 4.2 mL, 6.5 mmol) is added to a stirred solution of diisopropylamine (658 mg, 6.5 mmol) in THF (5 mL) and stirring is continued at -78°C for 0.5 h. The resulting LDA solution is added to a suspension of the silylammonium salt 2 derived from aminoacetonitrile 1 (5 mmol) and chlorotrimethylsilane (815 mg, 7.5 mmol) in THF (5 mL) at -78°C. The mixture

Table 1. 2-Dialkylamino-2-[(trimethylsilyl)methyl]acetonitriles 3 Prepared

Product	Yield ^a (%)	bp ^b (°C)/mbar	Molecular Formula° or Lit. bp (°C)/mbar	IR (film) v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)	
3a	62	105-107/71	C ₇ H ₁₆ N ₂ Si (156.3)	2225, 1260, 860, 762	0.25 (s, 9H), 2.33 (s, 6H), 3.02 (s, 1H)	
3b	95	126/80	$C_8H_{18}N_2Si$ (170.3)	2200, 1255, 850, 755	0.23 (s, 9H), 1.06 (t, 3H, $J = 7$), 2.28 (s, 3H), 2.46 (q, 2H, $J = 7$), 3.11 (s, 1H)	
3c	86	95/16	$C_9H_{20}N_2Si$ (184.4)	2200, 1255, 850	0.23 (s, 9H), 1.06 (t, 6H, $J = 7$), 2.51 (q, 4H, $J = 7$), 3.22 (s, 1H)	
3g	93	115/16	$C_9H_{18}N_2Si$ (182.3)	2220, 1275, 870, 770	0.27 (s, 9H), 1.63–1.97 (m, 4H), 2.50–2.80 (m, 4H), 3.25 (s, 1H)	
3h	92	140/23	$C_{10}H_{20}N_2Si$ (196.4)	2185, 1250, 845, 750	0.23 (s, 9H), 1.23–1.82 (m, 6H), 2.38–2.63 (m, 4H), 2.98 (s, 1H)	
3k	96 ^d	123/0.7	135–140/0.74	2220, 1255, 850, 740	0.20 (s, 9 H), 2.18 (s, 3 H), 3.03 (s, 1 H), 3.45, 3.77 (ABq, 2 H, J = 13), 7.28 (s, 5 H)	
3n	91	130/0.5	C ₁₄ H ₂₂ N ₂ Si (246.4)	2200, 1255, 850, 755	(ABq, 211, J = 13), 7.28 (5, 3H) 0.20 (s, 9H), 1.10 (t, 3H, J = 7), 2.38-2.90 (m, 2H), 3.14 (s, 1H), 3.38, 3.94 (ABq, 2H, J = 14), 7.31 (s, 5H)	
30	83	140-142/0.5	$C_{14}H_{22}N_2OSi$ (262.4)	2185, 1240, 845, 755	0.61 (s, 9H), 2.31 (s, 3H), 3.04 (s, 1H), 3.33, 3.67 (ABq, 2H, J = 13), 3.77 (s, 3H), 6.55 (d, 2H, J = 9), 6.96 (d, 2H, J = 9)	

^a Yield of isolated product 3 base on 1.

b Oven temperature of Buchi Kugelrohr distillation apparatus.

 $[^]c$ Satisfactory microanalyses obtained: C $\pm\,0.27,\,H\,\pm\,0.12,\,N\,\pm\,0.21.$

d Reference 4, yield 96%.

