Purification, Purity, and Freezing Points of 20 API Standard and API Research Hydrocarbons ANTON J. STREIFF, LAWRENCE H. SCHULTZ, AURA R. HULME, JAMES A. TUCKER, NED C. KROUSKOP, and FREDERICK D. ROSSINI Petroleum Research Laboratory, Carnegie Institute of Technology, Pittsburgh, Pa. ▶The purification and determination of freezing points and purity are described for the following 20 hydrocarbons of the API Standard and API Research series: 2,2-dimethyl-3-2,4-dimethyl-3-ethylethylpentane; pentane; cycloheptane; 3-methyl-1hexene; 4-methyl-trans-2-hexene; 2,4dimethyl-1-pentene; 3,3-dimethyl-1pentene; 3,4-dimethyl-cis-2-pentene; 3,4-dimethyl-trans-2-pentene; methyl-trans-3-heptene; 2,5-dimethyltrans-3-hexene; 2-methyl-3-ethyl-1pentene; 3-methyl-1,2-butadiene; 1methylcyclopentene; 1-methylcyclohexene; 1-ethylcyclohexene; cyclohexylcyclohexane; cyclohexylbenzene; 3cyclopentyl-1-propene (allylcyclopentane); and phenylbenzene (biphenyl). This investigation is a continuation of the work of producing highly purified hydrocarbons of the API Standard and Research series (1, 5-10). This paper describes the purification and determination of purity and freezing points of 20 hydrocarbons, which include two paraffins, one cycloparaffin, nine monoolefins, one diolefin, three cyclo-olefins, one dicycloparaffin, one cycloparaffinaromatic, one cycloparaffin-olefin, and one dinuclear aromatic. The final lots of material labeled API Standard are sealed in vacuum in glass ampoules and made available as API Standard samples of hydrocarbons by the Carnegie Institute of Technology. material labeled API Research is made available in appropriate small lots. through the American Petroleum Institute Research Project 44 for loan to qualified investigators for the measurement of needed physical, thermodynamic, and spectral properties. Table I gives the names of the 20 compounds, the laboratories providing the starting material, details concerning the first and succeeding distillations, the character of the plot of the freezing point of the hydrocarbon part of the distillate as a function of its volume, and the volumes of the final lots of API Standard and Research material. The procedures followed in the process of purification and determination of purity were the same as described in previous papers (2, 5-10) except that phenylbenzene (biphenyl) was purified using the process of zone melting (3). Details of the distillation apparatus and operations have been described (4, 11). Figure 1. Results of azeotropic distillation of 1-methylcyclopentene with methanol Figures 1, 2, and 3 show graphically the results of some typical distillations. They represent the cases where the purest material is, respectively, largely in the forepart of the distillation, in the middle of the distillation, and in the after part of the distillation. In each figure plots are given for refractive index, boiling point, freezing point, and purity as a function of the volume of the hydrocarbon part of the distillate. Figure 2. Results of azeotropic distillation of 3,4-dimethyl-trans-2-pentene with ethyl alcohol Figure 3. Results of regular distillation of 4-methyl-trans-2-hexene Table I. Purification of 20 API Standard and API Research Hydrocarbons | | | | _ | Distillation ^b | | | | | | | | | |---------------------------------------|--|-----------------------------|--|--|------------------------|---------------------------------|---|---|--|--|-----------------------|------------------------| | | | H | ydrocarbon | | | hydro-
carbon
in
azeo- | No. of
equiv-
alent
theoret-
ical | collec- | /T: | Loca-
tion
of | Volun
Selected | ne of
Sample | | | Laboratory ^a
Providing
Starting | for
Vol., | Charged
Distillation
Purity, | | Azeotrope-
forming | distil-
late,
vol. | distill-
ing | tion
of dis-
tillate,
ml./ | Time
of
distil-
lation, | purest
mate-
rial
in dis- | API
Stand-
ard, | API
Re-
search, | | Compound | Material | liters | mole $\%$ | $\operatorname{Kind}^{\mathfrak{o}}$ | substance ^d | % | column | hour | hours | tillate ^f | ml. | ml. | | 2,2-Dimethyl-3-
ethylpentane | NBS Auto.
