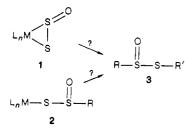
reactivity: we have only observed for 1 behavior of doubly bonded compound and never behavior of germylene Mes₂Ge and phosphinidene ArP, as if the germaniumphosphorus connection was very weak.

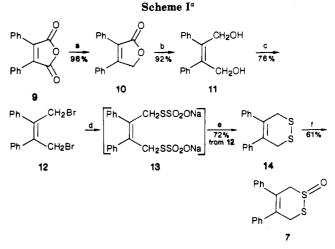
Registry No. 1, 96481-35-5; 2, 96481-37-7; ArP(H)Li, 83115-13-3; 2,4,6-tri-*tert*-butylphenylphosphine, 83115-12-2; dimesityldifluorogermane, 96481-36-6.

Supplementary Material Available: A listing of the hydrogen atom positions (1 page); a listing of structure factor amplitudes (12 pages). Ordering information is given on any current masthead page.

Synthesis of a Stable Disulfur Monoxide Precursor and Trapping of Disulfur Monoxide with Transition-Metal Complexes

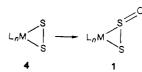

Greg A. Urove and Mark E. Welker*

Department of Chemistry, Wake Forest University Winston-Salem, North Carolina 27109


Received January 21, 1988

Summary: A five-step synthesis of 4,5-diphenyl-3,6-dihydro-1,2-dithiin 1-oxide starting from 2,3-diphenylmaleic anhydride is described. When the dithiin 1-oxide was treated with coordinatively unsaturated transition-metal complexes, a transition-metal disulfur monoxide complex and 2,3-diphenylbutadiene were isolated.

The ability of transition metals to stabilize small, reactive sulfur fragments such as sulfur monoxide (SO),¹ disulfur (S_2) ,² and trisulfur $(S_3)^{2b,3}$ offers chemists a chance to explore the reactivity of these molecules under mild, controlable conditions. Our goal within this active area of research is to synthesize transition-metal complexes containing the disulfur monoxide (S_2O) moiety in a variety of different bonding modes. Only two (1 and 2) of a variety of possibilities are shown below. Our hope is that the complexed S_2O can be used as a template for the synthesis of thiosulfinate esters (3). The thiosulfinate esters (3) have shown interesting biological activities as antibacterials,⁴ antifungals,⁴ plant growth inhibitors,⁵ and platelet aggregation inhibitors.⁶



There are no reports in the literature of transition-metal S_2O complexes obtained through the trapping of S_2O and

 a (a) LiAlH4, Et₂O, -20 °C. (b) LiAlH4, Et₂O, -20 °C. (c) PBr₃, C₆H₆, 25-45 °C, 1 h. (d) Na₂S₂O₃, THF/H₂O, 1:1, reflux, 1.5 h; (e) I₂, reflux, 1 h. (f) mCPBA, CH₂Cl₂, 0-25 °C, 1 h.

few reports of transition-metal S₂O complexes 1 obtained through the oxidation of S₂ complexes 4.^{1,2a,7} The reported mononuclear S₂O complexes are presumed to contain η^2 -S₂O in all cases. Comparatively little is known about the reactivity of S₂O in these complexes. Methylation on oxygen with methyl fluorosulfonate has been reported for an iridium complex.^{7c} Reaction with triphenylphosphine and oxidation of complexed S₂O have also been reported.^{7b,e}

In order to be able to trap S_2O and study its reactivity, a method for clean, reproducible S_2O generation is required. Free disulfur monoxide (5), structurally similar to sulfur dioxide (6),⁸ is an extremely reactive molecule

unless stored at very low pressures in the gas phase.⁹ Disulfur monoxide has been produced in the past for synthetic purposes by the vacuum pyrolysis of SOCl₂ over Ag₂S at 160 °C,¹⁰ by pyrolysis of thiirane 1-oxide,¹¹ and by pyrolysis of a mixture of cupric oxide and sulfur.¹¹ All of these methods produce S₂O which is contaminated to varying degrees with SO₂ and SO, making them impractical as S₂O sources for transition-metal complex trapping studies. We set out to synthesize an air-stable, crystalline compound (7) which we hoped would yield S₂O via a transition-metal-induced retro Diels-Alder reaction.¹²

⁽¹⁾ Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98 and references cited therein.

