The Direct Synthesis of Methyl 2,4-Di-O-benzyl-a-D-xylopyranoside by the Regiospecific Benzylation of Methyl a-D-Xylopyranoside

Naohiko Morishima, Shinkiti Koto,* Chiharu Kusuhara, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received May 30, 1981)

Synopsis. The regiospecific benzylation of methyl α -D-xylopyranoside with benzyl chloride and sodium hydride produces methyl 2,4-di-O-benzyl- α -D-xylopyranoside in a 70% yield, together with the by-products, methyl 2,3- and 3,4-di-O-benzyl- α -D-xylopyranosides. The structure of the 2,4-di-O-benzyl derivative was confirmed through the alternative synthesis of the 2,3- and 3,4-di-O-benzyl derivatives via the O-isopropylidene and O-cyclohexylidene derivatives of methyl α -D-xylopyranoside.

Partially benzylated monosaccharide derivatives are important synthetic intermediates, especially in the synthesis of oligosaccharides.¹⁾ Usually, they are prepared via a multi-step sequence of reactions.²⁾ However, the regiospecific benzylation has often been useful for the ready preparation of the partially benzylated derivative of carbohydrates.³⁾ This report will present the direct synthesis of methyl 2,4-di-O-benzyl-α-D-xylopyranoside (3) through the regiospecific benzylation³⁾ of methyl α-D-xylopyranoside (1).

A brief heating of 1 with benzyl chloride containing the stoichiometric amount of sodium hydride, followed by chromatography, furnished crystalline 3 in a 70% yield. Small amounts of two other isomers, 2,3- and 3,4-di-O-benzyl derivatives (2 and 4), were also isolated through the chromatography. This shows that the reactivity of OH-2 and OH-4 is greater than that of OH-3 under such benzylation reactions.⁴⁾ The structure of the main product, 3, was confirmed through the the alternative synthesis of 2 and 4 from 1, as will be described below.

The reaction of 2,2-dimethoxypropane with 1 in N,N-dimethylformamide containing p-toluenesulfonic acid gave the 2,3- and 3,4-O-isopropyridene derivatives (5 and 6); the former predominated. The structure of the isopropylidene derivatives was confirmed by observing the ¹H NMR spectra of their acetates (7 and 8). The isopropylidene derivative, 5, was transformed into 2 via allylation, deisopropylidenation, benzylation, and then deallylation, successively. Another isopropylidene compound, 6, was similarly derived into 4.

Compounds 2 and 4 were also synthesized via the cyclohexylidene derivatives (9 and 10) in essentially the same manner as above: 1,1-dimethoxycyclohexane, with p-toluenesulfonic acid as the catalyst, in N,N-dimethylformamide converted 1 into a mixture of 9 and 10, which were then derived into 2 and 4 respec-

TABLE 1. PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS^{a)}

Compound	R¹	R²	R³	$M_p \theta_m / ^{\circ}C$	$[\alpha]_{\mathrm{D}}^{20}/^{\circ}(c)^{\mathrm{b}}$	Mol. form.	Calcd (%)		Found (%)	
							$\overline{\mathbf{c}}$	H	$\widetilde{\mathbf{c}}$	H
2	Bn	Bn	Н		+22(1.6) ₁				69.55	7.01
3	Bn	H	Bn	77—77.5	+63(1.0)	$\mathrm{C_{20}H_{24}O_{5}}$	69.75	7.02	{69.75	7.08
4	H	Bn	Bn	8991	+56(0.4)				169.53	7.08
5	$^{ m Me}>$	$<_{_{ m Me}}^{ m Me}$	H Me		+139(1.0)	C.HO.	52.93	7.90	∫ ^{52.71}	8.15
6	Н	>	<		+132(1.0)	$C_9H_{16}O_5$	02.00		52.86	7.85
•	Me	Me	`		1 104(110)					,,,,,
7	···>	<	Ac	_	+112(1.0)		E0 CE	7 07	53.46	7.52
8	Ac	ightharpoons	$<$ Me	60—61	+138(0.5)	$C_{11}H_{18}O_{6}$	53.65	7.37	53.22	7.53
9		H	н	_	+124(0.6)	$\mathrm{C_{12}H_{20}O_{5}}$	59.00	8.25	59.01	8.44
10	Н	I	H	65—67	+127(1.3)				58.92	8.40
11	Bn	Bn	All		+20(2.0)	$C_{23}H_{28}O_5$	71.85	7.34	∫71.57	7.31
12	All	Bn	Bn	_	+54(1.6)	O ₂₃ 11 ₂₈ O ₅	71.05	7.34	71.56	7.30
13	Ac	Me	Ac		+109(0.2)	$C_{11}H_{18}O_{7}$	50.38	6.92	50.37	6.92

a) All=allyl, Bn=benzyl. b) In CHCl₃.

tively via allylation, decyclohexylidenation, benzylation, and deallylation.

