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Abstract - High-pressure (2+2)cycloaddition of toluene-4-sulphonyl isocyanate 
to glycals is examined. Reactions proceed regiospecifically to afford single 
products in case of all 3-substituted glycals. Upon heating or even after 
standing at room temperature adducts undergo retro-addition to give starting 
glycals. Various aspects of the cycloaddition are discussed, especially ret- 
ro-reaction and rearrangement of B-lactams to a,S-unsaturated amides. 

Recentlywe have reported on high-pressure ~2t2)cycloaddition of toluene-4-sulphonyl isocyanate to 

glycals 1 - &.l The reaction proceeds regio- and stereospecifically to afford a B-lactam ring in po- 

sition trans to the acetoxy group at C-3 of the glycal moiety (5 - 8). Owing to the enol ether stru- 

cture of glycals, cycloaddition offers an approach to various g-lactams, particularly to oxapenams 

and oxacephams. 

Owing to the stereospecificity of the reaction, glycals of D-series 1. and 2 lead to S-configura- 

tion at the carbon atom attached to the nitrogen and oxygen atom, whereas glycals of L-series 3 and 

i lead to R-configuration at the C-l carbon atom. This offers stereocontrol in formation of an appro 

priate configuration at the carbon atom crucial for the biological activity of f3-lactam antibiotics. 

Cycloaddition of tosyl isocyanate to dihydropyran 2 at low temperature ('LOOC) and atmospheric 

pressure leads to formation of bicyclic f3-lactam 15. Elevation of the temperature of cycloaddition - 
2 

causes a rearrangement of the four-membered ring to open-chain amide 21. Recently Barrett et al. 
3 

- 

have found that 2,2,2-trichloroethylsulphonyl, 2,2,2-trichloroethoxysulphonyl and trifluoroacetyl 

isocyanate react with dihydropyran 2 to give unsaturated amides 19 - 2. no B-lactam being isolated 

in all three cases. Similar results have been reported by Chan and Hall4 for the addition of tosyl 

isocyanate to dihydropyrans 12 - 14. The 5-substituted dihydropyrans 2 and 11 have, however, been - - 

found to react with trifluoroacetyl isocyanate to give the expected S-lactams 16 and l7, respecti- 

vely, obtained after cleavage of the trifluoroacetyl group with silica-gel. 
3 

Attempts at adding chlorosulphonyl isocyanate to glucal 1 have failed to give the expected !3-let- 

tam; isocyanate acted only as a Lewis acid, causing the known dimerisation of the sugar substrate. 
5 

The aim of the present 

isocyanate to glycals, as 

synthetized. Therefore we 

22 -3. - 

work was to elucidate the stereochemistry of (2+2)cycloaddition of tosyl 

well as to interpret the chemical properties of the bicyclic B-lactams 

selected a wide and representative group of glycals. namely 1 - 5 and 

RESULTS AND DISCUSSION 

All cycloadditions. except that to 23, were performed in absolute ethyl ether either at room tem- 

perature or at SO'C, under 10 - 11 kbar pressure. Cycloaddition to glycals 1. 3. A, 21. 23, 25 and 

27_ proceeded with formation of products which crystallized from the post-reaction mixture, vhereas 
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the products derived from galactal (2) and silylated glucal (24) were obtained as crude syrups. 4.6- 

0-Benzylideneglucal 26 was unreactive under these conditions. 

Cycloadditions proceeded regiospecifically. yielding a single isomer 2, 6, 1 and 30 as a result 

of addition to glycals l_, 2, 3 and 24, respectively, whereas in case of an addition to rhamnal 3 

both isomeric products were obtained with substantial predominance of s (95%) over the alternative 

2. Stereoselectivity of cycloaddition to 3-deoxyglycals 2, 23 and 25 was relatively low (cf. Ex- - - 

perimental, Table 5), and therefore the respective mixtures of diastereoisomers 28 32. 29 33. 3& _I _* _* -* 

35 were obtained. Owing to the instability of all B-lactams obtained, the mixtures of diastereoiso- - 

mers could not be separated into pure components. The approximate ratios of isomeric g-lactams were 

determined from the ‘H NMR spectra of the crystalline materials isolated (cf. Experimental, Table 5). 

