
CHARGE DISPERSAL IN 1- AND 2-ADAMANTYL CATIONS

Cyril A. Grob*, Guangyi Wang and Chengxi Yang

Institut of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.

Abstract: Substituents at the remoter 5-position of 2-adamantyl arylsulfonates control solvolysis rates more strongly than substituents at the 4-position.

As recent studies have shown ¹⁾²⁾, the transmission of inductive substituent effects in carbocations depends not only on direct and through bond distances to the reaction center, but also on a hitherto unrecognized factor, the so-called inductivity ¹⁾. This factor corresponds to the reaction constant ρ_{I} in the Hammett-type equation $\log k/k_{o} = \rho_{I}\delta_{I}^{q}$, where k and k_{o} are the solvolysis rate constants for substituted and unsubstituted reactants, respectively, and δ_{I}^{q} are the respective inductive substituent constants, as derived from the pKa of 4-substituted quinuclidinium ions $\underline{1}^{3)}$.

The observed inductivities for solvolysis of the γ -substituted tosylates $\underline{2}$, $\underline{3}$ and $\underline{4}$ (TsO = p-MeC₆H₄SO₂) in 80% ethanol via the corresponding carbocations $\underline{5}$, $\underline{6}$ and $\underline{7}$ are -2.00, -1.50 and -0.80, respectively ¹⁾. They differ markedly

Table. Yields in % of 2^{e} - and 2^{a} -alcohols <u>16</u> from <u>10</u> in 70% dioxane and retention / inversion (R/I) ratios. In brackets R/I ratios for alcohols <u>15</u> from <u>4</u>.

	alcohols $\frac{16}{2^{e}}$ $R/I 16^{2d}$			
R	Q_d^I	2 ^e	2 ^a	R/I <u>16</u> 2d)
н	0	100	$2^{e} = 2^{a}$	3.17 (3.17) ⁶⁾
CH ₃	0.11	67	33	1.91 (2.85)
Сн ₂ Он	0.62	48	52	0.92
CH ₂ OAC	0.90	52	48	1.1 (2.45)
CH ₂ Br	1.07	46	54	0.85 (2.45)
сооснз	1.69	45	55	0.82 (1.50)
ОН	1.76	53	47	1.1
OAc	2.16	38	62	0.61
Cl	2.51	23	76	0.30 (1.44)
CN	3.06	20	80	0.25 (0.96)

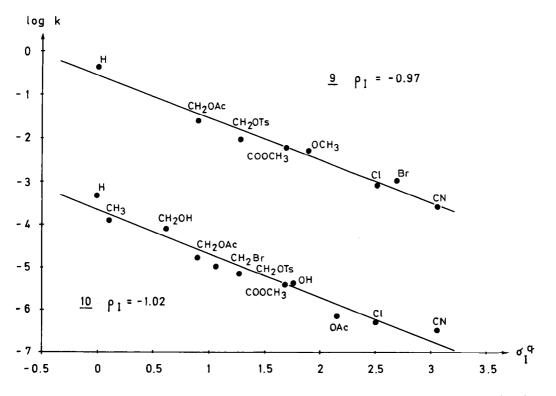
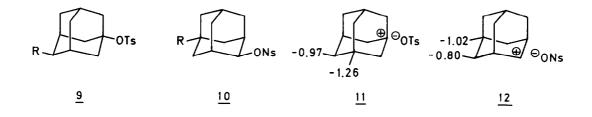
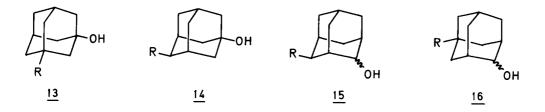




Figure. Plots of log k for <u>9</u> and <u>10</u> in 80% ethanol vs. inductive substituent constants $\delta^{\rm q}_{\rm I}$ at 70°.

although the direct and through bond distances are the same. It was, therefore, concluded, that local polarisability is determined by the structure of the whole molecule. The small inductivity of $\underline{4} (\rho_{\rm I} = -0.80)$ compared to that of the γ -substituted 1-adamantyl tosylates $\underline{8} (\rho_{\rm I} = -1.26)^{2\rm b}$ is particularly striking, since relevant distances are the same (Ca. 2.5 Å). It therefore became of interest to measure the $\rho_{\rm I}$ values of their δ -substituted counterparts 9 and 10, in which the direct distances (ca. 3.0 Å) are distinctly larger than in $\underline{4}$ and $\underline{8}$. Since the secondary tosylates $\underline{4}$ and $\underline{10}$ react too slowly to allow measurement of a wider range of substituents, the corresponding nisylates (NsO = p-NO₂C₆H₄SO₂) were employed, previous work having shown that their $g_{\rm I}$ values do not differ significantly $^{2\rm d}$.