Experimental

The melting points were determined on an MP-1 melting-point apparatus (Yanagimoto); they are uncorrected. The optical rotations were measured in a jacketed 1-dm cell at 20 °C, with a DIP-180 automatic polarimeter (Japan Spectroscopic). The ¹H NMR spectra were recorded with a Varian EM-390 spectrometer in CDCl₃, using Me₄Si as the internal standard. Column chromatography was carried out on silica gel (Kanto Kagaku); each fraction was examined by TLC on silica gel (Merck, 7731).

Methyl 2,4-Di-O-henzyl-α-D-xylopyranoside (3). A mixture of 1 (Pfanstiehl, 2.0 g, 12 mmol), NaH (Wako, $\approx 50\%$ disp., 1.2 g, 24 mmol), and benzyl chloride (Tokyo Kasei, 40 ml) was stirred for 1.5 h at 100 °C. After acetic acid (0.1 ml) had then been added, the mixture was evaporated at 95 °C to give an oily residue. This was chromatographed (benzene-butanone, gradient, $100:1\rightarrow 3:1$) to afford three fractions (Fraction A, R_f =0.55; B, 0.30; and C, 0.23 and 0.21; benzene-butanone (10:1)). Fraction A (0.05 g, 1%) was crystallized from hexane and identified with methyl 2,3,4-tri-O-benzyl-α-D-xylopyranoside.⁵⁾ Fraction B (2.88 g, 70%) was crystallized from diisopropyl ether to yield 3 (2.10 g). Fraction C (0.32 g) was rechromatographed to afford 2 (0.15 g, 8%) and then 4 (0.04 g, 1%).

Methyl 2,3- and 3,4-O-Isopropylidene-α-D-xylopyranosides (5 and 6). A solution of 1 (656 mg, 4 mmol), 2.2-dimethoxypropane (Tokyo Kasei, 4.9 ml), and p-toluenesulfonic acid monohydrate (Wako, 38 mg) in distilled N,N-dimethylformamide (Tokyo Kasei, 13 ml) was heated for 2 h at 70 °C.⁵⁾ After a few drops of triethylamine had then been added, the mixture was evaporated and chromatographed (diisopropyl ether-ethylacetate (20:1)) to afford 5 (380 mg, 39%) and 6 (123 mg, 13%).

A small portion of 5 was acetylated with acetic anhydride and pyridine to afford the 4-O-acetyl derivative (7); ^1H NMR: δ 1.42 and 1.46 (2s, Me₂C), 2.06 (s, Ac), 3.28 (t, $J_{4,5ax}=10$ Hz, $J_{5ax,5eq}=10.5$ Hz, H-5ax), 3.42 (s, MeO), 3.50 (q, $J_{1,2}=3$ Hz, $J_{2,3}=10$ Hz, H-2), 3.89 (q, $J_{4,5eq}=5.5$ Hz, H-5eq), 4.07 (t, $J_{3,4}=10$ Hz, H-3), 4.99 (d, H-1), and 5.01 (sext, H-4). Compound 6 was similarly converted into the 2-O-acetyl derivative (8); ^1H NMR: δ 1.44 (s, Me₂C), 2.12 (s, Ac), 3.36 (s, MeO), 3.47 (sext, $J_{3,4}=9$ Hz, $J_{4,5eq}=4.5$ Hz, $J_{4,5ex}=9$ Hz, H-4), 3.70 (t, $J_{5ax,5eq}=9$ Hz, H-5ax), 3.87 (q, $J_{2,3}=10.5$ Hz, H-3), 3.94 (q, H-5eq), 4.83 (q, $J_{1,2}=4$ Hz, H-2), and 5.02 (d, H-1).

Methyl 2,3- and 3,4-O-Cyclohexylidene- α -D-xylopyranosides (9 and 10). A solution of 1 (500 mg, 3.05 mmol), 1,1-dimethoxycyclohexane (0.8 ml), and p-toluenesulfonic acid monohydrate (5.7 mg) in N,N-dimethylformamide (4.0 ml) was heated for 15 h at 140 °C.7 After triethylamine had then been added, the mixture was evaporated and chromatographed (toluene-butanone, gradient, $100:1\rightarrow 3:1$) to elute 10 (94 mg, 13%) and 9 (467 mg, 63%).

