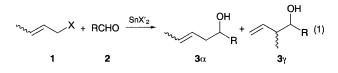
α-Regioselective Carbonyl Allylation by an Allylic Tin Compound Prepared from 1-Bromobut-2-ene and Tin(II) Bromide at a Nonpolar Organic–Aqueous Interface


Yoshiro Masuyama,* Masayuki Kishida and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

1-Bromobut-2-ene on a dichloromethane–water biphasic system at 25 °C causes α -regioselective addition to aldehydes with SnBr₂ to produce 1-substituted pent-3-en-1-ols, and causes γ -regioselective addition to aldehydes with SnBr₂–Bu₄NBr to produce 1-substituted 2-methylbut-3-en-1-ols.

The allylation of aldehydes (carbonyl allylation) with γ substituted allylmetal reagents, derived from y-substituted allylic halides with metals or metal halides, usually occurs diastereoselectively at the γ -position of the allylmetal reagents.¹ A few α -regioselective carbonyl allylations by γ -substituted allylic halides have been achieved using metals such as Mg/ AlCl₃² and Ba.³ We have been developing palladium-catalysed carbonyl allylation by allylic alcohols with tin(II) chloride.⁴ The regioselectivities in the palladium-catalysed carbonyl allylation correlate with the dielectric constants of the solvents used: yregioselection in polar solvents such as 1,3-dimethylimidazolidin-2-one (DMI), DMF, Me₂SO, ethylene glycol and THF-H₂O, and α -regioselection in nonpolar solvents such as diethyl ether. However, the α -regioselective allylation in diethyl ether suffers from the defect that the reaction rate is hopelessly slow, because of the low solubility of tin(II) chloride in diethyl ether.[†] No carbonyl allylation by 1-bromobut-2-ene with tin(II) halides in nonpolar solvents such as dichloromethane and toluene occurs, similarly to the palladium-catalysed allylation by (E)but-2-en-1-ol under the same conditions. Tin(II) bromide and tin(II) chloride are highly soluble in water. We thus hoped that we could prepare γ -substituted allylic tin intermediates from γ substituted allylic halides and tin(II) halides at the interface of a nonpolar solvent and water, followed by α -regioselective carbonyl allylation in the nonpolar solvent.

The allylation of heptanal (2, R = $n-C_6H_{13}$) by 1-halobut-2-enes 1 with tin(II) halides to produce homoallylic alcohols 3α and 3γ was investigated at 25 °C in nonpolar solvent-water systems [eqn. (1)].[‡] The results are summarized in Table 1. The

carbonyl allylation by 1-bromobut-2-ene (1, X = Br)§ with tin(II) bromide in dichloromethane–water (two phases) system proceeded with high α -regioselectivity, in contrast with γ -regioselectivity in polar solvents such as DMF and DMI (entry 3).¶⁵ The carbonyl allylation also occurred in water with α -regioselectivity (entry 10). Addition of tetra-butylammonium bromide (TBA) to any solvent system used promoted the carbonyl allylation by 1 (X = Br) with tin(II) bromide,⁶ but lowered the α -regioselectivity (entries 6, 7, 11 and 12). The reaction with one equimolar amount of TBA to heptanal in either dichloromethane–water or water exhibited high γ -regioselectivity (entries 7 and 12). The use of tin(II) chloride instead of tin(II) bromide, or the use of 1-chlorobut-2-ene (1, X = Cl) instead of 1-bromobut-2-ene (1, X = Br) depressed the reactivity of the carbonyl allylation in dichloromethane–water (entries 4 and 5).

The regiocontrolled allylation of various aldehydes 2 by 1 (X = Br) with tin(II) bromide (X' = Br) was carried out at 25 °C either by method A (without TBA in dichloromethane–water) or by method B (with TBA in water), as summarized in Table 2 [eqn. (1)]. Method A led to α -regioselection and method B led to γ -regioselection, similarly to the allylation of heptanal. The allylation of benzaldehydes containing electron-withdrawing groups such as chloro or cyano groups by method A did not

exhibit α -regioselectivity but γ -regioselectivity (4-ClC₆H₄CHO, 68 h, 83%, $\alpha: \gamma = 11:89$; 4-NCC₆H₄CHO, 46 h, 95%, $\alpha: \gamma = 1:99$). The regioselectivities in the allylation of benzaldehyde by method A were therefore investigated at various reaction temperatures (10–35 °C), as shown in Fig. 1. As the reaction temperature rose, the α -regioselectivity improved ($\alpha: \gamma = 99:1$ at 32 °C). The reaction temperature of method A affected the α -regioselection in the allylation of all the benzaldehydes used, bearing either an electron-withdrawing or an electron-donating group, similarly to that of benzaldehyde (4-ClC₆H₄CHO, 32 °C, 24 h, 38%, $\alpha: \gamma = 87:13$; 4-MeOOCC₆H₄CHO, 32 °C, 24 h, 33%, $\alpha: \gamma = 52:48$; 4-NCC₆H₄CHO, 32 °C, 24 h, 36%, $\alpha: \gamma = 25:75$). The