Cycloadducts 6 and 30 were characterized as crude products after careful evaporation of solvent. - 

All post-reaction mixtures obtained at room temperature contained traces of starting materials 

(TLC). In case of cycloaddition to 2, the product 1 was contaminated also with a minute amount of 

more polar compound 37 which was isolated by chromatography from the mother liquor after separation - 

of crystalline g-lactam, and it was characterized as 3-N-tosylcarbamoyl xylal. Raising of the tem- 

perature of high-pressure experiments to 50°C, followed by cooling of the reaction vessel to 

room temperature before decompression, increased the yield of cycloaddition. However, all reaction 

mixtures were contaminated with the respective a,&unsaturated amides (5-10X); one of which (8) was 

isolated by chromatography and identified. Elevation of the temperature of cycloaddition to 2. cau- 

sed a significant shift of the reaction towards amide 2. 

Alla1 21 did not react with the isocyanate at room temperature, whereas at 50°C amide 39 was ob- - 

tained as the unique product. 

The gross structure of products 2 - 8 and 28 - 39 was determined from the ‘H and - 13C NMR spectra 

(Tables 1 and 2). For assignment of the l3 C NMR signals to appropriate carbon atoms of Blactams, 

we examined the respective data of starting glycals (Table 3). There is no, however, direct simila- 

rity between these two sets of spectral data. The upfield shift of C-3, C-4 and C-5 resonances can 

be explained by introduction of a four-membered ring into the molecule and by changes in the confor- 

mation of the pyranoid ring, which were also exhibited by the values of vicinal coupling constants 

(Table 1). 

The (2+2)cycloaddition of tosyl isocyanate to glycals is probably a pseudo-concerted reaction6 

(Scheme 1). 

Scheme 1 

The presence of an a-substituent at the C-3 carbon atom greatly helps to specify the diastereofa- 

cedifferentiation of the double bond inglycals. The isocyanate enters preferentially trans with 

respect to the acetoxy group at C-3. This is well expressed by the high stereoselectivity of cyclo- 

addition to glycals 1. - 5 and 24. The high stereoslectivity observed could, however, be the result 

of the lower stability of one diastereoisomer over the alternative one: in all reactions, the star- 

ting glycal was detected in the post-reaction mixture (TLC), although an excess of the isocyanate 

was used. 3-Deoxyglycals 2. 23 and 25 exhibited lower diastereofacedifferentiation, and thus affor- - 

ded a mixture of products, with predominance of the adduct resulting from trans approach of the iso- 

cyanate with respect to the terminal oxymethyl group. 

All g-lactams 5 - g, l5, 28 - 35, treated with methanol at room temperature, undergo a rapid ope- 

ning of the four-membered ring to give the respective glycosides 40 - B. The opening of the g-lac- - 
tam ring proceeded stereospecifically with inversion of the configuration at the C-l carbon atom. 
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Table 1. 
1 
H NMR data for B-lactams 2 - 2 and 28 - 35 

Comp . H-l H-2 H-3 H-4 H-5 H-6 J12 J23 
H-3’ H-6’ 