Alternative Synthesis of 2. Compound 5 (180 mg, 0.88

mmol) was stirred in allyl bromide (1.8 ml) containing NaH (\approx 60% disp., 50 mg) for 1.5 h at 65 °C. The mixture was then filtered and evaporated to give the sirupy 4-0-allyl derivative (180 mg). This was treated with a mixture of 0.25 M H₂SO₄, acetone, and 1,4-dioxane (1:1:1) for 0.5 h at 25 °C. After methanol and Ba(OH)₂·8H₂O had been added, the mixture was evaporated to dryness. The residue was stirred in benzyl chloride (3.0 ml) containing KOH (0.8 g) for 5 h at 110 °C, followed by chromatography, to give methyl 4-0-allyl-2,3-di-0-benzyl- α -D-xylopyranoside (11) (150 mg, 44%). Compound 9 was also converted into 11 in a similar way.

Compound 11 (42.5 mg, 0.11 mmol) was heated in dimethyl sulfoxide (0.34 ml) containing potassium t-butoxide (Aldrich, 119 mg) for 2.5 h at 110 °C under N₂.8) The mixture was then diluted with benzene and processed as usual. The organic layer was evaporated, and the residue was heated in a mixture of 2.6 M H₂SO₄† (0.09 ml) and 1,4-dioxane (0.9 ml) for 1 h at 85 °C. After neutralization with Ba(OH)₂·8H₂O, evaporation and chromatography gave 2 (24.6 mg, 65%).

Alternative Synthesis of 4. Compound 6 was similarly converted into methyl 2-O-allyl-3,4-di-O-benzyl-\(\alpha\)-D-xylopyranoside (12), which was, in turn, derived into 4.

Methyl 2,4-Di-O-acetyl-3-O-methyl-α-D-xylopyranoside (13). Compound 3 (50 mg, 0.15 mmol) was heated in N,N-dimethylformamide (0.25 ml) containing methyl iodide (70 μl) and BaO (95 mg) for 1.5 h at 90 °C under stirring. Chromatography gave a homogeneous oil (49.2 mg), which was subsequently hydrogenated over Pd in acetic acid at 340 KPa. The hydrogenolyzate, which was not oxidized with aq NaIO₄, was acetylated as usual to give 13 (32.6 mg, 83%); H NMR: δ 2.06 (s, Ac), 2.12 (s, Ac), 3.37 (s, MeO), and 3.47 (s, MeO); 13 C NMR: δ 20.9, 55.3 (Me-1), 58.5 (C-5), 60.4 (Me-3), 71.1 (C-4), 72.7 (C-2), 77.9 (C-3), 97.1 (C-1), 169.8, and 170.1.

References

- 1) A. F. Bochkov and G. E. Zaikov, "Chemistry of the O-Glycosidic Bond: Formation and Cleavage," English Edition, Pergamon (1979), Chap. 3.
- 2) J. M. Kuster and I. Dyong, Justus Liebigs Ann. Chem., 1975, 2179.
- 3) S. Koto, Y. Takebe, and S. Zen, Bull. Chem. Soc. Jpn., 45, 291 (1972); S. Koto, S. Inada, T. Yoshida, M. Toyama, and S. Zen, Can. J. Chem., 59, 255 (1981); S. Koto, N. Morishima, R. Kawahara, K. Ishikawa, and S. Zen, Bull. Chem. Soc. Jpn., in press.
- 4) A. H. Haines, Adv. Carbohydr. Chem. Biochem., 33, 11 (1976).
- 5) S. Tejima, R. K. Ness, R. L. Kaufman, and H. G. Fletcher, Jr., Carbohydr. Res., 7, 485 (1968).
- 6) M. E. Evans, F. W. Parrish, and L. Long, Jr., Carbohydr. Res., 3, 453 (1967).
- 7) F. H. Bissett, M. E. Evans, and F. W. Parrish, Carbohydr. Res., 5, 184 (1967).
 - 8) J. Gigg and R. Gigg, J. Chem. Soc., C, 1966, 82.
- 9) R. Kuhn, H. H. Baer, and Z. Seeliger, Justus Liebigs Ann. Chem., 611, 236 (1958).

[†] $1 M = 1 \text{ mol dm}^{-3}$.