Alkylations of Chiral, Phosphoryl- and Thiophosphoryl-Stabilized Carbanions

Scott E. Denmark* and Chien-Tien Chen

Contribution from the Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Received April 20, 1995[®]

Abstract: A general method for the preparation of enantiomerically enriched phosphonic acids and phosphonates with three different α -substitution patterns (aryl, alkyl, and alkoxy) has been developed. Anions derived from enantiomerically enriched thiophosphonamidates (2-thioxo-1,3,2-oxazaphosphorinanes) underwent smooth electrophilic substitutions with excellent diastereoselectivity for both cis and trans stereoisomers. Highly enantioselective synthesis of α -alkoxyphosphonates in either antipodal form can be achieved by the employment of highly diastereoselective alkylation with anions derived from the corresponding *P*-methoxymethyl analogs in the presence of HMPA or PMDTA. Implications for the aggregation states and reactive conformations of the anions are discussed.

Introduction

Over the last two decades, the synthesis and utilization of phosphonic acids and phosphonate derivatives have emerged as areas of significant research interest. The potential for metabolic regulation (or inhibition), the interest in understanding microbial degradation pathways, and the use of phosphonates as possible surrogates for the corresponding phosphates and carboxylates highlight their importance in biological systems.¹ Particularly, those phosphonates possessing an α -amino substituent have been shown to exhibit significant biological activity.² Since it has been shown that the biological activity is highly dependent on the absolute configuration,³ the asymmetric synthesis of α -substituted phosphonates is highly desirable for the evaluation of their action and of structure-activity relationships. Apart from reports that employ resolution technologies⁴ or enzymes,⁵ methods relying on the creation of the α -stereocenter in an asymmetric process have received attention only recently.

The application of phosphoryl-stabilized carbanions in carbonyl olefinations has achieved tremendous prominence in organic synthesis.⁶ However, efforts aimed at developing the chemistry of these species not related to the olefin formation (e.g., electrophilic addition, substitution, and rearrangement) has been meager by comparison. In recent years, the potential for asymmetric variation at phosphorus has been recognized and explored to effect stereoselective asymmetric transformations in the context of carbonyl and imine additions, Michael additions, rearrangements, and olefination.⁷ In addition to these advances, a limited number of investigations have appeared in the literature documenting electrophilic substitutions in a chiral environment. The asymmetric alkylations of anions derived from chiral phosphine oxides,⁸ phosphonates,⁹ phosphonamides,¹⁰ phosphonamidates,¹¹ and Schiff bases¹² have been investigated and have individual advantages in many situations. However, many of these methods have lacked general ap-

(11) Sting, M.; Steglich, W. Synthesis 1990, 132.

[®] Abstract published in Advance ACS Abstracts, November 1, 1995.

 ⁽a) The Role of Phosphonates in Living Systems; Hilderbrand, R. L.,
 Ed.; CRC Press: Boca Raton, FL, 1983. (b) Corbridge, D. E. C.
 Phosphorus—An Outline of its Chemistry, Biochemistry and Uses, 5th ed.;
 Elsevier: New York, 1995; Chapter 3. (c) Engel, R. Chem. Rev. 1977, 77, 349. (d) Avila, L. Z.; Bishop, P. A.; Frost, J. W. J. Am. Chem. Soc. 1991, 113, 2242. (e) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Tetrahedron Lett. 1990, 39, 5587, 5591. (f) Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625.

^{(2) (}a) Kukhar³, V. P.; Solodenko, V. A. Russ. Chem. Rev. **1987**, 56, 859. (b) Afarinkia, K.; Rees, C. W.; Cadogan, J. I. G. Tetrahedron **1990**, 46, 7175. (c) Dhawan, B.; Redmore, D. Phosphorus Sulfur Relat. Elem. **1987**, 32, 119. (d) Kafarski, P.; Lejczak, B. Phosphorus Sulfur Silicon Relat. Elem. **1991**, 63, 193.

^{(3) (}a) Kametani, J.; Kigasawa, K.; Huragi, M.; Wakisaka, K.; Maga, S.; Sugi, H.; Tanigawa, K.; Susuki, Y.; Fukawa, K.; Trino, O.; Saita, O.; Yamabe, S. *Heterocycles* **1981**, *16*, 1205. (b) Atherton, F. R.; Hall, M. J.; Hassalt, C. H.; Lambert, R. W.; Jloyd, W. J.; Ringrose, P. S. *Antimicrob. Agents Chemother.* **1979**, *15*, 696. (c) Atherton, F. R.; Hall, M. J.; Hassalt, C. H.; Lambert, R. W.; Ringrose, P. S. Antimicrob. Agents Chemother. **1979**, *15*, 677. (d) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambort, R. W.; Nisbet, L. J.; Ringrose, P. S. Antimicrob. Agents Chemother. **1979**, *15*, 684.

