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Twenty-six new aminoflavones have been synthesised
by two different methods and the structure elucidation
was accomplished using extensive 1D (1H, 13C) and 2D
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INTRODUCTION

During the past decades, there has been a growing interest in the
search for biologically active compounds. Synthesis of flavones and
their derivatives have attracted considerable attention owing to
their significant pharmaceutical,1–4 biocidal5–7 and antioxidant8,9

activities.
Flavones (2-phenylchromones) are one of the most important

classes of natural compounds belonging to the flavonoid family.10

Recently, it has been reported that some synthetic aminoflavones
are potential antineoplastic agents11 and have been proved to be
antimutagenic in the Ames test using different species of mutagens.12

They also exhibit potent cytotoxicity against human breast cancer.13

Taking into account the potential biological applications of
flavones, especially those having amino-substituents, we decided to
devote some attention to the reduction of five series of nitroflavones
once synthesised.14 Compounds 2a–z were prepared by two
different methods: (i) ammonium formate, Pd/C, using methanol
as solvent; (ii) SnCl2.2H2O/HCl, using acetic acid as solvent.

In this paper, we present the synthesis of aminoflavones, and
unambiguous structural elucidation of compounds 2a–z by one-
dimensional (1D) and two-dimensional (2D) NMR experiments.

EXPERIMENTAL

The 1H and 13C NMR spectra were recorded at 25 °C for ¾5-mg
samples dissolved in 0.5 ml of CDCl3 or DMSO-d6 in 5-mm NMR
tubes, using a Bruker DRX 300 spectrometer (300.13 for 1H and 75.47
for 13C). Chemical shifts (υ) were reported in ppm and coupling
constants (J) in Hz. The internal standard was TMS. The Fourier
transform NMR measurement conditions were as follows: for 1H
NMR, pulse with 3.4 µs, acquisition time 2.7 s, pulse angle 30° and
number of scans 80; for 13C NMR, pulse with 1.7 ms, acquisition
time 0.8 s, pulse angle 30°, number of scans 6144 and number of data
points 16 384. Unequivocal 13C assignments were made with the aid
of 2D gHSQC and gHMBC (delays for one bond and long-range
J C/H couplings were optimised for 147 and 7 Hz, respectively)
experiments.

Materials
The syntheses for compounds 1a–z have been published elsewhere.14

Once the nitroflavones 1a–z were obtained, the two reduction
methods were applied in the synthesis of new derivatives of flavones,
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with amino substituents on the B ring, with the purpose of verifying
which of them was more adequate in terms of yields and practical
execution (Table 1).

Comparing the two synthetic pathways to obtain aminoflavones
2a–z, one can conclude that: (i) the approach involving ammonium
formate, Pd/C, is generally more favourable, in terms of yields and
practical execution; for these reasons, it was the method applied
to all compounds, and the method using stannous chloride only
applied to the first series of compounds (without substituents on
the A ring); (ii) the diamino derivatives were obtained in lower
yields than the other derivatives (49–58%); (iii) orto-aminoflavones
were obtained in moderate yields (59–69%), with the exception
of 20-amino-6-bromoflavone 2x, which was obtained in 80% of
the yield; all the other derivatives were obtained in similar
yields; meta-aminoflavones 2b, 2e, 2h and 2k (68–79%); para-
aminoflavones 2c, 2f, 2i and 2l (64–76%); 30-amino-20-methylflavones
2m, 2r (64–70%); 30-amino-40-methylflavones 2p, 2n, 2s and 2u
(65–79%).

RESULTS AND DISCUSSION

The full characterisation of compounds 2a–z is presented in
Tables 2–5. The compounds are grouped in five different series.

The 1H NMR spectra of the compounds were well resolved and
the unambiguous proton chemical-shift assignments were based
on the multiplicity pattern of proton resonances and also on the
use of homonuclear 1H–1H COSY spectra. From the NMR spectra
of flavones 2a–z, one can find some typical proton and carbon
resonances, namely, those of H-3 (singlet at υ 6.36–6.86 ppm), C-3 (υ
160.9–167.0 ppm) and C-4 (υ 175.6–178.6 ppm). The C-4 assignment
was based on their high-frequency value, since it is the most
deshielded carbon atom of flavones 2a–z, while that of C-3 was based
on the correlation with H-3 in the HSQC of 2a–z. The assignments
of all carbon resonances of flavones 2a–z were based on the analysis
of the HSQC and HMBC spectra (Fig. 1, shows some of the typical
connectivities found in their HMBC spectra).

Taking 2r (30-amino-20-methyl-5-methoxyflavone) (Fig. 2(a)) as
an example, we can identify in 1H NMR spectra, four singlets at
υ 2.21, υ 3.81, υ 4.01 and υ 6.36 ppm, corresponding to CH3, NH2,
OCH3 and H-3, respectively (Fig. 2(b)).