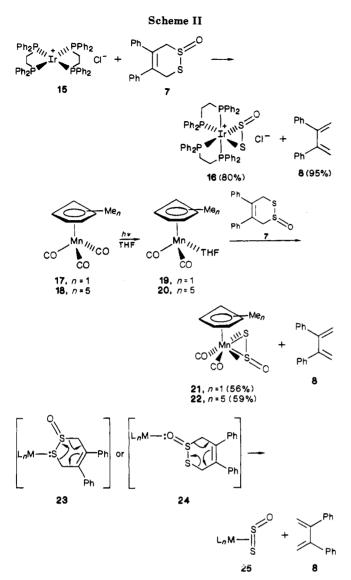
^{(2) (}a) Herberhold, M.; Schmidkonz, B.; Ziegler, M. L.; Zahn, T. Angew. Chem., Int. Ed. Engl. 1985, 24, 515. (b) Herberhold, M.; Reiner, D.; Thewalt, U. Angew. Chem., Int. Ed. Engl. 1983, 22, 1000. (c) Muller, A.; Jaegermann, W.; Enemark, J. H. Coord. Chem. Rev. 1982, 46, 245 and references cited therein.

⁽³⁾ Bolinger, C. M.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1981, 103, 5620.

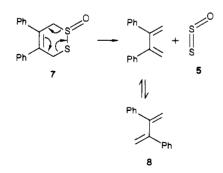
⁽⁴⁾ Cavallito, C. J.; Bailey, J. H. J. Am. Chem. Soc. 1944, 60, 1950, 1952.

⁽⁵⁾ Yanagawa, H.; Kato, T.; Kitahara, Y. Tetrahedron Lett. 1973, 1073.

⁽⁶⁾ Block, E.; Ahmad, S.; Catalfamo, J. L.; Jain, M. K.; Apitz-Castro, R. J. Am. Chem. Soc. 1986, 108, 7045.


^{(7) (}a) Herberhold, M.; Hill, A. F. J. Organomet. Chem. 1986, 309, C29.
(b) Hoots, J. E.; Lesch, D. A.; Rauchfuss, T. B. Inorg. Chem. 1984, 23, 3130.
(c) Hoots, J. E.; Rauchfuss, T. B.; Wilson, S. R. J. Chem. Soc., Chem. Commun. 1983, 1226.
(d) Dirand-Colin, J.; Schappacher, M.; Ricard, L.; Weiss, R. J. Less-Common Met. 1977, 54, 91.
(e) Schmid, G.; Ritter, G., Chem. Ber., 1975, 108, 3008.
(f) Schmid, G.; Ritter, G. Angew. Chem., Int. Ed. Engl. 1975, 14, 645.
(a) Markin D. L. Marris, P. L. Mal. Science, 1970, 2, 400.

⁽⁸⁾ Meschi, D. J.; Meyers, R. J. J. Mol. Spectrosc. 1959, 3, 409.


⁽⁹⁾ For a review of methods used to produce S₂O for spectroscopic studies see: Vasudeva Murthy, A. R.; Narayanan, T. R.; Sharma, D. K. Int. J. Sulfur Chem., Part B 1971, 6, 161.

Int. J. Sulfur Chem., Part B 1971, 6, 161.
 (10) Schenk, P. W.; Steudel, R. Angew. Chem., Int. Ed. Engl. 1964, 3, 61.

⁽¹¹⁾ Dodson, R. M.; Srinivasan, V.; Sharma, K. S.; Sauers, R. F. J. Org. Chem. 1972, 37, 2367.

4,5-Diphenyl-3,6-dihydro-1,2-dithiin 1-oxide (7) has been synthesized once previously in five steps (2% overall yield) and was reported to "decompose on drying in vacuo at 80 °C".¹¹ This decomposition presumably yielded S_2O (5) and 2,3-diphenylbutadiene (8).