Table 1 Allylation of heptanal by 1 with tin(II) halides^a

	x	X′			$3 (R = C_6 H_{13})$ Yield	
Entry			Solvent system	TBA/mol%	(%) ^b	α : γ^c
1	Br	Br	CH ₂ Cl ₂	0	N.R. ^d	
2	Br	Br	CH_2Cl_2	10	trace	
3	Br	Br	CH ₂ Cl ₂ -H ₂ O	0	48	91:9
4	Br	Cl	CH ₂ Cl ₂ -H ₂ O	0	25	81:19
5	Cl	Br	CH ₂ Cl ₂ -H ₂ O	0	28	65:35
6	Br	Br	CH ₂ Cl ₂ -H ₂ O	10	89	52:48
7	Br	Br	CH ₂ Cl ₂ -H ₂ O	100	83	9:91
8	Br	Br	CHCl ₃ -H ₂ O	0	78	56:44
9	Br	Br	Et ₂ O-H ₂ O	0	73	13:87
10	Br	Br	H ₂ O	0	36	77:23
11	Br	Br	H_2O	10	42	13:87
12	Br	Br	H ₂ O	100	48	1:99

^{*a*} The allylation of heptanal (1 mmol) by **1** (2 mmol) was carried out with tin(II) halide (2 mmol) at 25 °C for 24 h in organic solvent (3 ml)–water (3 ml) or water (6 ml). ^{*b*} Isolated yields. ^{*c*} The ratio was determined by ¹H NMR (JEOL GX-270) and by GC (capillary column PEG 20M 0.25 mm × 30 m); α , *E*: *Z* = 85:15–62:38; γ , *syn*: *anti* = 65:35–51:49. ^{*d*} N.R. = no reaction.

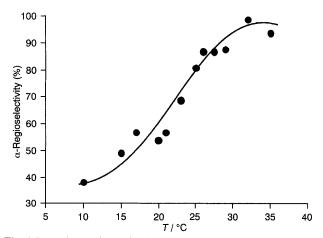


Fig. 1 Dependence of α -regioselectivity upon reaction temperature. The allylation of benzaldehyde (4 mmol) by 1-bromobut-2-ene (2 mmol) was carried out with SnBr₂ (2 mmol) for 24 h at 10–35 °C in CH₂Cl₂ (3 ml) and H₂O (3 ml) to produce a mixture of 1-phenylpent-3-en-1-ol and 2-methyl-1-phenylbut-3-en-1-ol in 30–45% yield.

Table 2 Carbonyl allylation by 1 (X = Br) with tin(II) bromide^a

J. CHEM. SOC., CHEM. COMMUN., 1995

Entry	R	Method ^b	t/h	3 , Yield ^c (%)	Ratio ^d $\alpha(E:Z):\gamma(syn:anti)$
1	C ₆ H ₅	A	24	60	94 (85:15): 6 (90:10)
2	C_6H_5	\mathbf{B}^{e}	24	83	5 (89:11):95 (33:67)
3	MeC ₆ H ₄	А	24	66	86 (97:3) : 14 (36:64)
4	MeC ₆ H ₄	\mathbf{B}^{e}	24	70	10 (93:7) :90 (31:69)
5	PhCH ₂ CH ₂	А	24	61	92 (58:42): 8 (79:21)
6	PhCH ₂ CH ₂	В	24	99	7 (62:38):93 (57:43)
7	C ₆ H ₁₃	Α	75	98	87 (64:36):13 (62:38)
8	$C_{6}H_{13}$	В	24	83	9 (62:38):91 (51:49)
9	$H_2C=CH(CH_2)_8$	Α	24	68	92 (66:34): 8 (79:21)
10	$H_2C=CH(CH_2)_8$	\mathbf{B}^{f}	25	75	18:99 (53:47)
13	c-C ₆ H ₁₁	А	50	76	92 (80:20): 8 (28:72)
14	$c - C_6 H_{11}$	\mathbf{B}^{f}	26	79	$2^{g}:98(30:70)$
15	(Me) ₃ C	А	31	60	$89(18:82):11^{g}$
16	(Me) ₃ C	\mathbf{B}^{e}	24	38	31 (37:63):69 (76:24)

