Tetrahedron Letters, Vol.23, No.22, pp 2293-2296, 1982 0040-4039/82/222293-04\$03.00/0 Printed in Great Britain ©1982 Pergamon Press Ltd.

TOTAL SYNTHESIS OF THIENAMYCIN: A NEW APPROACH FROM ASPARTIC ACID

Paul J. Reider* and Edward J.J. Grabowski Merck Sharp & Dohme Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065

<u>Summary</u>: A practical stereospecific synthesis of thienamycin <u>1</u> has been achieved. Key steps include a lead tetraacetate oxidative decarboxylation and subsequent insertion of a four carbon diazo containing unit into a 4-acetoxy-2-azetidinone.

Recently, Salzmann <u>et al</u>.¹ have reported a synthesis of thienamycin (<u>1</u>) in which the chirality at C_5 was derived from L-aspartic acid (<u>2</u>).

Their route entailed the formation of a chiral azetidinone benzyl ester $(\underline{3})$ which was further elaborated to give the diazoester 10A.

In order to avoid breaking any bonds to C_5 and to maintain the original chiral center, it was necessary to introduce C_3 and then C_2-C_{10} (see structure <u>1</u>) via an elaborate and somewhat lengthy series of reactions. We wish to report a simple, more direct synthesis starting from the same azetidinone 3.

Our approach (see Scheme I) involves the elaboration of the hydroxyethyl side chain² on the diamion <u>6</u> followed by conversion of the carboxyl group into a useable leaving group (acetoxy) by oxidative decarboxylation with lead tetraacetate³. The introduction at C₅ (carbapenem numbering) of a four carbon^{4,5,6} diazo-containing unit in a <u>trans</u>-fashion leads to the properly functionalized azetidinone (<u>10</u>) ready for cyclization⁷ and conversion to thienamycin (<u>1</u>)^{1,8}. Thus, the original chiral center from aspartic acid is used in the diamion <u>6</u> to control the new chirality at the adjacent carbon (C₆) by subsequent formation of the thermodynamically favored <u>trans</u>-keto-acid (<u>8</u>). The stereospecific reduction⁵ of the ketone yields the desired 5S,6S,8R-hydroxy acid (<u>7A</u>). The bond to C₅ can now be broken with a new bond forming in a <u>trans</u>-fashion to reestablish the necessary stereochemistry.

2293

SCHEME 110,11

Thus, the chiral benzyl ester¹ (<u>3</u>) was first protected as its N-t-butyldimethylsilyl derivative (<u>4</u>) and then debenzylated under catalytic conditions to yield the crystalline carboxylic acid <u>5</u> ($[\alpha]_D = -74^\circ$, c = 1, CHCl₃). Treatment of acid <u>5</u> with two equivalents of lithium diisopropylamide at 0°C gave the dianion <u>6</u> which was readily alkylated with acetaldehyde. An acidic work-up provided an epimeric mixture of hydroxy acids (<u>7</u>). Oxidation of these epimeric alcohols (<u>7</u>) gave the keto-acid <u>8</u> as the sole product. Subsequent stereo-specific reduction using the method of Karady⁵ (diisopropylamine-borane, magnesium trifluoro-acetate) gave the crystalline 5S,6S,8R-hydroxy acid <u>7A</u> ([α]_D = -53°, c = 1, CHCl₃).

The oxidative decarboxylation of the free hydroxy acid ($\underline{7A}$) proceeded smoothly to introduce the acetoxy leaving group at C₅ exclusively from the side opposite the hydroxy-ethyl group at C₆. By running this reaction at 70°C the silyl protecting group was also removed to give the enantiomerically pure 5R,6R,8R-hydroxy acetate ($\underline{9}$).

The Lewis acid (ZnI_2) mediated reaction⁶ of acetate <u>9</u> with the silyl enolether of benzyl diazoacetoacetate⁹ resulted in replacement of the C₅ acetoxy group to give specifically the 5R,6S,8R-diazohydroxyketoester <u>10</u> which has been cyclized with rhodium (II) acetate and converted to thienamycin (1)⁵.

This approach significantly shortens the "up-to-now" best published chiral synthesis.

<u>Acknowledgements</u>: We are grateful to Dr. W.B. Caldwell, Mr. R.A. Reamer, Dr. J.M. Stevenson, Mr. S.A. Tomellini, and Mrs. D.L. Zink for analytical support.

