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Abstract: Cycle-glycosyladon of (2.3,6-tri-O-benzyl-~-D-galrctopyranosyl)-((1~4)-(2.3.6-tri-O- 
benzyl-~-D-glucopyranosyl)-(1~4)-(2.3,6-tri-0-bcnzyl-a-D-grlrctopyranosyl))2-(1~4)-(2,3.6- 
tri-0-bcnzyl-a/p-glucopyranosyl fluoride and subsequent deprotection of the product gave an 
excellent yield of cycle-lactohexaosc. 

In 1985 we first reported2 a successful cycle-glycosylation to yield cycle-a-( l-+4)- 

glucohcxaosc 1. Subsequently other examples2 for the successful synthesis of cycle-(1+4)- 

glycohcxaoses have been reported besides our own approach3 to cycle-a-(1+4)-mmnohcxrose 2 

and related compounds. In the relevant experiments WC observed4 a very low yield (8%) of the 

cycle-glycosylation for cycle-a-(1+4)-mannopentaosc 3 in contrast with the higb yield (95%) in 

the case for cycle-a-(1+4)-mannohexaosc 2. Therefore it may be assumed that. in order to carry 

out an efficient cycle-(1+4)-glycosylation, presence of more than six axial interresidual 
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linkages should be required. Based on this assumption, a trigonally shaped cycle-a-( 1+4)- 

lactohtxaosc 4 was designed as a target for our experiments on cycle-glycosylation. 

A key intermediate for the cycle-glycosylation was designed as fluoride 13 which was 

synthesixed as follows. 4Methoxyphenyl 8-D-lactoside 56 was readily available from octa-O- 

acetyl+D-lactose in 2 steps (I 4MeGPhOH. TMSOTf in (cKzFI~)~~.~ NaOMe in MeOH. 84% overall). 

Conversion of 5 into 65 was carried out in 3 steps (I PhCH(OMe)2, TsOH*H20 in DMF. 2 BnBr. NaH 

in DMF, 3 Me3NBH3. powdered molecular sieve 4A (MS4A). AK13 in THF7, 69% overall). Compound 

6 was then transformed into a glycosyl donor 76 in 3 steps (I Lev20. DMAP in pyridine8.2 CAN in 

4:1 MeCN-H209,3 dicthylaminosulfur trifluoride (DAST) in CH2C1218, 68% overall). Glycosylation 

of 6 with 7 (2 equivalents) in the presence of Cp2Zr(C104)211 and MS4A in Et20 gave 64% of a- 

linked product 86 and 22% of B-linked product 10 6 after separation of the products by silica-gel 

column chromatography in 200:1 CH2CI2-THF. 
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Treatment of 8 with NH2NH2eAcOH in 5:l EtOH-PhMe gave 91% of glycotetraosyl acceptor 

96 which was glycosyiated with fluoride 7 (2 equivalent) as described for 8 to give 53% of u- 

linked product 115 and 18% of 8-linked product 14 5 after separation by silica-gel column 

chromatography in 2: 1 hexane-EtOAc. Both 11 and 14 were converted into fluorides 13 (a:p = 1:2) 

and 16 (a:p = 1:2) in 3 steps (I CAN in 4:1:1 MeCN-H2OPhMe, 2 DAST in CH2Cl2.3 NH2NH2eAcOH in 

51 EtOH-PhMe 69% and 44% overall, respectively). 

Having prepared key glycosyl fluorides 13 and 16 crucial cycle-glycosylations were 

examined. To a stirred mixture of CpgZr(C104)2 (formed in situ) and MS4A in CH2Cl2 was added a 

solution of 13 in CH2CI2 at 0”. After extractive work-up and purification by silica-gel column 
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presence ai 20% Pd(OH)2-C in 12: 1: t MeOH- EtOAc-H2Q and purifiation of the product by Bi@ P- 

6 in H20 afforded a quantitative yield of the target molecule 45. Attempted cycloglycoaylation of 

16 under the same condition failed and gave 38% of 1.6-anhydm derivative 185 besides the 

hydrolysed hemiacetal. 

In summary, a trigonally shaped cycloglycan 4 containing three molecules of a-(1+4)- 

linktd ~atosn ‘008% synIh&zt.d via hi#y tffitittnt e-y&-g<y~osy~alion of tht kty fimsidt 23. 
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