Sec. | 1.05 | • • • | Reg. and
Azeo. | Me Cell | 61 | $\frac{200}{200}$ | $\begin{array}{c} 4 \\ 4 \end{array}$ | $\frac{336}{144}$ | $\left. egin{matrix} \mathbf{A} \\ \mathbf{M} \end{smallmatrix} ight\}$ | 560 | 165 | | 2,4-Dimethyl-3-
ethylpentane | NBS Auto.
Sec. | 0.68 | 99.3 ± 0.2 | Reg. and $Azeo.^g$ | Me Cell | 63 | $\frac{200}{200}$ | $_{4}^{3}$ | $\frac{336}{264}$ | $_{ m F}^{ m M} brace$ | 425 | 85 | | Cycloheptane | APIRP45 | $\frac{2.99}{2.38}$ | 99.97 ± 0.01
99.988 ± 0.008 | $egin{array}{l} { m Reg.} \\ { m Azeo.} \end{array}$ | Me Cell | 64 | $\frac{200}{200}$ | $\begin{smallmatrix} 4\\4\end{smallmatrix}$ | $\begin{array}{c} 864 \\ 1224 \end{array}$ | $_{\mathbf{A}}^{\mathbf{A}}$ | 1075 | 330 | | 3-Methyl-1-hex-
ene | APIRP45 | 4.18
2.60 | ••• | Reg.
Azeo. | Ethyl
alcohol | 69 | $\begin{array}{c} 200 \\ 200 \end{array}$ | $\begin{array}{c} 4 \\ 4 \end{array}$ | 1224
1032 | M
M | 1150 | 340 | | 4-Methyl-trans-
2-hexene | APIRP45 | $5.60 \\ 2.90$ | $95.4 \pm 0.3 \\ 98.0 \pm 0.2$ | Reg.
Azeo. | Ethyl
alcohol | 6 7 | 200
200 | 7
7 | $\begin{array}{c} 1104 \\ 792 \end{array}$ | $_{\rm M}^{\rm M}$ | | | | | | 2.15 | 99.6±0.1 | Reg. and Azeo. | Ethyl
alcohol | 67 | 200
200 | 7
7 | $\begin{array}{c} 432 \\ 192 \end{array}$ | $\left. egin{matrix} \mathbf{A} \\ \mathbf{F} \end{array} ight\}$ | 950 | 210 | | 2,4-Dimethyl-1-
pentene | APIRP45 | 3.42^h 3.44^h 2.65 | 98.9 ± 0.2
98.9 ± 0.2
98.8 ± 0.2 | Reg.
Reg.
Azeo. | Ethyl
alcohol |
73 | 200
200
200 | 7
7
7 | 672
624
600 | $_{ m M}^{ m M}$ | | | | | | 2.30 ^f | i98.0±0.2 | Azeo. | Ethyl
alcohol | 73 | 200 | 7 | 600 | M | | | | | | 2.70k | 99.72 ± 0.12 | Azeo. | Ethyl
alcohol | 73 | 200 | 7 | 768 | M | 1085 | 325 | | 3,3-Dimethyl-1-
pentene | APIRP45 | 5.93
4.38 | 99.59 ± 0.12
99.78 ± 0.10 | Reg.
Azeo. | Ethyl
alcohol | 7 5 | 200
200 | $\begin{array}{c} 4 \\ 4 \end{array}$ | 1584
1920 | A
A | | | | | | 3.50 | 99.86 ± 0.08 | Reg. | • • • | | 200 | 7 | 600 | A | 1430 | 360 | | 3,4-Dimethyl-
cis-2-pentene | APIRP45 | 3.45 | 99.64 ± 0.12 | $ rac{ ext{Reg. and}}{ ext{Azeo.}^l}$ | Me Cell | 86 | $\begin{array}{c} 200 \\ 200 \end{array}$ | 7
4 |
1440 | $\dot{\dot{M}}$ | | | | | | 1.35 | 98.2 ± 0.1 | Azeo. | Ethyl
alcohol | 62 | 200 | 4 | 624 | M | | • • • | | | | 1.86^{k} | 99.90 ± 0.07 | Azeo. | Ethyl
alcohol | 62 | 200 | 4 | 912 | M | 1175 | 360 | | 3,4-Dimethyl-
trans-2-pen-
tene | APIRP45 | $\frac{3.18^{h}}{2.31^{k}}$ | 96.8 ± 0.02
99.44 ± 0.12 | Reg.