‘23’ ‘34 ‘3’4 ‘45 

2 

6 
1 

8 
28 

22 

30 

31 - 

32 

33 - 

34 - 

35 - 

5.88 3.55 5.27 4.91 3.67 4.01 6.2 3.1 - 5.6 - 7.7 
4.20 

J24=1.3, J56-4.4, 
J66,-14.5 

J56,=6.7, 

6.03 3.40 a a a a 5.3 5.3 - a - a 

5.84 3.51 5.26 4.90 3.48 - 6.2 2.7 - 5.9 - 
3.97 

::; J24=1 .3 

5.85 3.52 5.22 4.71 3.48 1.12 5.3 2.4 - 5.4 - 7.5 J24=0.9, J56=7.2 

5.00 3.35 2.00 4.87 3.67 4.16 5.5 6.1 2.6 4.2 3.5 3.3 
2.30 

IJ~~+J~~, [=a.3 

5.77 3.31 a a 3.73 3.97 5.4 4.1 8.5 a a b 
4.05 

J56=4.5, J56,=5.8 

5.76 3.24 4.11 3.77 3.52 3.56 5.8 3.3 - 2.9 - 2.0 
3.67 

J24-;95; J56=7.9, J56,=6.0, 

J66’ * 
5.68 3.91 5.08 4.85 3.74 1.21 4.7 a.4 - 7.5 - 7.4 J56=6.6 

5.57 3.43 a 4.94 3.80 ;.y; 4.6 /J23+J23,1 p34+J3,d 4.0 J56=5.3, J56,=4.1, J66,=12.1 

=16.7 -9.4 

5.69 3.40 a a a 3.83 5.6 2.0 6.8 a a a 
3.88 

J24=l .O 

5.77 3.32 2.05 a a 3.61 5.4 11.1 7.1 4.8 12.5 a 
2.37 4.00 

5.79 3.25 1.86 a a 4.23 4.8 8.8 6.9 3.7 11.6 a J33,=11.6, J35=2.2 

a 
not resolved or too complex for analysis; b )J45+J4.51=12.4 

Table 2. 13C NMR data for adducts 5 - 3, 28, 2, 22 - 35, 37 (CDc13) and Is, IS (DM%-d6) 

c-1. 80.42 80.29 79.91 80.99 89.48 165.53 80.24 al.19 80.31 80.31 79.78 160.62 

C-2 51.78 49.79 51.36 52.47 46.53 108.00 45.63 45.97 48.81 45.22 48.80 103.84 

C-3 66.86 65.48 66.42 66.77 23.79 20.65 23.41 21.43 a 23.68 a 64.48 

C-4 66.65 62.86 65.37 72.04 18.44 18.60 66.50 16.82 a 73.21 73.60 64.42 

C-5 69.49 68.72 60.72 67.40 57.94 66.50 71.89 67.43 66.59 64.11 a 61.38 

C-6 62.71 61.58 - la.22 - - 64.26 65.91 65.81 68.58 a - 

a 
not visible or overlaped by absorptions of a major isomer 

Table 3. 13C NMR data for glycals L- 4, 2, 22, 23, 25 - 21 (CDc13) - 

C-l 145.71 145.46 148.04 146.00 144.50 142.71 143.38 143.14 145.42 147.35 

c-2 99.07 98.92 97.42 98.85 100.60 97.75 100.52 98.66 100.79 98.43 

c-3 67.48* 63.81* 67.22 68.33 23.20 25.68 24.27 26.37 68.90* 62.01 

c-4 67.28* 63.95* 63.62* 72.55* 19.90 65.69 19.21 75.11 77.01 76.05 

c-5 74.04 72.84 63.47* 71.88* 65.80 73.96 72.72 69.97* 68.31* 64.93 

C-6 61.40 61.95 - 16.56 - 62.41 66.23 68.99 68.90 68.60 

* 
assignments may be reversed 
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Thespectral data of the glycosides @ - 49 (Table 4) help to prove the configuration of bicyclic 

B-lactams. 

It is well known that high pressure accelerates the rate of reactions characterized by a negative 

activation volume, and greatly enhances the stereoselectivity , whereas it retards the retro-reaction 