References and Notes:

- Salzmann, T.N., Ratcliffe, R., Christensen, B.G., Bouffard, F.A., <u>J. Am. Chem. Soc</u>. 1980, <u>102</u>, 6161.
- 2. Bouffard, F.A. and Christensen, B.G., J. Org. Chem. 1981, 46, 2208.
- 3. a) Kochi, J.K., J. Am. Chem. Soc. 1965, 87, 2500.
- b) Kochi, J.K., <u>J. Org. Chem</u>. 1965, <u>30</u>, 3265.
- 4. Kametani, T., Honda, T., Nakayama, A., Fukumoto, K., <u>Heterocycles</u> 1980, <u>14</u>, 1967.
- 5. Karady, S., Amato, J.S., Reamer, R.A., Weinstock, L.M., <u>J. Am. Chem. Soc</u>. 1981, <u>103</u>, 6765.
- 6. Reider, P.J., Rayford, R., Grabowski, E.J.J., <u>Tetrahedron Lett</u>. 1982, <u>23</u>, 379.
- 7. Ratcliffe, R.W., Salzmann, T.N., Christensen, B.G., Tetrahedron Lett. 1980, 21, 31.
- Melillo, D.G., Shinkai, I., Liu, T., Ryan, K., Sletzinger, M., <u>Tetrahedron Lett</u>. 1980, <u>21</u>, 2783.
- 9. This synthon was prepared from benzyl diazoacetoacetate as described in reference 5.
- 10. a) The hydroxyethyl stereochemistry was assigned by 60 MHz ¹H NMR (cf. ref. 2) specifically the <u>CH</u>₃-C(OH)H- doublet. The <u>8R</u>-diastereomer, in all cases, appeared upfield of the <u>8S</u>-diastereomer in d₆ acetone.
 b) The <u>cis/trans</u> relationship of substituents on the β-lactam (C₅₋₆) was determined by J₅₋₆ in d₆ acetone as in reference 2. The trans substituted systems show J₅₋₆ in a range of 1.5-2.9 Hz while the <u>cis</u> substituted systems show J₅₋₆ in a range of 5-6 Hz.
- 11. Selected data:
 - 4: 60 MHz ¹H NMR (CDCl₃) δ 0.1, 3H (S); 0.25, 3H (S): 0.95, 9H (S): 3.2, 2H (M, <u>ABX</u>); 4.05, 1<u>H</u> (M, <u>ABX</u>); 5.2, 2H (S); 7.35, 5H (S).
 - 5: 60 MHz ¹H NMR (CDCl₃) & 0.2, 3H (S); 0.3, 3H (S); 0.95, 9H (S); 3.3, 2H (M, <u>ABX</u>); 4.1, 1H (M, ABX).
 - <u>7</u>: 200 MHz ¹H NMR (acetone d₆); <u>8R</u> diastereomer (7<u>A</u>) δ 0.14, 3H (S); 0.28, 3H (S);
 0.97, 9H (S); 1.27, 3H (d, J=6.4 Hz); 3.24, 1H (d of d, J=4.5, 2.8 Hz); 4.14, 1H (q of d, J=6.4, 4.5 Hz); 4.19, 1H (d, J=2.8 Hz).
 <u>8S</u> diastereomer δ 0.14, 3H (S); 0.28, 3H (S); 0.97, 9H (S); 1.33, 3H (d, J=6.4 Hz);
 <u>3</u>.32, 1H (d of d, J=3.9, 2.9 Hz); 4.14, 1H (q of d, J=6.4, 3.9 Hz); 4.10, 1H (d, J=2.9 Hz).
 - 8: 60 MHz [⊥]H NMR (CDCl₃) δ 0.33, 6H (S); 0.95, 9H (S); 2.33, 3H (S); 4.37, 1H (d, J=2.5 Hz); 4.50, 1H (d, J=2.5 Hz); 6.83, 1H (broad).
 - 9: 60 MHz ¹H NMR (CDCl₃) δ 1.35, 3H (d, J=6 Hz); 2.1, 3H (S); 3.2, 1H (broad d, J=6 Hz); 3.4, 1H (broad S-<u>OH</u>); 4.2, 1H (quintet, J=6 Hz); 5.85, 1H (broad S); 7.0, 1H (broad S-<u>NH</u>).

(Received in USA 22 March 1982)