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Abstract: Cyclo-glycosylation of (2,3,6-tri-O-benzyl-pB-D-galactopyranosyl)-{(1-+4)-(2,3,6-tri-O-
benzyl-B-D-glucopyranosyl)-(1-54)-(2,3,6-tri-O -benzyl-a-D-galactopyranosyl)} 2-(1-+4)-(2,3,6-

tri-O-benzyl-a/p-glucopyranosyl fluoride and subsequent deprotection of the product gave an

excellent yield of cyclo-lactohexaose.

‘ln 1985 we first reported2 a successful cyclo-glycosylation to yield cyclo-a-(1-+4)-
glucohexaose 1. Subsequently other examples2 for the successful synthesis of cyclo-(154)-
glycohexaoses have been reported besides our own appmach3 to cyclo-a-(1-4)-mannohexaose 2
and related compounds. In the relevant experiments we observed4 a very low yield (8%) of the
cyclo-glycosylation for cyclo-a-(1-»4)-mannopentaosc 3 in contrast with the high yield (95%) in
the case for cyclo-a-(1-54)-mannohexaose 2. Therefore it may be assumed that, in order to camry
out an efficient cyclo-(1- 4)-glycosylation, presence of more than six axial interresidual
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linkages should be required. Based on this assumption, a trigonally shaped cyclo-a-(1—4)-
lactohexaose 4 was designed as a target for our experiments on cyclo-glycosylation.

A key intermediate for the cyclo-glycosylation was designed as fluoride 13 which was
synthesized as follows. 4-Methoxyphenyl B-D-lattoside 55 was readily available from octs-O-
acetyl-B-D-lactose in 2 steps (/ 4-MeOPhOH, TMSOTS in (ClCH2)26,2 NaOMe in McOH, 84% overall).
Conversion of § into 65 was carried out in 3 steps (/ PhCH(OMe)2, TsOH-H20 in DMF, 2 BnBr, NaH
in DMF, 3 Me3NBH3, powdered molecular sieve 4A (MS4A), AICI3 in THF?, 69% overall). Compound
6 was then transformed into a glycosyl donor 75 in 3 steps (/' Lev20, DMAP in pyridines,z CAN in
4:1 MecCN-H209, 3 diethylaminosulfur trifluoride (DAST) in CH2Cl210, 68% overall). Glycosylation
of 6 with 7 (2 equivalents) in the presence of szZr(ClO4)211 and MS4A in Et20 gave 64% of a-
linked product 85 and 22% of B-linked product 105 after scparation of the products by silica-gel
column chromatography in 200:1 CH2Cl2-THF.
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Treatment of 8 with NHQNH2+AcOH in 5:1 EtOH-PhMe gave 91% of glycotetraosyl acceptor
95 which was glycosylated with fluoride 7 (2 equivalent) as described for 8 to give 53% of a-
linked product 115 and 18% of B-linked product 145 after separation by silica-gel column
chromatography in 2:1 hexane-EtOAc. Both 11 and 14 were converted into fluorides 13 (o:f = 1:2)
and 16 (a:B = 1:2) in 3 steps (/ CAN in 4:1:1 MeCN-H20-PhMe, 2 DAST in CH2Cl2, 3 NH2NH2+AcOH in
5:1 EtOH-PhMe 69% and 44% overall, respectively).

Having prepared key glycosyl fluorides 13 and 16 crucial cyclo-glycosylations were
examined. To a stirred mixture of Cp2Zr(C104)2 (formed in situ) and MS4A in CH2Cl2 was added a
solution of 13 in CH2Cl2 at 0°. After extractive work-up and purification by silica-gel column
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presence of 20% PHCH)2-C in 12:1:1 MeQH-EtQAc-H20 and purification of the praduct by Biagel P-
6 in H2O afforded a quantitative yield of the target molecule 45,  Attempied cycloglycosylation of
16 under the same condition failed and gave 38% of 1,6-anhydro derivative 185 besides the
hydrolysed hemiacetal.
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In summary, a trigonally shaped cycloglycan 4 containing three molecules of a-(1-54)-
linked {acioses was synihesized wia highly officient cycio-giycosylation of the ey fivonde 13.
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