Azeo. | Ethyl
alcohol | 64 | 200
200 | 7
7 | $\begin{array}{c} 504 \\ 672 \end{array}$ | M
M |
945 | $\overset{\cdot}{245}$ | | 2-Methyl- <i>trans</i> -
3-heptene | APIRP45 | 3.78 | 99.75 ± 0.08 | Azeo. | Me Cell | 77 | 200 | 4 | 1440 | A | 1170 | 345 | ^a Abbreviations represent APIRP45, American Petroleum Institute Research Project 45, Ohio State University, Columbus, Ohio; APIRP6, American Petroleum Institute Research Project 6, Carnegie Institute of Technology, Pittsburgh, Pa.; NBS Auto. Sec., Automotive Section, National Bureau of Standards, Washington, D. C.; Penn State, Hydrocarbon Laboratory, Pennsylvania State University, University Park, Pa.; Standard (Indiana), Standard Oil Co. of Indiana, Whiting, Ind. ^b See (4) and (11) for further details. ^c Azeo, azeotropic; Reg., regular. ^d Me Cell, methyl Cellosolve, ethylene glycol monomethyl ether; DPrG, dipropylene glycol. ^e Approximate value obtained from actual volume of hydrocarbon recovered by extracting azeotrope-forming substance with water in separatory funnels separatory funnels. Designations refer to general location of purest material in hydrocarbon part of distillate as a function of its volume. F, fore or front of distillate; M, middle part of distillate; A, after part of distillate. Residue from regular distillation distilled azeotropically in order to recover it as distillate. One of two similar distillations. Purity of this material is lower than original because of rearrangement during regular distillation. i Material from first distillation above. * Material having substantially same composition from each of preceding two distillations. 1 When half complete regular distillation was changed to azeotropic distillation. 2 Second lot of 1-methylcyclopentene. (Continued on page 363) Table I. Purification of 20 API Standard and API Research Hydrocarbons (Continued) | | | | $\mathrm{Distillation}^{b}$ | | | | | | | | | | |---|--|---|--|---|---|--|--|--|--|---|---|----------------------------------| | Compound | Laboratory ^a
Providing
Starting
Material | • | ydrocarbon
Charged
Distillation
Purity,
mole % | Kind ^c | $egin{array}{l} ext{Azeotrope-} \ ext{forming} \ ext{substance}^d \end{array}$ | hydro-
carbon
in
azeo-
tropic
distil-
late,•
vol. | in | ml./ | Time
of
distil-
lation,
hours | Location of purest material in distillate | Volur
Selected
API
Stand-
ard,
ml. | me of Sample API Re- search, ml. | | 2,5-Dimethyl-
trans-3-hexene | APIRP45 | $\substack{4.17 \\ 2.92}$ | 99.75 ± 0.08
99.85 ± 0.06 | Azeo.