For (2+2)cycloaddition, the activation volume varies from -30 to -50 cm3/mol, and this forecasts a 

significant acceleration of the reaction by high pressure. 
7 

Table 4. ‘H NMR data for compounds 37 - 49 

Comp . H-l H-2 H-3 H-4 H-5 H-6 J12 
H-3’ H-6 V 

‘23 ‘23’ ‘34 J45 

37 

38 - 

39 

40 - 

41 

42 - 

43 

44 - 

cs 

46 - 

47 - 

48 

49 - 

7.97 5.51 5.08 4.49 - - - - - s 
4.20 

7.85 - - - - 5.66 5.23 4.59 4.14 a 
4.35 

7.71 - - - - 5.69 3.89 4.36 3.04 3.4 
4.54 

4.51 2.80 5.47 4.99 3.74 4.17 8.3 10.7 - 9.1 
4.37 

4.44 2.85 a a 3.86 a 8.2 10.8 - a 

4.12 2.70 5.43 4.97 a - 7.6 10.0 - 9.5 

4.46 2.75 5.46 4.74 3.61 1.23 8.4 10.6 - 9.0 

4.30 2.52 1.72 4.71 3.62 4.15 8.4 13.0 4.3 11.1 
2.32 4.23 5.1 

4.25 2.22 a a 3.61 4.06 8.6 12.4 4.3 a 
4.13 

4.80 2.50 a a 4.02 4.10 0 C]JI=10.9 a 
4.18 

4.42 2.51 1.99 3.55 3.38 3.75 8.5 12.2 4.2 11.7 
2.25 4.28 4.5 

4.85 2.82 2.15 3.69 3.83 3.74 0 5.0 3.0 9.9 
4.22 6.2 

4.72 2.45 3.04 4.51 ‘L 3.8 8.0 1.0 - 3.5 

a J55,=12.5 

a 

10.6 J13=0, J56=10.6, JS6,=5.4, 
J66,=10.7 

9.0 

a 

5.3 
9.0 

9.1 

10.0 

2.0 
11.5 

3.4 
11.5 

9.2 

10.1 

0 

J s-13.6, JS6=2.5, JS6,=5.3, 
J$=12.6 

J56=4.0, JS6,=6.5, J66,=11.9 

J33,-13.0, JS6=10.4, JS6’=5.0, 

J66’ 510.8 

J56-10.1, JS6,=4.6, .J66.=10.5 

a not resolved or to complex for analysis 

Upon heating or even after standing at room temperature, adducts 2 - 8. _zfi - 30 and 34 underwent 

retro-addition to afford the starting glycala. This fact explains why f3-lactams could not be obtai- 

ned from glycals and isocyanates under thermal conditions. Moreover, this observation shows that the 

high-pressure technique not only accelerates the reaction rate but also allows to obtain compounds 
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thermodynamically forbidden at normal pressure. This phenomenon has earlier been observed by one of 

us for (4+2)cycloaddition. 
8 

The rearrangement of the g-lactam ring to the a.&unsaturated amide is a very characteristic pro- 

cess. Such a reaction has been recorded as a general behaviour of bicyclic B-lactams derived from 

dihydropyrans 2, 12 - &.2-4 whereas no retro-addition was observed. In case of 6-lactams derived 

from glycals 1. 2, 3, a - 2J, the rearrangement is possible only under high pressure. After decom- 

pression and temperature elevation the retro-process is favoured over the rearrangement, and this 

testifies to a lower energy barrier for the cycloaddition as compared with the rearrangement. The 

competition between retro-addition and rearrangement is closely related to the conformational pro- 

perties of bicyclic f3-lactams, and it deserves additional discussion. 

It can be assumed that the pyranoid ring in adducts 34 and 35 exists in solution as a distorted - - 
4 

Cl chair form owing to the rigid 4,6-O-benzylidene blocking group. This is well supported by the 

values of coupling constants between the pyranoid ring protons. A distortion of the valence and di- 

hedral angles is introduced in a part of the pyranoid ring, which belongs also to the four-membered 

B-lactam system. The conformational model drawn from adducts 34 and 35 is not, however, representa- - 

tive of other bicyclic f3-lactams. Examination of the vicinal coupling constants between pyranoid 

ring protons (Table 1) testifies either to a time-average non-chair conformation of the molecule or 

to an equilibrium of two pseudo half-chair forms (Scheme 2). The ratio of conformers involved in the 

equilibrium depends on the substitution at the C-3 and C-4 carbon atoms. It can be assumed, however, 

that the geometry of the most stable conformation requires an equatorial or pseudo-equatorial posi- 

tion of the C-6 carbon atom, whereas the C-l - N bond occupies a position favoured by the anomeric 

effect. 