^{(4) (}a) Kafarski, P.; Lejczak, B.; Szewczyk, J. Can. J. Chem. 1983, 61, 2425.
(b) Glowiak, T.; Sawaka-Dobrowolska, W.; Kowalik, J.; Mastalerz, P.; Soroka, M.; Zon, J. Tetrahedron Lett. 1977, 3965.
(c) Zon, J. Polish J. Chem. 1981, 55, 643.
(d) Gilmore, W. F.; McBride, M. A. J. Am. Chem. Soc. 1973, 95, 4361.
(e) Hoffman, M. Polish J. Chem. 1978, 52, 851.
(g) Kotynski, A. K.; Stec, W. J. Chem. Res. 1978, 41.

⁽⁵⁾ Telegdi, J.; Morovcsik, E.; Otvos, L. Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod., [Proc.], 1st 1981, 3, 221; Chem. Abstr. 1981, 97, 87977y.

^{(6) (}a) Walker, B. J. In Organophosphorus Reagents in Organic Synthesis; Cadogan, J. I. G., Ed.; Academic Press: New York, 1979; Chapter 3. (b) Wadsworth, W. S., Jr. Org. React. **1977**, 25, 73. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. **1989**, 89, 863. (d) Kelly, S. E. In Comprehensive Organic Synthesis, Additions to C-X π Bonds; Schreiber, S. L., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 1, Part 1, Chapter 3.1. (e) Vedejs, E.; Peterson, M. J. Top. Stereochem. **1994**, 21, 1.

^{(7) (}a) Denmark, S. E.; Reed, R. W.; Chen, C.-T. In Advances in Carbanion Chemistry; Snieckus, V., Ed.; JAI Press Inc.: Connecticut, 1995; Vol. 2, Chapter 4. (b) Kukhar', V. P.; Svistunova, N. Y.; Solodenko, V. A.; Soloshonok, V. A. Russ. Chem. Rev. 1993, 62, 261. For asymmetric Michael addition, see: (c) Hanessian, S.; Gomtsyan, A.; Payne, A.; Hervé, Y.; Beaudoin, S. J. Org. Chem. 1993, 58, 5032 and references therein. For asymmetric olefination, see: (d) Denmark, S. E.; Chen, C.-T. J. Am. Chem. Soc. 1992, 114, 10674 and references therein. (e) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 4929. (f) Musierowicz, S.; Wróblewski, A.; Krawczyk, H. Tetrahedron Lett. 1975, 437. (g) Hanessian, S.; Beaudoin, S. Tetrahedron Lett. 1992, 33, 7655, 7659. (h) Narasaka, K.; Hidai, E.; Hayashi, Y.; Gras, J.-L. J. Chem. Soc., Chem. Commun. 1993, 102. (i) Tanaka, K.; Ohta, Y.; Fuji, K. Tetrahedron Lett. 1993, 34, 4071. (j) Kann, N.; Rein, T. J. Org. Chem. 1993, 58, 3802. (8) (a) Pietrusiewicz, K. M.; Zablocka, M. Tetrahedron Lett. 1989, 30,

^{(8) (}a) Pietrusiewicz, K. M.; Zablocka, M. Tetrahedron Lett. **1989**, 30, 477. (b) Pietrusiewicz, K. M.; Zablocka, M.; Wisniewski, W. Phosphorus Sulfur Silicon Relat. Elem. **1990**, 49/50, 263. (c) Kawashima, T.; Yuzawa, Y.; Inamoto, N. Phosphorus Sulfur Silicon Relat. Elem. **1991**, 60, 21.

^{(9) (}a) Bartlett, P. A.; McLaren, K. L. Phosphorus Sulfur Relat. Elem. 1987, 33, 1. (b) Sawamura, N.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, 30, 2247. (c) Togni, A.; Pastor, S. D. Tetrahedron Lett. 1989, 30, 1071.

^{(10) (}a) Hanessian, S.; Bennani, Y. L.; Delorme, D. *Tetrahedron Lett.* **1990**, *31*, 6461, 6165. (b) Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y. J. Am. Chem. Soc. **1984**, *106*, 5754. (c) Hanessian, S.; Bennani, Y. L.; Hervé, Y. Synlett **1993**, 35.

plicability and the levels of asymmetric induction have been highly electrophile dependent. To date, the synthesis of alkylphosphonic acids in either antipodal form by the alkylation of C_2 -symmetric bicyclic phosphonamides derived from 1,2cyclohexanediamine seems most promising in this respect.¹⁰

In striking contrast to the well-developed chemistry of phosphoryl-stabilized carbanions, there have been sparingly few reports associated with the chemistry of thiophosphoryl (P=S)-stabilized carbanions. In most instances, they have been utilized as complementary reagents to the corresponding phosphoryl analogs to effect stereoselective olefination¹³ and alkylation.¹⁴ Their potential availability for asymmetric transformation notwithstanding, there existed only one study documenting the utility of chiral phosphinothioic amide-stabilized carbanions in diastereoselective addition to racemic α -substituted ketones.¹⁵