To confirm the assignments made from HSQC and COSY spectra
and to deduce more information about the structure of flavone 2r, a
2D HMBC spectrum was recorded (Fig. 3).

From this spectrum we can conclude that:
(i) the protons from the methoxyl group at υ 4.01 ppm show long-

range correlation with the carbon resonance for C-5 at υ 159.8 ppm;
(ii) the protons from the methyl group at υ 2.21 ppm show long-range
correlations with the carbon resonances for C-30 at υ 145.4 ppm, C-
10 at υ 130.3 ppm and C-20 at υ 120.5 ppm; (iii) H-3 signal at υH�3
6.36 ppm is correlated with the carbon resonances for C-2, C-10 and
C-10, at υ 164.2 ppm, 130.3 ppm and 114.5 ppm, respectively. The
C-10 signal is also correlated with the H-6 and H-8 resonances at
υ 6.84 and 7.04 ppm. Unambiguous conectivities from these signals
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Figure 1. Typical connectivities found in the flavones HMBC spectra.
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Table 1. Aminoflavones synthesis pathways from the correspondent nitroflavones
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Table 3. 1H NMR chemical shifts (υ, ppm), multiplicities and coupling constants (J, Hz) for compounds 2g–l and 2r–v

H-3 H-6 H-7 H-8 H-20 H-30 H-40 H-50 H-60 CH3 OCH3 OCH3 NH2

g 6.36 s 6.99 d 7.66 t 7.19 d – 6.81 d 7.20 t 6.65 t 7.38 – 3.87 s – 5.61 s
– J D 8.3 J D 8.3 J D 8.3 – J D 7.8 J D 7.8 J D 7.8 J D 7.8 – – – –

h 6.74 s 6.86 d 7.61 t 7.16 dd 7.24 t – 7.30–7.32 m 6.85–6.87 m 7.30–7.32 m – 4.04 s – –
– J D 8.4 J D 8.4 J D 0.8; 8.4 J D 1.5 – – – – – – – –

i 6.55 s 6.95 d 7.65 t 7.22 dd 7.74 d 6.67 d – 6.67 d 7.74 d – 3.86 s – 5.97 s
– J D 8.2 J D 8.2 J D 0.6; 8.2 J D 8.7 J D 8.7 – J D 8.7 J D 8.7 – – – –

r 6.36 s 6.84 d 7.56 t 7.04 dd – – 6.83 dd 7.13 t 6.93 dd 2.21 s 4.01 s – 3.81 s
– J D 8.3 J D 8.3 J D 1.0; 8.3 – – J D 1.2; 7.6 J D 7.6 J D 1.2; 7.6 – – – –

s 6.67 s 6.81 d 7.56 t 7.12 dd 7.19 d – – 7.16 d 7.23 dd 2.23 s 4.00 s – 3.80 s
– J D 8.4 J D 8.4 J D 0.6; 8.4 J D 1.5 – – J D 7.8 J D 1.5; 7.8 – – – –

t 6.39 s 6.99 d 7.69 t 7.15 d 6.40 d – 6.02 t – 6.40 d – 3.87 s – 5.05 s
– J D 8.3 J D 8.3 J D 8.3 J D 1.8 – J D 1.8 – J D 1.8 – – – –

j 6.51 s 6.38 s – 6.49 d – 6.77 d 7.24–7.29 m 6.83 t 7.45 dd – 3.89 s 3.95 s –
– – – J D 1.7 – J D 8.2 – J D 7.6 J D 1.0; 7.6 – – – –

k 6.63 s 6.37 d – 6.56 d 7.16 s – 6.81 dt 7.26 d 7.26 d – 3.91 s 3.96 s –
– J D 2.2 – J D 2.2 – – J D 2.0; 6.8 J D 6.8 J D 6.8 – – – –

l 6.46 s 6.45 d – 6.80 d 7.72 d 6.66 d – 6.66 d 7.72 d – 3.81 s 3.88 s 5.93 s
– J D 1.9 – J D 1.9 J D 8.6 J D 8.6 – J D 8.6 J D 8.6 – – – –

u 6.60 s 6.36 d – 6.55 d 7.16 s – – 7.14 d 7.20 dd 2.22 s 3.90 s 3.95 s –
– J D 2.3 – J D 2.3 – – – J D 7.9 J D 1.6; 7.9 – – – –

v 6.30 s 6.51 d – 6.67 d 6.38 d – 6.00 t – 6.38 d – 3.83 s 3.90 5.04 s
– J D 2.3 – J D 2.3 J D 1.8 – J D 1.8 – J D 1.8 – – – –

Table 4. 1H NMR chemical shifts (υ, ppm), multiplicities and coupling constants (J, Hz) for compounds 2x–z

