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Abstract: Several prochiral esters of 1,4-dihydropyridines were enantioselectively hydro- 
lyzed by Pseudomonas lipases (AK, P-30, and K-10) and Candida cylindracea lipase (OF- 
360). The stereochemical preferences of the lipases P-30 and K-10 were found to be always 
4-Pro R and that of OF-360 to be 4-Pro S. In contrast, the prochiral preference of the lipase 
AK varied depending on the substitution on the dihydropyridine ring. The N-methoxymethyl 
derivatives afforded the 4S isomers (95% ee) whereas the N-unsubstituted compounds 
yielded the 4R isomers (50-70% ee). 

Calcium antagonists of the type 4-aryl-l,4-dihydro-2,6-dimethyl-3,5-pyridine dicarboxylates are impor- 

tant peripheral vasodilators and are commonly used for the treatment of cerebro-circulatory disorders and 

hypertension.1 In many cases, the enantiomers have been shown to have different pharmacological properties. 2.3 

Optically-active 1,4-dihydropyridines have been prepared by conventional chemical resolution of racemates or 

via chiral column chromatographic separation of the antipodes. 3 

In 1991, our laboratory reported the first biocatalytic synthesis of optically-active 1,4-dihydropyridines 

by taking advantage of the enantioselective properties of the microbial lipases.4 Although initial attempts to 

enzymatically cleave the esters (methyl, ethyl, and allyl) at the C-3 and C-5 positions of the dihydropyridine 

ring were unsuccessful, highly enantiotopically-selective lipase-catalyzed hydrolyses were achieved using the 

sterically unhindered prochiral acetoxymethyl ester, 1, to give either monoester la  or lb. The stereoprefer- 

ences of the Pseudomonas lipases (AK, P-30, and K-10) were found to be opposite to that of Candida 

cylindracea (OF-360). 

In continuing our studies on the lipase-catalyzed enantiotopically-selective hydrolysis of dihydropyridine 

esters, we noted that the prochiral preference of the Pseudomonas lipase AK may be altered by different 

substituents on the nitrogen of the dihydropyridine nucleus. The experimental details of this interesting 

observation are reported herein. 

We had previously shown that the Pseudomonas lipases AK, P-30, and K-10 all have the same pro-R 

stereopreference towards 1, whereas Candida OF-360 lipase preferred the pro-S chirality. 4 To further examine 

the stereochemical behavior of these lipases toward other substituted 4-aryl-l,4-dihydropyridines-3,5- 

dicarboxylates, compounds 2-7 were synthesized by known methods. 4-6 The experimental conditions were 
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RO2C CO2H R 2R ,~_.._O2 C ~ CO2R 

X X X 

h _a 
1 X = CH2Ph; Y = NO2 R = -CH2OCOCH 3 4 X = CH2OCH3; Y = NO 2 
2 X = CH2OCH3; Y = H 5 X = H ; Y  = NO2 
3 X = Y = H  6 X=CH2Ph;  Y = H  

7 X =CH2Ph; Y =NO2 

similar to those previously described using tert-butyl methyl ether as solvent and methanol was used as the 

nucleophile for the Pseudomonas lipases and water for the Candida lipase. 7 The results in Table 1 clearly 

showed that while the stereochemical preferences of the lipases P-30 and K-10 (pro-R) and OF-360 (pro-S) for 

substrates 2 and 3 were retained, a dramatic reversal of stereochemical preference was observed with lipase AK 

in the methanolysis of the N-protected 2 (65 % yield, 96 % ee, pro-S) and the N-unprotected 3 (67 % yield, 72 % 

ee, pro-R). 

To determine the generality of this substitution effect, the 4-(3-nitrophenyl) derivatives, 4 and 5, were 

prepared. Again, Lipase AK converted the N-methoxymethyl derivative, 4, into the S-enantiomer, 4b 8, in 95 % 

ee and the unsubstituted compound, 5, into the R-enantiomer, 5a, in 54% ee. The stereochemical behaviors 

of lipases P-30 and K-10 (pro-R) towards 4 and 5 were similar but were markedly different for lipase OF-360 

(pro-S). The methoxymethyl derivative, 4, was transformed by OF-360 into the S-enantiomer in 90% ee but 

with the corresponding unsubstituted compound, 5, the product was virtually racemic. 

We then examined the effect of other N-substituents and the N-benzylated derivatives, 6 and 7, were 

prepared and exposed to the lipases. Low yields and poor enantioselectivity were obtained for both substrates 

with lipase AK. However, hydrolysis of 7 afforded 7a with optical yields of over 85 % with lipases P-30 and 

K-10 whereas OF-360 gave 7b in 83 % ee. For compound 6, it was surprising to fred that all the Pseudomonas 

lipases gave R-monoesters of poor optical purity. 

We have shown that the stereopreference of lipase AK for the methanolysis of 4-aryl-l,4-dihydropyri- 

dine diesters is markedly influenced by substituents on the ring nitrogen atom. The methoxymethyl group 

caused a dramatic change in the stereopreference of enzyme-catalyzed solvolysis as compared to the 

unsubstituted compounds. This reversal of chiral preference was not observed for lipases P-30 and K-10 which 

always retained the pro-R stereoselectivity. It is worthy of note that a dramatic change in the stereochemical 

preference of hydrolysis of dihydropyridine diesters catalyzed by lipase AH (Pseudomonas sp.) was achieved 

by simply altering the reaction media. In water saturated diisopropyl ether, the S-monoesters were obtained, 

whereas in moist cyclohexane the R-monoesters were preferentially formed. 8,9 
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Table 1. Reaction of 4-aryl-l,4-dihydropyridine diesters with lipases. 

Substrate Lipase Nucleophile Temp (°C) Time (h) % Monoester (ee) Configuration 8 
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