The mechanism of the cis-crens isomerisation and of the rearrangement of B-lactams derived from 

enol ethers and tosyl isocyanate to a,6-unsaturated amides has been studied in detail. Effenberger 

et a1.9*10 have postulated the dipolar form as an intermediate (Scheme 3); the same pathway was pro- 

posed for the rearrangement. The dipolar intermediate well explains the isomerisation of simple mo- 

nocyclic B-lactams; however, it does not elucidate the properties of bicyclic B-lactams obtained 

from glycals or dihydropyrans. The rearrangement of the f3-lactam ring is probably an electrocyclic 

process which follows enolization of the f3-lactam ring (Schemes 2 and 3). The occurrence of sp2 hyb- 

ridization in the C-Z carbon atom changes the conformation of the molecule to a distorted chair form 

with an equatorially positioned nitrogen atom. Such a conformation is free from torsional strains, 

leaving only the valence angles distorted in the part of the four-membered ring. In case of bicyclic 

6-lactams having a relative trens-configuration at the C-l and C-5 carbon atoms (5, 6, 8, 2 - 30, 

z), enolization requires a shift of the C-6 carbon atom to the axial position and hence causes a 

1,3-diaxial repulsion between the substituents at the C-3, C-4 and C-5 carbon atoms (Scheme 2). Such 

a conformation fails to be destabilized in case of the cycloadduct derived from xylal 1 (there is no 

1,3-diaxial repulsion between the OAc and CH20Ac group) and of those obtained from unsubstituted di- 

hydropyran E. Adducts with mutual cis-orientation of substituents at C-l and C-5 can be easily 

transformed into an enolic form without inversion of the pyranoid ring. 

Elevation of the temperature of high-pressure experiments before decompression shifts the reac- 

tion to the stage of unsaturated amides, because the retro-reaction is retarded. Alla1 j?J which re- 

acts with tosyl isocyanate at 50°C undergoes cycloaddition trans to the axial acetoxyl at C-3 to af- 

ford 36, followed by a rapid rearrangement to open-chain amide 39 _. This result corresponds well with 

the model proposed above (Scheme 2). Also the shift of the high-pressure reaction from g-lactams to 

unsaturated amides suggests a concerted electrocyclic mechanism of rearrangement rather than one via 

the dipolar intermediate. 

The difference in behaviour between 6-lactams 5, 5, 8, 28 - 30, 3 with a methyl or oxyalkyl sub- 

stituent attached to the pyranoid ring and those without it (7 _, l5), as well as stereospecificity of 

opening of the 6-lactam ring with methanol strongly suggest an absence of the dipolar intermediate 

in both reactions. Such a mechanism involving the enol form as an intermediate can also be proposed 

for the cis Z trans equilibrium in monocyclic g-lactams (Scheme 3). 
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Table5. Analytical data for adducts 2 - 8, a - 35 37 and 39a -*- - 

Substrate Temp. Productsb Yield IR 
oC % cm -1 

1. RT 

r 50 

2 RT 

2 RT 

3 50 

4 RT 

II RT 

16 RT - 

17 RT - 

18 RT - 

20 50 - 

5 
2 
38 - 

a 

I 

21. 
Lv951, X(5) 

2(75), x(25) 

29(65), x(35) 

30 

24(50). X(50) 