H-3 H-5 H-7 H-8 H-20 H-30 H-40 H-50 H-60 NH2

x 6.68 s 8.36 d 7.78 dd 7.41 d – 6.79 dd 7.30 dt 6.86 dt 7.48 dd 4.39 s
– J D 2.5 J D 2.5; 8.9 J D 8.9 – J D 1.0; 7.8 J D 1.5; 7.8 J D 1.0; 7.8 J D 1.5; 7.8 –

y 6.86 s 8.10 d 7.98 dd 7.72 d 7.22 d – 7.20–7.22 m 6.78–6.80 m 7.20–7.22 m 5.43 s
– J D 2.6 J D 2.5; 8.9 J D 8.9 J D 1.1 – – – – –

w 6.70 s 8.34 d 7.75 dd 7.43 d 7.74 d 6.76 d – 6.76d 7.74 d 4.14 s
– J D 2.5 J D 2.5; 8.9 J D 8.9 J D 8.7 J D 8.7 – J D 8.7 J D 8.7 –

z 6.63 s 8.10 d 7.98 t 7.67 d 6.45 s – 6.05 s – 6.45 s 5.10 s
– J D 1.6 J D 8.8 J D 8.8 – – – – – –

Table 5. 13C NMR chemical shifts (υ, ppm) for compounds 2a–i and 2m–s

C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-10 C-20 C-30 C-40 C-50 C-60 CH3 OCH3

a 163.7 107.5 178.6 125.6 125.1 133.7 118.0 156.2 123.9 132.7 147.0 112.3 130.0 118.1 116.5 – –
b 163.7 106.5 177.1 124.9 125.5 134.4 118.4 155.7 123.4 131.7 110.9 149.4 117.3 129.7 113.9 – –
c 163.8 102.9 176.6 124.7 125.1 133.7 118.2 155.5 116.9 123.4 128.0 113.5 152.7 113.5 128.0 – –
m 166.5 111.0 176.5 124.6 125.1 133.8 118.1 155.8 123.1 132.9 119.0 147.1 116.2 126.0 117.0 13.9 –
n 163.2 106.3 177.8 124.9 124.3 132.9 117.3 155.5 123.3 129.1 111.3 125.5 144.4 130.3 115.9 16.8 –
o 164.6 106.0 176.9 124.8 125.4 134.2 118.2 155.6 123.4 132.0 100.7 149.8 102.8 149.8 100.7 – –
d 163.3 107.4 177.9 127.0 114.3 164.0 100.3 158.0 117.5 132.8 146.9 112.2 129.9 118.0 116.4 – 55.8
e 162.6 106.8 177.2 126.3 113.6 163.4 99.7 157.3 117.1 132.2 111.5 146.2 117.2 129.2 115.7 – 55.1
f 163.5 100.8 176.1 126.0 114.1 163.5 102.7 157.3 117.2 117.2 127.8 113.5 152.5 113.5 127.8 – 55.1
p 163.4 106.6 177.8 126.7 114.1 163.9 100.2 157.8 117.7 130.3 111.8 126.1 145.1 130.8 116.2 17.4 55.7
q 164.3 105.9 176.4 126.3 114.7 163.9 100.6 157.5 117.2 132.1 100.6 149.9 102.7 149.9 100.6 – –
g 162.2 111.1 176.4 159.1 107.1 134.0 110.2 157.9 113.8 115.0 147.1 116.7 131.7 116.2 129.3 – 56.2
h 161.3 109.0 178.4 159.5 106.3 133.6 110.1 158.3 114.6 132.4 112.1 146.9 116.3 117.9 129.9 – 56.5
i 161.7 104.9 176.7 159.4 107.4 134.2 110.3 157.9 114.1 117.1 128.1 113.9 152.8 113.9 128.1 – 56.5
r 164.2 113.7 178.2 159.8 106.3 133.7 110.2 158.6 114.5 130.3 120.5 145.4 117.1 120.7 119.6 14.3 56.5
s 161.5 108.5 178.5 159.7 106.3 133.5 110.2 158.3 114.6 130.1 111.9 145.0 126.1 131.0 116.4 17.7 56.5

Copyright  2006 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2006; 44: 1122–1127
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(a) (b)

Figure 2. 1H NMR spectra of 30-amino-20-methyl-5-methoxyflavone (2r) in CDCl3.

Figure 3. HMBC NMR spectra of 30-amino-20-methyl-5-methoxyflavone (2r) in CDCl3.
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were also demonstrated by the HMBC spectra, as the signal that
appears as a double doublet at υ 7.04 ppm is correlated with the
carbon resonance for C-9 at υ 158.6 ppm. The correlation involved in
the exchangeable proton H-8 provides the correct attribution of this
signal (3JH7–H8 8.3 Hz, 4JH6–H8 1.0 Hz); (iv) H-60 signal at υ 6.93 ppm
shows a long-range correlation with the carbon resonance for C-20 at
υ 120.5 ppm and C-2 at υ 164.2 ppm.
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