Azeo. | Me Cell
Me Cell | $\begin{array}{c} 76 \\ 76 \end{array}$ | $\begin{array}{c} 200 \\ 200 \end{array}$ | $^{4}_{7}$ | $\begin{array}{c} 1725 \\ 528 \end{array}$ | $_{ m M}^{ m M}$ | 1200 | 355 | | 2-Methyl-3-
ethyl-1-pen-
tene | APIRP45 | 2.88 | 99.80±0.08 | Azeo. | Me Cell | 78 | 200 | 4 | 1080 | M | 1160 | 340 | | 3-Methyl-1,2-
butadiene | APIRP45 | 3.65 | 93.6 ± 0.2 | Reg. | | | 200 | 7 | 624 | М | 1170 | 325 | | 1-Methylcyclo-
pentene | Penn State
Standard
(Indiana) | 2.30
1.81
0.47
2.03 ⁿ | 97.8 ± 0.2
97.9 ± 0.2

99.32 ± 0.14 | Reg. and Azeo. Azeo. Azeo. | Methanol
Methanol
Methanol | 60
60
60 | 135
200
200
200
200 | 4
4
4
7 | 696
504
192
336
408 | $egin{array}{c} \mathbf{M} \\ \mathbf{A} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{M} \end{array}$ | 850 |

200 | | 1-Methylcyclo-
hexene | Penn State | 3.00 | • • • | Reg. and
Azeo. | Ethyl
alcohol | 30 | 200
200 | $\begin{array}{c} 4 \\ 4 \end{array}$ | 670
314 | $\left. egin{array}{c} \mathbf{A} \ \mathbf{F} \end{array} ight. ight.$ | 750 | 195 | | 1-Ethylcyclo-
hexene | APIRP45 | 2.80°
2.84°
2.50°
2.50°
2.64°
1.87
*1.20
2.70°
1.90
*1.01
1.62° | 96.4 ± 0.2 97.8 ± 0.2 98.2 ± 0.1 99.49 ± 0.12 | Azeo. | Me Cell | 53
53
53
53
53
53
53
53
53
53
53 | 200
200
200
200
200
200
200
200
200
200 | 7
7
7
7
7
7
7
9
9
4
9
4 | 1320
1008
936
1008
840
840
336
696
1344
336
1296 | M
M
M
M
M
F
M
F
M | | | | Cyclohexyl-
cyclohexane | $\mathrm{APIRP}6^{r}$ | $\begin{matrix} 7.62 \\ 3.65 \end{matrix}$ | 99.98±0.01 | Reg.
Azeo. | $\overline{\mathrm{DPrG}}$ | 58 | $\frac{150}{150}$ | 5
5 | $1656 \\ 1320$ | $_{\rm M}^{\rm A}$ | 1525 | 480 | | Cyclohexyl-
benzene | APIRP6 | $\begin{matrix} 7.52 \\ 3.60 \end{matrix}$ | 99.89 ± 0.07 | Reg.
Azeo. | $\overrightarrow{\mathrm{DPrG}}$ | 58 | $\frac{150}{150}$ | 5
5 | $\frac{1872}{1200}$ | $_{ m M}^{ m M}$ | 1500 | 380 | | 3-Cyclopentyl-
1-propene
(Allylcyclo-
pentane) | APIRP45 | 2.22 | 99.84±0.11 | Azeo. | Me Cell | 62 | 200 | 7 | 576 | A | 1170 | 350 | | Phenylbenzene
(Biphenyl) | APIRP6r | 5.40 | 97.8 ± 0.02 | Zone
melting ^s | | | • • • | | | | 1200 | 400 | ⁿ Material from each of previous three distillations. One of four similar distillations. Obtained by purchase of commercially available material. Purified by fractionation by zone melting. As emphasized in the previous reports, the blending of fractions of distillate for the preparation of material of the highest purity can be done safely only on the basis of the freezing points. Table II gives the following information for the compounds measured: the kind of time-temperature curves, whether freezing or melting, used to determine the freezing point; the freezing point of the actual sample; the calculated value of the freezing point for zero impurity; the value of the cryoscopic constant, determined from the lowering of the freezing point on the addition of a known amount of a suitable impurity (2, 4); and the calculated amount of impurity in the API Standard and Research materials. ## **ACKNOWLEDGMENT** Grateful acknowledgment is made to the organizations mentioned in Table I for their contributions of starting materials. The authors also wish to express appreciation of the assistance of the following chemists in portions of this investigation: Lillian C. Janicik, Thomas J. Mathia, Janet W. Moore, Nilda Zegarra-Paz Duffek, and Donald B. Peterson. ## LITERATURE CITED (1) Glasgow, A. R., Jr., Murphy, E. T., Willingham, C. B., Rossini, F. D., Material having substantially same composition from two of four similar distillations (see .). Material having substantially the same composition from two distillations above which are marked with (*). Table II. Freezing Points and Purity of 20 API Standard and API Research Hydrocarbons | | Temp.
Observa- | | | | | | | | | |--|--------------------------------|-----------------------------------|--------------------------------|--|--|--|-------------------------|--|--| | | tions | Freezing Point
terial in Air a | of Actual Ma-
t 1 Atm., °C. | Freezing Point for | Cryoscopic Constant ^a A, Mole | Calculated Amount of Impurity in Actual Material, Mole % | | | | | Compound | Freezing
Point ^a | API
Standard | API
Research | Zero Impurity in Air at 1 Atm., °C. | Fraction/
Deg. | API
Standard | API
Research | | | | 2,2-Dimethyl-3-ethyl-
pentane | M | -99.523 | -99.511 | -99.490 ± 0.020 | 0.0407 | 0.13±0.08 | 0.08±0.08 | | | | 2,4-Dimethyl-3-ethylpentane | М | -122.418 | -1 22 .396 | -122.36 ± 0.03 | 0.0381 | 0.22±0.11 | 0.14 ± 0.11 | | | | Cycloheptane | \mathbf{M} | -8.124 | -8.124 | -8.100 ± 0.020 | 0.0033 | 0.008 ± 0.007 | 0.008 ± 0.007 | | | | 3-Methyl-1-hexene | | | | | | (0.20 ± 0.15) | $^{\circ}(0.15\pm0.10)$ | | | | $4 ext{-Methyl-} trans ext{-}2 ext{-hexene}$ | \mathbf{M} | -125.737 | -125.723 | -125.690 ± 0.020 | 0.0388 | 0.18 ± 0.08 | 0.13 ± 0.08 | | | | 2,4-Dimethyl-1-pentene | \mathbf{M} | -124.087 | -124.086 | -124.060 ± 0.020 | 0.0471 | 0.13 ± 0.09 | 0.12 ± 0.09 | | | | 3,3-Dimethyl-1-pentene | \mathbf{M} | -134.403 | -134.402 | -134.380 ± 0.010 | 0.0466 | 0.11 ± 0.05 | 0.10 ± 0.05 | | | | 3,4-Dimethyl- cis -2-pentene | М | -124.253 | -124.251 | -124.235 ± 0.015 | 0.0477 | 0.09 ± 0.07 | 0.08 ± 0.07 | | | | 3,4-Dimethyl- <i>trans</i> -2-pentene | М | -113.422 | -113.417 | -113.395 ± 0.020 | 0.0412 | 0.11 ± 0.08 | 0.09 ± 0.08 | | | | 2-Methyl-trans-3-heptene | M | -107.553 | -107.552 | -107.520 ± 0.015 | 0.0483 | 0.16 ± 0.07 | 0.15 ± 0.07 | | | | 2,5-Dimethyl- <i>trans</i> -3-hexene | М | -95.222 | - 95. 22 0 | -95.200 ± 0.015 | 0.0424 | 0.09±0.06 | 0.08±0.06 | | | | 2-Methyl-3-ethyl-1-pent-
ene | M | -112.948 | -112.948 | -112.900 ± 0.020 | 0.0396 | 0.19 ± 0.08 | 0.19 ± 0.08 | | | | 3-Methyl-1,2-butadiene | M | -113.635 | -113.635 | -113.625 ± 0.010 | 0.0368 | 0.04 ± 0.04 | 0.04 ± 0.04 | | | | 1-Methylcyclopentene | \mathbf{M} | -126.562 | -126.556 | -126.530 ± 0.020 | 0.0427 | 0.14 ± 0.08 | 0.11 ± 0.08 | | | | $1\hbox{-}{\rm Methylcyclohexene}^d$ | M | -120.441 (I) | -120.433
(I) | -120.400 ± 0.020 (I) | 0.0427 | 0.18 ± 0.08 | 0.14 ± 0.08 | | | | 1-Ethylcyclohexene | М | -110.000 | -109.984 | $\begin{array}{c} -125.96 \pm 0.03 \\ \text{(II) (u)} \\ -109.960 \pm 0.020 \end{array}$ | 0.0430 | 0.17±0.09 | 0.10 ± 0.09 | | | | Cyclohexylcyclohexane | \mathbf{M} | 3.649 | 3.651 | 3.670 ± 0.010 | 0.0110 | 0.023 ± 0.008 | 0.021 ± 0.008 | | | | Cyclohexylbenzene | M | 7.040 | 7.042 | 7.070 ± 0.020 | 0.0245 | 0.07 ± 0.05 | 0.07 ± 0.05 | | | | 3-Cyclopentyl-1-propene (allylcyclopentane) | M | -110.695 | -110.688 | -110.670 ± 0.020 | 0.0538 | 0.13±0.11 | 0.10±0.10 | | | | Phenylbenzene (biphenyl) | M | 68.961 | 68.964 | 68.970 ± 0.010 | 0.0192 | 0.02 ± 0.02 | 0.01 ± 0.01 | | | ^a M, melting. See (2) and (4) for experimental details and definition of cryoscopic constant. b Values in this column, except as otherwise noted, were calculated as described in (2) and (4) using the values of cryoscopic constants and freezing points for zero impurity given in previous columns. Kind of Time- J. Research Natl. Bur. Standards 37, 141 (1946). (2) Glasgow, A. R., Jr., Streiff, A. J., Rossini, F. D., *Ibid.*, 35, 355 (1945). (3) Pfann, W. G., Trans. Am. Inst. Met. (3) Fraint, W. G., Trans. Am. Inst. Met. Engrs. 194, 747 (1952). (4) Rossini, F. D., Mair, B. J., Streiff, A. J., "Hydrocarbons from Petroleum," Am. Petroleum Inst. Research Project 6, ACS Monograph 121, Reinhold, New York, 1953. (5) Streiff, A. J., Hulme, A. R., Cowie, P. A., Krouskop, N. C., Rossini, F. D., Anal. Chem. 27, 411 (1955). (6) Streiff, A. J., Murphy, E. T., Cahill, J. C., Flanagan, H. F., Sedlak, V. A., Willingham, C. B., Rossini, F. D., J. Research Natl. Bur. Standards 38, 53 (1947) (7) Streiff, A. J., Murphy, E. T., Sedlak, V. A., Willingham, C. B., Rossini, F. D., *Ibid.*, **37**, 331 (1946). (8) Streiff, A. J., Murphy, E. T., Zimmerman, J. C., Soule, L. F., Sedlak, V. A., Willingham, C. B., Rossini, F. D., *Ibid.*, **39**, 321 (1947). (9) Streiff, A. J., Soule, L. F., Kennedy, C. M., Janes, M. E., Sedlak, V. A., Willingham, C. B., Rossini, F. D., *Ibid.*, **45**, 173 (1950). (10) Streiff, A. J., Zimmerman, J. C., Soule, L. F., Butt, M. T., Sedlak, V. A., Willingham, C. B., Rossini, F. D., *Ibid.*, **41**, 323 (1948). (11) Willingham, C. B., Rossini, F. D., *Ibid.*, **37**, 15 (1946). RECEIVED for review July 3, 1956. Accepted November 8, 1956. Division of cepted November 8, 1956. Division of Analytical Chemistry, 130th Meeting, ACS, Atlantic City, N. J., September 1956. This investigation was performed under the American Petroleum Institute Research Project 6. c Estimated by analogy with isomers subjected to similar purification. d This hydrocarbon has more than one crystalline form. Forms indicated are labeled I and II in order of decreasing temperature of freezing point. Forms other than I will be, at their respective freezing points, in metastable equilibrium with the undercooled liquid, but will be unstable with respect to transition to some other solid form at the same temperature and pressure (1 atm.). Such metastable forms are indicated by (u) following Roman numeral.