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Abstract - A concise and efficient synthesis of C37-C54 hicyclic 
JKL-ring unit (2) of halichondrin B (1) utilizing C2-symmetric 
spiroketal derivative (5) as a synthetic key intermediate, easily 
provided from dimethyl L(+)-tartrate, is reported. 

Halichondrin B (1) is a representative compound of the antitumor polyether macrolides in the halichondrin 

family, isolated from a marine sponge Halichondria okodai Kadota by Uemura, Huata and co-workers in 1985.1 

Synthetic challenges toward a total synthesis of halichondrins by synthetic organic chemists2 have been reported 

due to the highly complex chemical structure as well as important biological activities, the first total synthesis of 

halichondrin B (1) and norhalichondrin B was achieved by Kishi and co-workers in 1992.2f In connection with 

our synthetic program of 1, we reported the stereoselective syntheses of four convenient synthetic  subunit^.^ In 

this paper, we describe a highly efficient, concise and stereoselective synthesis of the C37-C54 tricyclic (JKL 

rings) unit (2) from dimethyl L-(+)-tamate. 

Halichondrin B (1) 

This paper is dedicated to the memory of Professor Yoshio Ban. 
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Our synthetic analysis is summarized in Scheme 1. The most significant point to this analysis is utilizing the C2- 

symmetric spirocyclic diol (5),4 easily derived from dimethyl L(+)-tartrate via the C2-symmetric ketone (6), as 

a synthetic key compound. Furthermore, the tricyclic iodohydrin (3). which has a suitable configuration for the 

introduction of the Csl oxygenated asymmetric center by epoxidation, could be expected to be efficiently and 

stereoselectively prepared from the ally1 alcohol (4) by an iodoetherification reaction after conversion of 5 to 4 

via a monoprotection step of the two hydroxyl groups. 
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Scheme 1 

The key spirocyclic diol(5) was concisely prepared from the known alcohol (7),5 derived from diiethyl L-(+)- 

tartrate, by using two stereocontrolled conjugate additions of Me2CuLi to yalkoxy-a,Punsaturated carbonyl 

compounds6 in order to introduce two methyl groups at the C42 and C46 positions,' as shown in Scheme 2. 

The first conjugate addition to the y(4-methoxy)phenylmethoxy-a,/3-~nsatu1ated ester (9), converted from 7 

via two steps, proceeded successfully and stereoselectively to afford the desired adduct (10) with 3.4-anti 

stereochemistry8 in a 14 : 1 ratio according to Hannessian's procedurePg A more electrophilic y@- 

methoxy)benzyloxy-a,hnsaturated ketone (12) was prepared by Homer-Emmons coupling reaction of the 

aldehyde (8) and the Pketophosphonate (11). obtained by treatment of the ester (10) with LiCH2P(O)(OMe)2 

in THF at -78 "C? The second conjugate addition of Me2CuLi to 12 without Me3SiCI also proceeded cleanly 

and stereoselectively to give the desired ketone (6) with a high selectivity of more than 25 : 1 in 98% yield. 

When 6 was exposed to 6N H2S04 in THF at room temperature, removal of the pentylidene groups and 

subsequent spiroketalization gradually proceeded to produce a pure C2-symmetrical spiroketal derivative (13) as 

a single diastereomer. One carbon homologation of 13 via Swem oxidationlo and Wittig reaction with 
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Ph3P=CHz followed by hydroboration with (Sia)zBH afforded 5.1' 

Scheme 2 

The next step in our synthetic program was to break the C2-symmetry of 5 by protecting only one of the two 

primary hydroxyl groups with TBSCI, as shown in Scheme 3. Due to the failure of many efforts12 to produce 

14 effectively, we tried to find a novel reaction condition. When the dipotassiurn salt of 5, generated with 

tBuOK (2 eq.) in THF at -78 OC, was trapped with TBSCl(l.l eq.), the desired monoprotected silyl ether (14) 

was obtained in 45% yield with a trace of the disilyl ether. The unreacted starting diol(5) was easily recovered 

by silica gel column chromatography since the polarity of the diol(5) and monosilyl ether (14) was remarkably 

different.13 An effective conversion of 5 to 14 was achieved by repeating this recycling process three times. 
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Scheme 3 

Finally, the synthesis of 17 from 14 was carried out via a highly stereoselective construction of the Lring and 

the introduction of the two asymmetric centers at the Csl and C53 positions as shown in Scheme 4. When the 

ally1 alcohol (4). converted from 14 via three coventional steps, was treated with iodine in THF at -5 OC in the 

presence of NaHC03, an iodoetherification reaction stereoselectively and smoothly occurred to give the desired 

tricyclic iodohydrin (3) as a single diastereomer. Transformation of 3 to the corresponding epoxide by 
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treatment with tBuOK in THF at -20 "C, followed by addition of the vinylmagnessium bromide in the presence 

of CuI afforded ally1 alcohol (IS), which was led to 17 via a stereoselective reduction of the Phydroxy ketone 

(16) with NaBH4 in the presence of MeOBEt2 in MeOH and THF.14 Since the conversion of 17 to 2 was 

already reported?d, we were able to establish a concise and efficient synthetic route for the Q7-C54 subunit (2) 

from dimethyl L-(+)-tartrate. Recently, we succeeded in synthesizing the CI-C37 macrolactone and the 

C 8 4 5 4  polyether portions by efficiently connecting our four synthetic subunits. These results will be reported 

soon. 

MPM 

h) 1) Swem orid.; 2) (iRO)~P(0)CHzct%Et, 'BuOK. THP. -78'C (91% wh 2 steps); 3) DIBAH. 
CHzflz. -78T (99%). 1) I) %"OK. THF, -2OT (82%); 2) vmylMgBr. Cul. Et2O (76%); j) 1) TESCI. 
imidazole. CHzflz (95%); 2) 0 ~ 0 4 .  NMO, H20-acetone (1 : 10) (95%); 3) TBDPSCI, imidazole, 
CHzflz. room temperatun (95%); 4) Swem oxid. (91%); 5) IN HCI-THP (1 : 4) (91%). k) 1) 
&.BOMe, NaBH4. McOH-THF (I .2); 2) CSA. MqtJOMe)z, benzene (87% vio 2 s tep )  

Scheme 4 
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