39 

43 

59 

Q5 

75 

25 

77 

65 

81 

71 

50 

1800 +80.3O 102-104 

1600, 1695 c c 

1810 c syrup 

1805 -11o.oo 89-90 

1605, 1695 c c 

1805 -110.00 95-97 

1815 c c 

1800 c c 

1810 c syrup 

1810 c c 

1605, 1695 +77.8O 98-101 

_ 

a elemental analysis of compounds shown in this table are not consistent due to the instability of 

material obtained 

b 
ratios of isomers given in 

c 
crude product or a mixture 

brackets are taken from the 'H NMR spectra 

of products 

Table 6. Analytical data for compounds 40 - 49 

Substrate Product (aI" IR M.P. Molecular Elemental analysis 

c=l, CHCl -1 Calcd. Found 
3 

cm oc formula 
CX H% NX C% HX NW 

40 - 

41 - 

42 

43 - 

44 - 

45.46 

49 

47 - 

48 - 

+45.oo 

+16.60 

-29.2' 

-60.60 

+5.6' 

-7.Z" 

-10.50 

+42.4O 

3370, 1750 92-93 Czl"z7OllNS 50.3 5.4 2.8 a a a 

3360, 1750 61-65 C2l"ZPllNS 50.3 5.4 2.8 49.7 5.5 2.8 

3370, 1755 79-82 C18"2309NS 50.3 5.4 3.3 50.0 5.4 3.4 

3380, 1755 58-60 C19H2509NS 51.5 5.7 3.2 51.4 5.8 3.2 

3240, 1740 49-54 C19H2509NS 51.5 5.7 3.2 a a a 

3240, 1740 C17H2307NS 53.0 6.0 3.6 a a a 

3240, 1730 93-98 C33H6308NSSi3 55.2 8.8 1.9 55.0 9.1 2.0 

3240, 1725 167-169 C22H2507NS 59.0 5.6 3.1 59.1 s.7 3.3 

3250, 1725 219-221 C22H25O7NS 59.0 5.6 3.1 58.7 5.7 3.5 

a samples of 40, 44 and the mixture of 45 and 46 obtained from different experiments and which ve- - - 

re identical (TLC, IR and lH NMR data) gave inconsistent elemental analyses 
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EXPERIMENTAL 

Melting points are uncorrected. ‘H NMR spectra were recorded for CDClr solutions with a Jeol 
JNM-4H-100, Bruker WH-270 or Bruker WM-500 spectrometer (6 scale, ‘I%=0 ppm). ‘? NMR spectra were 
obtained on a Varian CFT 20 spectrometer. Optical rotations were measured with a Perkin-Elmer 141 
spectropolarimeter. IR spectra were recorded on a Beckman 4240 spectrophotometer. Gravity column 
chromatography was performed on Merck Kieselgel 60 (230-400 mesh). TLC was performed on Merck DC 
Alufolien Kieselgel 6OF-254. 

A mixture of diastereoisomers 29 and 33 were obtained according to the procedure described ear- 
lier.’ 

General method of the high-pressure cycloaddition. Reactions between glycals 1 - 5, 2, 24 - z 
and toluene-4-suluhonvl isocvanate were carried out for 18 - 20 h in absolute ethvl ether as solvent. 
at room or 50°C temperature under 10 - 11 kbar. The reaction mixture: 1 mm01 of glycal, 1.5 mm01 of 
the isocyanate and 2.5 ml of ethyl ether was placed in a Teflon ampoule which was inserted into the 
high-pressure vessel filled with hexane as a transmission medium. After decompression, the mixture 
was diluted with absolute ethyl ether (10 ml), dry pentane was added until the solution became clou- 
dy, and then it was left at refrigerator overnight. The crystalline cycloadduct precipitated from 
the post-reaction mixture, was isolated by filtration and characterized as crude solid (Table 5). 
Ratios of diastereoisomers were determined from the rH NMR spectra. 

General method of methanolysis of the bicyclic B-lactams. A bicyclic 8-lactam (0.5 mmol) was tre- 
ated with 5 ml of methanol and left at room temperature for 1 h. Subsequently the solvent was evapo- 
rated and the product was purified by chromatography to give the appropriate methyl glycoside in 
about 70% yield (Table 6). Diastereoisomeric glycosides 47 and 48 were chromatographically separated - - 
into pure components. 
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