^{*a*} The allylation of **2** (1 mmol) by **1** (X = Br, 2 mmol) was carried out with SnBr₂ (2 mmol) at 25 °C in CH₂Cl₂–H₂O (1:1, 6 ml). ^{*b*} A: Without TBA. B: After the solution of **1** and SnBr₂ was stirred with TBA (1 mmol) for 2 h, **2** was added. ^{*c*} Isolated yields. ^{*d*} The ratio was determined by ¹H NMR (JEOL GX-270) and by GC (capillary column PEG 20M, 0.25 mm × 30 m). ^{*e*} H₂O (6 ml) was used as a solvent. ^{*f*} CH₂Cl₂ (1 ml) and H₂O (5 ml) were used as solvents. ^{*s*} The ratio (*E*:*Z* or *syn: anti*) was not confirmed.

 α -regioselection of aliphatic aldehydes was not much influenced by reaction temperature.

Received, 26th April 1995; Com. 5/02656C

Footnotes

† Ultrasonic irradiation improved the α-regioselective allylation: the reaction of (*E*)-but-2-en-1-ol and benzaldehyde in diethyl ether produced the allylated regioisomers in 76% yield. However, the α-regioselectivity (α : γ = 75:25) was lower than that (α : γ = 94:6) without ultrasonic irradiation.⁷

‡ A typical procedure for the α-regioselective carbonyl allylation by 1-bromobut-2-ene with tin(II) bromide is as follows. To a solution of tin(II) bromide (0.56 g, 2 mmol) in dichloromethane (3 ml) and water (3 ml) were added heptanal (0.11 g, 1 mmol) and 1-bromobut-2-ene (0.27 g, 2 mmol). The solution was vigorously stirred at 25 °C for 75 h under a nitrogen atmosphere, then poured into water (30 ml) and extracted with diethyl ether–dichloromethane (2:1, 100 ml). The extract was washed first with water and then with brine, and was dried over MgSO₄. Evaporation of solvents and purification by preparative TLC (Harrison centrifugal thinlayer chromatotron; Merck Kiesel-gel 60 PF₂₅₄ Art. 7749; hexane:ethyl acetate = 10:1) and/or HPLC (Japan Analytical Industry Co., Ltd. LC-908; JAIGEL-2H; chloroform) afforded a mixture of undec-2-en-5-ol (α-adduct) and 3-methyldec-1-en-4-ol (γ-adduct) (0.17 g, 98%, α:γ = 87:13) as a colourless oil. 1-Bromobut-2-ene (1, X = Br, E:Z=85:15), purchased from Tokyo Chemical Industry Co., Ltd., contains 14% 3-bromobut-1-ene.

¶ The allylation of heptanal by 1-bromobut-2-ene (1, X = Br) with tin(II) bromide at 25 °C in 1,3-dimethylimidazolidin-2-one (DMI) for 22 h gave 3 (α : γ = 20:80) in 74% yield.⁸

References

- 1 For a review, see: Y. Yamamoto and N. Asao, *Chem. Rev.*, 1993, 93, 2207.
- 2 Y. Yamamoto and K. Maruyama, J. Org. Chem., 1983, 48, 1564.
- 3 A. Yanagisawa, S. Habaue, K. Yasue and H. Yamamoto, J. Am. Chem. Soc., 1994, **116**, 6130.
- 4 Y. Masuyama, J. Synth. Org. Chem., Jpn., 1992, 50, 202; Y. Masuyama, in Advances in Metal–Organic Chemistry, ed. L. S. Liebeskind, JAI Press, Greenwich, 1994, vol. 3, pp. 255–303.
- 5 For an example of carbonyl allylation by allylic bromides with tin that proceeds smoothly on a two-phase (diethyl ether-water) system, see: J. Nokami, J. Otera, T. Sudo and R. Okawara, *Organometallics*, 1983, 2, 191.
- 6 Y. Masuyama, J. Nakata and Y. Kurusu, J. Chem. Soc., Perkin Trans. 1, 1991, 2598.
- 7 Y. Masuyama, A. Hayakawa, M. Kishida and Y. Kurusu, *Inorg. Chim. Acta*, 1994, **220**, 155.
- 8 A. Gambaro, V. Perruzo, G. Plazzogna and G. Tagliavini, J. Organomet. Chem., 1980, 197, 45; T. Mukaiyama, T. Harada and S. Shoda, Chem. Lett., 1980, 1507.