The plots in the Figure show that the logarithms of the rate constants (log k) in 80% ethanol correlate linearly with the respective δ_{I}^{q} values, thereby confirming the dominance of the I effect. The ρ_{I} values for 9 and 10 of -0.97 and -1.02, respectively, are equal within the error limit of the method. Formulas 11 and 12 summarize the ρ_{I} values for ionization of the γ - and δ -substituted adamantyl arylsulfonates. The shorter α, γ distance in 11 accounts for the higher inductivity of the γ -position. In 12, however, inductivity is higher for the more remote δ -position, which is contrary to current views on the transmission of polar effects in saturated molecules ⁴.

Hydrolysis of the tertiary tosylates $\underline{8}$ and $\underline{9}$ in 70% dioxane yields the respective tertiary alcohols $\underline{13}$ and $\underline{14}$ only. On the other hand the secondary nisylates $\underline{4}$ and $\underline{10}$ hydrolyze to a mixture of epimeric 2^{e} - and 2^{a} -adamantanols 5^{i} $\underline{15}$ and $\underline{16}$, respectively, i.e. with retention and inversion of configuration at C2 (Table). In agreement with the higher inductivity of the δ position in the cation <u>12</u>, the retention to inversion (R/I) ratio decreases sharply from 3.17 for R=H to 0.25 for R=CN, i.e. by a factor of ca. 13, whereas the corresponding reduction for the γ position in <u>12</u> is only 3.3 ^{2d)}.

These results support our conclusion that $\rho_{\rm I}$ values, as well as the configuration of solvolysis products, reflect the degree to which neighboring carbon atoms bridge the cationic center in cations such as 5, 6 and 7¹⁾²⁾. But the striking feature of the 2-adamantyl cation 12 is that the **b** interaction is stronger than the γ interaction. The low $\rho_{\rm I}$ value of -0.80 in the latter case is possibly related to the fact that direct induction involves only the periphery of the molecule, i.e. a region of low electron density.

The above results also confirm le Noble's recent observation ⁹⁾ that the stereochemical outcome of reactions via 2-adamantyl cations is controlled by the polarity of substituents at C5. But his conclusion that the latter affect the σ delocalization or hyperconjugation of dorsal $\beta\gamma$ bonds in the cation <u>12</u> conflicts with the observed lower inductivity of the γ carbon C4 compared to that of the δ carbon C5.

REFERENCES

- 1) see review, C.A. Grob, Acc. Chem. Res. 1983, 16, 426.
- 2) a) W. Fischer, C.A. Grob, R. Hanreich, G. von Sprecher, A. Waldner, Helv. Chim. Acta <u>1981</u>, <u>64</u>, 2298; b) C.A. Grob, B. Schaub, ibid <u>1982</u>, <u>65</u>, 1720;
 c) C.A. Grob, P. Sawlewicz, ibid <u>1984</u>, <u>67</u>, 1906; d) C.A. Grob, G. Wittwer, K. Rama Rao, ibid. <u>1985</u>, <u>68</u>, 651; e) R. Bielmann, C.A. Grob, D. Küry, G.W. Yao, ibid. <u>1985</u>, <u>68</u>, 2158.
- 3) C.A. Grob, M.G. Schlageter, B. Schaub, Helv. Chim. Acta 1980, 63, 47.
- L.M. Stock, J. Chem. Educ. <u>1972</u>, <u>49</u>, 400: W.F. Reynolds in "Progress in Phys. org. Chem., <u>1983</u>, Vol. 14, 165.
- 5) The superscrips e and a denote the equatorial and axial positions, respectively, of the hydroxy group relative to the R-bearing ring.
- 6) J.E. Nordlander, J.E. Haky, J. Am. Chem. Soc. 1981, 103, 1518.
- 7) In the present context the term bridging is used to describe a weaker than normal bonding interaction between the cationic center of a carbocation and neighboring carbon atoms. As in other cases of neighboring group participation⁸⁾ bridging affects the rate and the stereochemical outcome of substitution reactions.
- B. Capon, S.P. McManus, "Neighboring Group Participation", Vol. <u>1</u>, Plenum Press, New York 1976.
- 9) C.K. Cheung, L.T. Tseng, M.H. Lin, S. Stivastava, W.J. le Noble, J. Am. Chem. Soc. <u>1986</u>, <u>108</u>, 1598.

(Received in Germany 16 December 1986)

1250