Background

For the last decade, efforts aimed at elucidating the electronic nature of phosphoryl and thiophosphoryl bonds have led to seemingly diverse conclusions.¹⁶ Three limiting bonding scenarios can be envisioned for describing the electron distribution between phosphorus and a chalcogen which differ in the formal designation of electron pair sharing and multiple bonds. Any such discussion, must bear in mind that the fortuitous correspondence between bond strength and number of electron pairs exists only among second-row elements and breaks down for lower rows. The P–O bond contains three electron pairs but has a bond strength of approximately two. Experimental evidence indicates a strong, short, and polar P–O bond with a bond order of greater than two and a somewhat weaker and less polar P–S bond with a bond order less than two.¹⁷

We have recently completed a comprehensive computational comparison of phosphoryl- and thiophosphoryl-stabilized carbanions and of the energetic and structural consequences of P-C bond rotation in acyclic and cyclic methylphosphonic and methylthioxophosphonic anions.¹⁸ With electronegative elements bonded to phosphorus, the carbon substituents are oriented parallel to the P=X axis in the acyclic as well as in the cyclic compounds. This arrangement is corroborated by solution

(18) (a) Kranz, M.; Denmark, S. E. J. Org. Chem. **1995**, 60, 5867. (b) Kranz, M.; Swiss, K. A.; Wilson, S. R.; Denmark, S. E. Manuscript submitted.

Scheme 1

(NMR) and solid state (X-ray analysis) structures of the sixmembered phosphorinanes (vide infra). The carbon lone pair is mainly stabilized by interaction with the σ^* (P-Y) orbitals. In the transition state (TS) structures, the carbanion is strongly pyramidalized and the lone pair is oriented parallel to the P=X axis. The major stabilization of the carbon lone pair is through

the σ^* (P=X) orbital. The different orientations of the amino groups in the acyclic systems yield a small difference (0.3 kcal/ mol at MP4(SDQ)/6-31+G*//6-31+G* + ZPE) between P-C bond rotational barriers for the P=O and P=S species. However, in the difluoride and the cyclic systems, the activation barrier for P-C bond rotation is 1.8-2.4 kcal/mol higher for the P=S compared to the P=O compounds. A difference of 3.1 kcal/mol has been determined by variable-temperature NMR methods.¹⁹ A detailed analysis of the electronic interactions evokes a superior ground state stabilization in the P=S compared to the P=O derivatives as the cause for the higher sulfur TS energies. This is supported by the isodesmic equation (eq 1) which yields a 5-8 kcal/mol stronger carbanion-stabilizing effect for the thio species.^{18a} This leads to the prediction that thiophosphoryl anions should be more stable (i.e., stronger CH acids) than their phosphoryl counterparts.

$$CH_3 - P(X)(Y)_2 + CH_3^- \rightarrow CH_2 - P(X)(Y)_2 + CH_4$$
(1)
(Y)₂ = NH₂, F, NH(CH₂)_{2/3}HN; X = O, S

There are very few direct experimental comparisions between phosphoryl- and thiophosphoryl-stabilized anions. In one, pK_A determinations (THF) have shown that the lithium salts of a phosphonate²⁰ and phosphine oxides²¹ are more acidic than their thio analogs, which is inconsistent with the theoretical findings mentioned above. This apparent contradiction can be understood in terms of the neglected gegenion effect in eq 1 due to a stronger heteroatom-lithium contact compared to the C-Li interaction.²² Indeed, if the counterion is included in the isodesmic equation, a distinct preference (ca. 10 kcal/mol) for the phosphoryl-stabilized carbanions emerges.^{18a} In a second comparison, exclusive formation of alkenylphosphine sulfide **2** (64-76%) has been observed in an intramolecular competitive olefination of unsymmetrical methylenebis(phosphine) chalcogenide K⁺1⁻²³ Scheme 1.

This dramatic reactivity difference was further substantiated in an intermolecular competition experiment reported by Juaristi

^{(12) (}a) Schöllkopf, U.; Schütze, R. Liebigs Ann. Chem. 1987, 45. (b) Jacquier, R.; Ouazzani, F.; Roumestant, M.-L.; Viallefont, P. Phosphorus Sulfur Relat. Elem. 1988, 36, 73. (c) Ferrari, M.; Jommi, G.; Miglierini, G.; Pagliarin, R.; Sisti, M. Synth. Commun. 1992, 22, 107. (d) McCleery, P. P.; Tuck, B. J. Chem. Soc., Perkin Trans. 1 1989, 1319.

^{(13) (}a) Goli, M. B.; Grim, S. O. Tetrahedron Lett. 1991, 32, 3631. (b)
Michalski, J.; Musierowicz, S. Tetrahedron Lett. 1964, 1187. (c) Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654. (d) Johnson, C. R.; Elliott, R. C. J. Am. Chem. Soc. 1982, 104, 7041. (e) Yoshifuji, M.; Ishizuka, T.; