

Synthesis and structure elucidation of five series of aminoflavones using 1D and 2D NMR spectroscopy

Ana I. R. N. A. Barros^{1*} and Artur M. S. Silva²

¹ Chemistry Department, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

² Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal

Received 8 June 2006; revised 24 July 2006; accepted 25 July 2006

Twenty-six new aminoflavones have been synthesised by two different methods and the structure elucidation was accomplished using extensive 1D (¹H, ¹³C) and 2D NMR spectroscopic studies (COSY, HSQC and HMBC experiments). Copyright © 2006 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; HMBC; nitroflavones; aminoflavones

INTRODUCTION

During the past decades, there has been a growing interest in the search for biologically active compounds. Synthesis of flavones and their derivatives have attracted considerable attention owing to their significant pharmaceutical,^{1–4} biocidal^{5–7} and antioxidant^{8,9} activities.

Flavones (2-phenylchromones) are one of the most important classes of natural compounds belonging to the flavonoid family.¹⁰ Recently, it has been reported that some synthetic aminoflavones are potential antineoplastic agents¹¹ and have been proved to be antimutagenic in the Ames test using different species of mutagens.¹² They also exhibit potent cytotoxicity against human breast cancer.¹³

Taking into account the potential biological applications of flavones, especially those having amino-substituents, we decided to devote some attention to the reduction of five series of nitroflavones once synthesised.¹⁴ Compounds 2a-z were prepared by two different methods: (i) ammonium formate, Pd/C, using methanol as solvent; (ii) SnCl₂.2H₂O/HCl, using acetic acid as solvent.

In this paper, we present the synthesis of aminoflavones, and unambiguous structural elucidation of compounds 2a-z by onedimensional (1D) and two-dimensional (2D) NMR experiments.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded at 25 °C for ~5-mg samples dissolved in 0.5 ml of CDCl₃ or DMSO-*d*₆ in 5-mm NMR tubes, using a Bruker DRX 300 spectrometer (300.13 for ¹H and 75.47 for ¹³C). Chemical shifts (δ) were reported in ppm and coupling constants (*J*) in Hz. The internal standard was TMS. The Fourier transform NMR measurement conditions were as follows: for 1H NMR, pulse with 3.4 µs, acquisition time 2.7 s, pulse angle 30° and number of scans 80; for ¹³C NMR, pulse with 1.7 ms, acquisition time 0.8 s, pulse angle 30°, number of scans 6144 and number of data points 16 384. Unequivocal ¹³C assignments were made with the aid of 2D gHSQC and gHMBC (delays for one bond and long-range *J* C/H couplings were optimised for 147 and 7 Hz, respectively) experiments.

Materials

The syntheses for compounds **1a**-**z** have been published elsewhere.¹⁴ Once the nitroflavones **1a**-**z** were obtained, the two reduction methods were applied in the synthesis of new derivatives of flavones,

*Correspondence to: Ana I. R. N. A. Barros, Chemistry Department, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal. E-mail: abarros@utad.pt with amino substituents on the B ring, with the purpose of verifying which of them was more adequate in terms of yields and practical execution (Table 1).

Comparing the two synthetic pathways to obtain aminoflavones **2a–z**, one can conclude that: (i) the approach involving ammonium formate, Pd/C, is generally more favourable, in terms of yields and practical execution; for these reasons, it was the method applied to all compounds, and the method using stannous chloride only applied to the first series of compounds (without substituents on the A ring); (ii) the diamino derivatives were obtained in lower yields than the other derivatives (49–58%); (iii) *orto*-aminoflavones were obtained in moderate yields (59–69%), with the exception of 2'-amino-6-bromoflavone **2x**, which was obtained in 80% of the yield; all the other derivatives were obtained in similar yields; *meta*-aminoflavones **2b**, **2e**, **2h** and **2k** (68–79%); *para*-aminoflavones **2m**, **2r** (64–70%); 3'-amino-2'-methylflavones **2m**, **2r** (64–70%); 3'-amino-4'-methylflavones **2p**, **2n**, **2s** and **2u** (65–79%).

RESULTS AND DISCUSSION

The full characterisation of compounds 2a-z is presented in Tables 2–5. The compounds are grouped in five different series.

The ¹H NMR spectra of the compounds were well resolved and the unambiguous proton chemical-shift assignments were based on the multiplicity pattern of proton resonances and also on the use of homonuclear ¹H–¹H COSY spectra. From the NMR spectra of flavones **2a**–**z**, one can find some typical proton and carbon resonances, namely, those of H-3 (singlet at δ 6.36–6.86 ppm), C-3 (δ 160.9–167.0 ppm) and C-4 (δ 175.6–178.6 ppm). The C-4 assignment was based on their high-frequency value, since it is the most deshielded carbon atom of flavones **2a**–**z**, while that of C-3 was based on the correlation with H-3 in the HSQC of **2a**–**z**. The assignments of all carbon resonances of flavones **2a**–**z** were based on the analysis of the HSQC and HMBC spectra (Fig. 1, shows some of the typical connectivities found in their HMBC spectra).

Taking **2r** (3'-amino-2'-methyl-5-methoxyflavone) (Fig. 2(a)) as an example, we can identify in ¹H NMR spectra, four singlets at δ 2.21, δ 3.81, δ 4.01 and δ 6.36 ppm, corresponding to CH₃, NH₂, OCH₃ and H-3, respectively (Fig. 2(b)).

To confirm the assignments made from HSQC and COSY spectra and to deduce more information about the structure of flavone **2r**, a 2D HMBC spectrum was recorded (Fig. 3).

From this spectrum we can conclude that:

(i) the protons from the methoxyl group at δ 4.01 ppm show longrange correlation with the carbon resonance for C-5 at δ 159.8 ppm; (ii) the protons from the methyl group at δ 2.21 ppm show long-range correlations with the carbon resonances for C-3' at δ 145.4 ppm, C-1' at δ 130.3 ppm and C-2' at δ 120.5 ppm; (iii) H-3 signal at δ_{H-3} 6.36 ppm is correlated with the carbon resonances for C-2, C-1' and C-10, at δ 164.2 ppm, 130.3 ppm and 114.5 ppm, respectively. The C-10 signal is also correlated with the H-6 and H-8 resonances at δ 6.84 and 7.04 ppm. Unambiguous conectivities from these signals

2 a-z

Figure 1. Typical connectivities found in the flavones HMBC spectra.

i) SnCl₂.2H₂O, HCl (Conc); AcOH; 90 °C
 ii) HCO₂NH₄; Pd/C, MeOH, room temp.

					1				2		
	R ¹	R ²	R ³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	R ¹⁰	R ¹¹
a)	н	н	Н	NO ₂	Н	Н	Н	NH ₂	Н	Н	н
b)	н	н	н	н	NO ₂	н	н	н	NH ₂	н	н
c)	н	н	н	н	н	NO ₂	н	н	н	NH ₂	н
m)	н	н	н	Me	NO ₂	н	н	Me	NH ₂	н	н
n)	н	н	н	н	NO ₂	Me	н	н	NH ₂	Me	н
0)	н	н	н	н	NO ₂	н	NO ₂	н	NH ₂	н	NH ₂
d)	OMe	н	н	NO ₂	н	н	н	NH ₂	н	н	н
e)	OMe	н	н	н	NO ₂	н	н	н	NH ₂	н	н
ŋ	OMe	н	н	н	н	NO ₂	н	н	н	NH ₂	н
p)	OMe	н	н	н	NO ₂	Me	н	н	NH ₂	Me	н
q)	OMe	н	н	н	NO ₂	н	NO ₂	н	NH ₂	н	NH ₂
g)	н	OMe	NO ₂	н	н	н	н	NH ₂	н	н	н
h)	н	OMe	н	NO ₂	н	н	н	н	NH ₂	н	н
i)	н	OMe	н	н	NO ₂	н	н	н	н	NH ₂	н
r)	н	н	OMe	Me	NO ₂	н	н	Me	NH ₂	н	н
s)	н	н	OMe	н	NO ₂	Me	н	н	NH ₂	Me	н
t)	н	н	OMe	н	NO ₂	н	NO ₂	н	NH ₂	н	NH ₂
j)	OMe	н	OMe	NO ₂	н	н	н	NH ₂	н	н	н
k)	OMe	н	OMe	н	NO ₂	н	н	н	NH ₂	н	н
I)	OMe	н	OMe	н	н	NO ₂	н	н	н	NH ₂	н
u)	OMe	н	OMe	н	NO ₂	Me	н	н	NH ₂	Me	н
v)	OMe	н	OMe	н	NO ₂	н	NO ₂	н	NH ₂	н	NH ₂
x)	н	Br	н	NO ₂	н	н	н	NH ₂	н	н	н
y)	н	Br	н	н	NO ₂	н	н	н	NH ₂	н	н
w)	н	Br	н	н	н	NO ₂	н	н	н	NH ₂	н
z)	н	Br	н	н	NO ₂	н	NO ₂	н	NH ₂	н	NH ₂

Tabl	e Z. 'H NM	R chemical shift	s (ð, ppm), multip	ilicities and coupling	constants (J, Hz	:) tor compor	inds 2a-t and 2r	n-q					
	H-3	H-5	9-H	Н-7	H-8	H-2′	H-3′	H-4′	H-5′	/9-H	CH_3	OCH ₃	NH_2
a	6.79 s	8.23 dd	7.42 dt	7.70 dt	7.56 dd	I	7.23-7.26 m	7.29–7.31 m	6.83-6.87 m	7.29–7.31 m	I	I	3.92 s
	I	J = 1.7; 8.0	J = 1.0; 8.0	J = 1.7; 8.0	J = 1.0; 8.0	I	I	I	I	I	I	I	I
Ą	6.81 s	8.05 dd	7.50 dt	7.83 dt	7.72 dt	7.24 s	I	6.77–6.80 m	7.20-7.22 m	7.20–7.22 m	I	I	5.43 s
	I	J = 1.6; 7.8	J = 1.0; 7.8	J = 1.6; 7.8	J = 1.0; 7.8	I	I	I	I	I	I	I	I
J	6.74 s	8.00 dd	7.45 dt	7.76 ddd	7.71 dt	7.81 d	6.68 d	I	6.68 d	7.81 d	I	I	6.05 s
	I	J = 1.5; 7.7	J = 1.0; 7.7	J = 1.5; 7.7; 8.3	J = 1.0; 8.3	J = 8.7	J = 8.7	I	J = 8.7	J = 8.7	I	I	I
E	6.36 s	8.10 dd	7.50 t	7.80 dt	7.63 d	I	I	6.85 d	7.05 d	6.77 d	2.12 s	I	6.05 s
	I	J = 1.6; 7.8	J = 7.8	J = 1.6; 7.8	J = 7.8	I	I	J = 7.9	J = 7.9	J = 7.9	I	I	I
E	6.77 s	8.23 dd	7.41 t	7.69 ddd	7.55 d	7.23 s	I	I	7.18 d	7.27 d	2.24 s	I	3.83 s
	I	J = 1.4; 7.9	J = 7.9	J = 1.4; 7.9; 8.3	J = 8.3	I	I	I	J = 7.7	J = 7.7	I	I	I
0	6.58 s	8.04 dd	7.46–7.51 m	7.81 ddd	7.65 d	6.45 d	I	6.04 t	I	6.45 d	I	I	5.07 s
	I	J = 1.6; 7.7	I	J = 1.6; 7.7; 8.2	J = 8.2	J = 1.8	I	J = 1.8	I	J = 1.8	I	I	I
q	6.70 s	8.12 d	7.19 dd	I	6.97 d	I	7.00 d	7.31 t	6.84–6.90 m	7.28 d	I	3.29 s	Ι
	I	J = 8.8	J = 1.0; 8.8	I	J = 1.0	I	J = 7.0	J = 7.0	I	J = 7.9	I	I	I
e	6.71 s	8.13 d	7.00 dd	I	6.95 d	7.20 s	I	6.81–6.85 m	7.27–7.29 m	7.27–7.29 m	I	3.93 s	I
	I	J = 8.7	J = 2.3; 8.8	I	J = 2.3	I	I	I	I	I	I	I	I
f	6.63 s	7.89 d	7.00 d	I	7.23 s	7 <i>.</i> 77 d	6.67 d	I	6.67 d	7.77 d	I	3.89 s	6.00 s
	I	J = 8.3	J = 8.3	I	I	J = 8.0	J = 8.0	I	J = 8.0	J = 8.0	I	I	I
Ь	6.67 s	b 60.8	6.94 dt	I	6.90 d	7.14 s	I	I	7.13 d	7.19 dd	2.21 s	3.90 s	Ι
	I	J = 8.7	J = 2.3; 8.7	I	J = 2.3	I	I	I	J = 7.8	J = 1.8; 7.8	I	I	I
5	6.52 s	7.95 d	7.08 dd	I	7.15 d	6.45 d	I	6.04 t	I	6.45 d	I	3.93 s	5.07 s
	I	J = 8.8	J = 2.4; 8.8	I	J = 2.4	J = 1.8	I	J = 1.8	I	J = 1.8	I	I	Ι

1124

Table 3. ¹H NMR chemical shifts (δ , ppm), multiplicities and coupling constants (*J*, Hz) for compounds **2g–I** and **2r–v**

	H-3	H-6	H-7	H-8	H-2′	H-3′	H-4′	H-5′	H-6′	CH ₃	OCH ₃	OCH ₃	NH ₂
g	6.36 s	6.99 d	7.66 t	7.19 d	_	6.81 d	7.20 t	6.65 t	7.38	_	3.87 s	_	5.61 s
	-	J = 8.3	J = 8.3	J = 8.3	-	J = 7.8	J = 7.8	J = 7.8	J = 7.8	-	-	-	-
h	6.74 s	6.86 d	7.61 t	7.16 dd	7.24 t	-	7.30–7.32 m	6.85–6.87 m	7.30–7.32 m	-	4.04 s	-	-
	-	J = 8.4	J = 8.4	J = 0.8; 8.4	J = 1.5	-	_	_	_	-	_	_	-
i	6.55 s	6.95 d	7.65 t	7.22 dd	7.74 d	6.67 d	_	6.67 d	7.74 d	-	3.86 s	_	5.97 s
	-	J = 8.2	J = 8.2	J = 0.6; 8.2	J = 8.7	J = 8.7	_	J = 8.7	J = 8.7	-	-	_	-
r	6.36 s	6.84 d	7.56 t	7.04 dd	-	-	6.83 dd	7.13 t	6.93 dd	2.21 s	4.01 s	-	3.81 s
	-	J = 8.3	J = 8.3	J = 1.0; 8.3	_	-	J = 1.2; 7.6	J = 7.6	J = 1.2; 7.6	-	-	_	-
s	6.67 s	6.81 d	7.56 t	7.12 dd	7.19 d	-	-	7.16 d	7.23 dd	2.23 s	4.00 s	-	3.80 s
	-	J = 8.4	J = 8.4	J = 0.6; 8.4	J = 1.5	-	_	J = 7.8	J = 1.5; 7.8	-	-	-	-
t	6.39 s	6.99 d	7.69 t	7.15 d	6.40 d	-	6.02 t	_	6.40 d	-	3.87 s	_	5.05 s
	-	J = 8.3	J = 8.3	J = 8.3	J = 1.8	-	J = 1.8	-	J = 1.8	-	-	-	-
j	6.51 s	6.38 s	-	6.49 d	-	6.77 d	7.24–7.29 m	6.83 t	7.45 dd	-	3.89 s	3.95 s	-
	-	-	-	J = 1.7	-	J = 8.2	-	J = 7.6	J = 1.0; 7.6	-	-	-	-
k	6.63 s	6.37 d	-	6.56 d	7.16 s	-	6.81 dt	7.26 d	7.26 d	-	3.91 s	3.96 s	-
	-	J = 2.2	-	J = 2.2	-	-	J = 2.0; 6.8	J = 6.8	J = 6.8	-	-	-	_
1	6.46 s	6.45 d	-	6.80 d	7.72 d	6.66 d	-	6.66 d	7.72 d	-	3.81 s	3.88 s	5.93 s
	-	J = 1.9	-	J = 1.9	J = 8.6	J = 8.6	_	J = 8.6	J = 8.6	-	-	-	_
u	6.60 s	6.36 d	-	6.55 d	7.16 s	-	-	7.14 d	7.20 dd	2.22 s	3.90 s	3.95 s	-
	-	J = 2.3	-	J = 2.3	-	-	_	J = 7.9	J = 1.6; 7.9	-	-	-	_
\mathbf{v}	6.30 s	6.51 d	_	6.67 d	6.38 d	_	6.00 t	_	6.38 d	_	3.83 s	3.90	5.04 s
	-	J = 2.3	_	J = 2.3	J = 1.8	_	J = 1.8	-	J = 1.8	-	-	_	_

 Table 4. ¹H NMR chemical shifts (δ , ppm), multiplicities and coupling constants (J, Hz) for compounds 2x-z

	H-3	H-5	H-7	H-8	H-2′	H-3′	H-4′	H-5′	H-6′	NH_2
x	6.68 s	8.36 d	7.78 dd	7.41 d	_	6.79 dd	7.30 dt	6.86 dt	7.48 dd	4.39 s
	-	J = 2.5	J = 2.5; 8.9	J = 8.9	-	J = 1.0; 7.8	J = 1.5; 7.8	J = 1.0; 7.8	J = 1.5; 7.8	-
у	6.86 s	8.10 d	7.98 dd	7.72 d	7.22 d	_	7.20–7.22 m	6.78–6.80 m	7.20–7.22 m	5.43 s
	-	J = 2.6	J = 2.5; 8.9	J = 8.9	J = 1.1	_	_	-	-	-
w	6.70 s	8.34 d	7.75 dd	7.43 d	7.74 d	6.76 d	_	6.76d	7.74 d	4.14 s
	-	J = 2.5	J = 2.5; 8.9	J = 8.9	J = 8.7	J = 8.7	_	J = 8.7	J = 8.7	-
z	6.63 s	8.10 d	7.98 t	7.67 d	6.45 s	_	6.05 s	-	6.45 s	5.10 s
	-	J = 1.6	J = 8.8	J = 8.8	-	-	_	_	-	_

Table 5.	¹³ C NMR	chemical	shifts (δ,	ppm) for	compounds	2a-i and	d 2m–s
----------	---------------------	----------	------------	----------	-----------	----------	--------

	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-1′	C-2′	C-3′	C-4′	C-5′	C-6′	CH_3	OCH ₃
a	163.7	107.5	178.6	125.6	125.1	133.7	118.0	156.2	123.9	132.7	147.0	112.3	130.0	118.1	116.5	-	-
b	163.7	106.5	177.1	124.9	125.5	134.4	118.4	155.7	123.4	131.7	110.9	149.4	117.3	129.7	113.9	-	-
с	163.8	102.9	176.6	124.7	125.1	133.7	118.2	155.5	116.9	123.4	128.0	113.5	152.7	113.5	128.0	-	-
m	166.5	111.0	176.5	124.6	125.1	133.8	118.1	155.8	123.1	132.9	119.0	147.1	116.2	126.0	117.0	13.9	-
n	163.2	106.3	177.8	124.9	124.3	132.9	117.3	155.5	123.3	129.1	111.3	125.5	144.4	130.3	115.9	16.8	-
0	164.6	106.0	176.9	124.8	125.4	134.2	118.2	155.6	123.4	132.0	100.7	149.8	102.8	149.8	100.7	-	-
d	163.3	107.4	177.9	127.0	114.3	164.0	100.3	158.0	117.5	132.8	146.9	112.2	129.9	118.0	116.4	-	55.8
e	162.6	106.8	177.2	126.3	113.6	163.4	99.7	157.3	117.1	132.2	111.5	146.2	117.2	129.2	115.7	-	55.1
f	163.5	100.8	176.1	126.0	114.1	163.5	102.7	157.3	117.2	117.2	127.8	113.5	152.5	113.5	127.8	-	55.1
p	163.4	106.6	177.8	126.7	114.1	163.9	100.2	157.8	117.7	130.3	111.8	126.1	145.1	130.8	116.2	17.4	55.7
q	164.3	105.9	176.4	126.3	114.7	163.9	100.6	157.5	117.2	132.1	100.6	149.9	102.7	149.9	100.6	-	-
g	162.2	111.1	176.4	159.1	107.1	134.0	110.2	157.9	113.8	115.0	147.1	116.7	131.7	116.2	129.3	-	56.2
h	161.3	109.0	178.4	159.5	106.3	133.6	110.1	158.3	114.6	132.4	112.1	146.9	116.3	117.9	129.9	-	56.5
i	161.7	104.9	176.7	159.4	107.4	134.2	110.3	157.9	114.1	117.1	128.1	113.9	152.8	113.9	128.1	-	56.5
r	164.2	113.7	178.2	159.8	106.3	133.7	110.2	158.6	114.5	130.3	120.5	145.4	117.1	120.7	119.6	14.3	56.5
s	161.5	108.5	178.5	159.7	106.3	133.5	110.2	158.3	114.6	130.1	111.9	145.0	126.1	131.0	116.4	17.7	56.5

Figure 3. HMBC NMR spectra of 3'-amino-2'-methyl-5-methoxyflavone (2r) in CDCl3.

were also demonstrated by the HMBC spectra, as the signal that appears as a double doublet at δ 7.04 ppm is correlated with the carbon resonance for C-9 at δ 158.6 ppm. The correlation involved in the exchangeable proton H-8 provides the correct attribution of this signal (${}^{3}J_{\rm H7-H8}$ 8.3 Hz, ${}^{4}J_{\rm H6-H8}$ 1.0 Hz); (iv) H-6' signal at δ 6.93 ppm shows a long-range correlation with the carbon resonance for C-2' at δ 120.5 ppm and C-2 at δ 164.2 ppm.

Acknowledgements

The authors acknowledge the financial support of FEDER, FCT-Portugal, Research Unit of Chemistry in Vila Real (POCTI-SFA-3-616) and Research Unit 62/94 'Química Orgânica, Produtos Naturais e Agro-Alimentares', Aveiro.

REFERENCES

- 1. Middleton E Jr, Kandaswami C, Theoharides TC. *Pharmacol. Rev.* 2000; **52**: 673.
- 2. Harborne JB, Williams CA. Phytochemistry 2000; 55: 481.
- 3. Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. *Am. J. Clin. Nutr.* 2001; **74**: 418.

- 4. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Med. Res. Rev. 2003; 23: 519.
- Borges ML, Matos OC, Pais I, Melo JS, Ricardo CP, Maçanita AL, Becker RS. Pestic. Sci. 2002; 44: 155.
- Silva AMS, Weidenbörner M, Cavaleiro JASC. Mycol. Res. 1998; 102: 638.
- Borges M, Romão A, Matos O, Marzano C, Caffieri S, Becker RS, Maçanita AL. Photochem. Photobiol. 2002; 75: 97.
- 8. Pietta PG. J. Nat. Prod. 2000; 63: 1035.
- 9. Rice-Evans CA. Curr. Med. Chem. 2001; 8: 797.
- Bohm BA. In *The Flavonoids Advances in Research Since 1986*, Harborne JB (ed.). Chapman and Hall: London, 1994.
- Recanatini M, Bisi A, Cavalli A, Belluti F, Gobli S, Rampa A, Valenti P, Palzer M, Palusczak A, Hartmann R. J. Med. Chem. 2001; 44: 672.
- Beudot C, De Méo MP, Dauzonne D, Elias R, Laget M, Guiraud H, Blansard G, Duménil G. Mut. Res. 1998; 417: 141.
- 13. Akama T, Shida Y, Sugaya T, Ishida H, Gomi K, Kasai M. J. Med. Chem. 1996; **39**: 3461.
- 14. Barros AIRNA, Silva AMS. Monatsh. Chem. (In press).

1127