Table 2. N,N-Dialkyl[1-(trimethylsilyl)alkyl]amines 4 Prepared

Product	Reaction Time (h)	Yield ^a (%)	bp (°C)/mbar	Molecular Formula ^c or Lit. bp (°C)/mbar	IR (film) ν (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
4 a	0.5	48	135–136/1013	30/11 ³	1267, 855, 765	0.05 (s, 9 H), 1.02 (d, 3 H, <i>J</i> = 6), 2.05 (q, 1 H <i>J</i> = 6), 2.26 (s, 6 H)
4c	0.5	86	120/48	C ₁₂ H ₂₉ NSi (215.5)	1253, 840	0.03 (s, 9H), 0.97 (t, 9H, $J = 7$), 1.16 (m, 6H) 2.13 (t, 1H, $J = 6$), 2.43 (q, 4H, $J = 7$)
4d	4	72	115/40	C ₁₄ H ₃₃ NSi (243.5)	1250, 840	0.04 (s, 9 H), 0.89 (t, 3 H, $J = 7$), 1.00 (t, 6 H $J = 7$), 1.27 (br s, 10 H), 2.15 (t, 1 H, $J = 7$) 2.53 (q, 4 H, $J = 7$)
4 e	3	82	120/11	C ₁₅ H ₂₇ NSi (249.5)	1250, 840, 750, 700	-0.06 (s, 9H), 0.97 (dd, 6H, $J = 7.0$, 7.2) 2.45-2.61 (m, 6H), 2.95 (dd, $J = 6.6$, 13.1) 7.12-7.25 (m, 5H)
4f	20	82	100/16	C ₁₄ H ₂₅ NSi (235.4)	1250, 840, 742, 700	-0.03 (s, 9 H), 0.98 (t, 6 H, $J = 7$), 2.65 (q 2 H, $J = 7$), 2.67 (t, 2 H, $J = 7$), 3.37 (s, 1 H) 7.20 (br s, 5 H)
4 g	0.5	77	120-125/5	C ₁₅ H ₂₅ NSi (247.5)	1240, 840, 740, 695	-0.03 (s, 9 H), 1.50-1.82 (m, 4 H), 2.33-3.00 (m, 7 H), 7.12 (s, 5 H)
4h	0.5	75	130/53	C ₁₁ H ₂₅ NSi (199.4)	1250, 860, 745	0.04 (s, 9 H), 0.94 (t, 3 H, $J = 7$), 1.37–1.52 (m 7 H), 1.59–1.69 (m, 1 H), 1.81 (t, 1 H, $J = 7$) 2.46–2.59 (m, 4 H)
4i	0.5	75	120/27	C ₁₃ H ₂₉ NSi (227.5)	1255, 845, 760	0.03 (s, 9 H), 0.90 (t, 3 H, J = 7), 1.10-1.80 (m 12 H), 2.40-2.60 (m, 5 H)
4j	14.5	89	160/20	C ₁₅ H ₂₅ NSi (247.5)	1250, 840, 750, 745	-0.05 (s, 9 H), 1.41-1.70 (m, 6 H), 2.30-2.50 (m, 4 H), 2.79 (s, 1 H), 7.32 (s, 5 H)
4k	0.5	85	140–145/36	C ₁₃ H ₂₃ NSi (221.4)	1250, 850, 740, 695	0.10 (s, 9 H), 1.10 (d, 3 H, J = 8), 2.24 (s, 3 H) 2.32 (q, 1 H, J = 8), 2.57, 3.69 (ABq, 2 H, J = 13), 7.20–7.50 (m, 5 H)
41	1	87	150/35	C ₁₄ H ₂₅ NSi (235.4)	1250, 840, 750, 740	0.09 (s, 9 H), 1.00 (t, 3 H, J = 7.4), 1.43-1.55 (m, 1 H), 1.69-1.80 (m, 1 H), 2.12 (dd, 1 H, J = 6.4, 7.5), 2.23 (s, 3 H), 3.68 (s, 2 H), 7.19-7.34 (m, 5 H)
4m	1	73	163–164/17	C ₁₆ H ₂₉ NSi (263.5)	1250, 835, 735, 750	0.09 (s, 9 H), 0.91 (t, 3 H, $J = 7$), 1.29–1.42 (m 5 H), 1.67–1.75 (m, 1 H), 2.11 (dd, 1 H, $J = 5.3$, 7.9), 2.23 (s, 3 H), 3.66 (s, 2 H), 7.19–7.33 (m, 5 H)
4n	0.5	86	93–94/3.3	C ₁₄ H ₂₅ NSi (235.4)	1250, 840, 755, 740	0.02 (s, 9 H), 0.98 (t, 3 H, $J = 7$), 1.02 (d, 3 H) $J = 7$), 2.33 (q, 1 H, $J = 7$), 2.37–2.49 (m, 2 H), 3.46, 3.72 (ABq, 2 H, $J = 14$), 7.18–7.36 (m, 5 H)
40	0.5	89	111–114/2	C ₁₄ H ₂₅ NOSi (251.4)	1250, 1040, 1260, 855	0.04 (s, 9 H), 1.02 (d, 3 H, <i>J</i> = 7), 2.15 (s, 3 H) 2.24 (q, 1 H, <i>J</i> = 7), 3.48 (s, 2 H), 3.74 (s, 3 H) 6.63 (d, 2 H, <i>J</i> = 8), 7.06 (d, 2 H, <i>J</i> = 8)

^a Yield of isolated product 4 base on 3.

is stirred at the same temperature for 3 h and is then allowed to warm to r.t. The mixture is poured into a sat. NH₄Cl solution (20 mL) and extracted with $\rm Et_2O$ (3 × 20 mL). The ethereal extract is washed with water (4 × 30 mL), dried (MgSO₄) and concentrated at reduced pressure. The resulting oil is distilled at reduced pressure, and the major fraction corresponding to 3 is collected (Table 1).

N,N-Dialkyl[1-(trimethylsilyl)alkyl]amine (4); General Procedure: Grignard reagent, prepared from alkyl halide (5 mmol) and Mg turnings (267 mg, 5.5 mmol) in $\rm Et_2O$ (6 mL), is added to a solution of 3 (2.5 mmol) in $\rm Et_2O$ (5 mL). The mixture is stirred at r.t. (the reaction time is listed in Table 2), then quenched with 10% HCl (10 mL). $\rm Et_2O$ (20 mL) is added to the mixture and the layer separated. The organic layer is extracted with 10% HCl (3 × 10 mL). The HCl extract is made alkaline with conc. NH₄OH, and extracted with $\rm Et_2O$ (3 × 20 mL). The ethereal extract is washed with water (3 × 30 mL), dried (MgSO₄), and concentrated

under reduced pressure. The residue is distilled at reduced pressure, and the major fraction corresponding to 4 is collected (Table 2).

Received: 16 May 1989

- Noll, J. E.; Speier, J. L.; Daubert, B. F. J. Am. Chem. Soc. 1951, 73, 3867.
- (2) Duffaut, N.; Bourgeois, P.; Dunogues, J.; Calas, R. J. Organomet. Chem. 1972, 46, C41.
- (3) Benkeser, R.A.; Li, G.S.; Mozdzen, E.C. J. Organomet. Chem. 1979, 178, 21.
- (4) Padwa, A.; Eisenbarth, P.; Venkatramanan, M. K.; Wong, S. K. J. Org. Chem. 1987, 52, 2427.
- (5) Padwa et al.⁴ workes up the reaction mixture with water Dialkylamino(trimethylsilyl)acetonitriles 3 are easily hydrolyzed in an alkaline medium at r.t.

^b Oven temperature of Buchi Kugelrohr distillation apparatus.

^c Satisfactory microanalyses obtained: $C \pm 0.27$, $H \pm 0.29$, $N \pm 0.25$.