Our synthesis of 4,5-diphenyl-3,6-dihydro-1,2-dithiin 1-oxide (7) (Scheme I) begins with a stepwise reduction of 2,3-diphenylmaleic anhydride $(9)^{13}$ to yield (Z)-2,3-diphenyl-2-butene-1,4-diol (11).¹⁴ Diol (11) was then treated with PBr₃ to yield (Z)-1,4-dibromo-2,3-diphenyl-2-butene (12).¹¹ Dibromide (12) was then treated with an excess of sodium thiosulfate which presumably reacted to form the Bunte salt (13).¹⁵ This Bunte salt (13) was not isolated but was subjected to an oxidative workup (I₂) to yield 4,5-diphenyl-3,6-dihydro-1,2-dithiin (14).¹¹ Dithiin (14) was then oxidized (mCPBA) to 4,5-diphenyl-3,6-dihydro-1,2-dithiin 1-oxide (7).¹¹ This scheme provided dithiin 1-oxide (7) on a 10-mmol scale in five steps in 30% overall yield. This synthesis is potentially modifiable in that the phenyl substituents could be replaced by sterically larger or smaller substituents to accelerate or inhibit S₂O liberation.

With a likely S_2O precursor in hand, we sought to test the feasibility of using a transition-metal complex to both induce liberation of S_2O and trap the S_2O after liberation (Scheme II). When dithiin 1-oxide (7) was added to a solution of the coordinatively unsaturated iridium complex 15,¹⁶ a rapid reaction occurred to yield the iridium S_2O complex 16 and 2,3-diphenylbutadiene (8) (identified by spectral comparison to an authentic sample).¹⁷ Iridium S_2O complex 16 was identical by spectroscopic comparison with the complex synthesized previously by oxidation of the corresponding S_2 complex.^{7b,e} We have also treated $Me_nCpMn(CO)_2(THF)$ (n = 1, 19; n = 5, 20) with dithiin 1-oxide (7) to yield the red $Me_nCpMn(CO)_2(S_2O)$ complexes (n = 1, 21; n = 5, 22). All spectroscopic characteristics of these manganese S_2O complexes were analogous to those reported previously for the η^2 -S₂O complex 22, synthesized by oxidation of the S_2 complex and characterized crystallographically.^{2a} We propose that these reactions are transition-metal-assisted retro Diels-Alder reactions, proceeding through intermediates such as 23 or 24 where the dithiin 1-oxide (7) serves as a two-electrondonor ligand prior to bond cleavage.¹⁸

Future efforts will be directed toward the synthesis of S_2O complexes containing S_2O in other bonding modes and applications of transition-metal S_2O complexes in the synthesis of thiosulfinate esters.

Acknowledgment. This investigation was supported by the Research Corp., the North Carolina Board of Science and Technology, and a NIH New Basic Research Support Grant (2SO7RR07230-02) administered by Wake Forest University. We thank Professor Daniel F. Harvey for a helpful early discussion of this work.

Supplementary Material Available: Complete experimental details for the syntheses of 7 and 16 (4 pages). Ordering information is given on any current masthead page.

⁽¹²⁾ Use of a retro Diels-Alder reaction for the production of singlet oxygen^{12a} and singlet sulfur^{12b} has been reported: (a) Wasserman, H. H.; Scheffer, J. R., Cooper, J. L. J. Am. Chem. Soc. **1972**, 94, 4991. (b) Ando, W.; Sonolse, H.; Akasaka, T. Tetrahedron Lett. **1987**, 28, 6653.

^{(13) 2,3-}Diphenylmaleic anhydride is commercially available (Aldrich Chemical Co.), but it can also be synthesized by a simple two-step procedure from benzyl cyanide: Weinberg, J. S.; Miller, A. J. Org. Chem. 1979, 44, 4722.

⁽¹⁴⁾ Tsuji, J.; Nogi, T. J. Am. Chem. Soc. 1966, 88, 1289.

 ⁽¹⁵⁾ Westlake, H. E.; Dougherty, G. J. Am. Chem. Soc. 1942, 64, 149.
 (16) (a) Vaska, L.; Catone, D. L. J. Am. Chem. Soc. 1966, 88, 5324. (b)

^{(16) (}a) Vaska, L.; Catone, D. L. J. Am. Chem. Soc. 1966, 88, 5324. (b) Sacco, A.; Rossi, M.; Nobile, C. F. J. Chem. Soc., Chem. Commun. 1966, 589.

⁽¹⁷⁾ Allen, C. F. H.; Eliot, C. G.; Bell, A. Can. J. Res., Sect. B 1939, 17, 75.

⁽¹⁸⁾ For one other example of a transition-metal-assisted retro Diels-Alder reaction see: (a) Marinetti, A.; Mathey, F. J. Am. Chem. Soc. 1982, 104, 4484. (b) Marinetti, A.; Mathey, F. Organometallics 1982, 1, 1488.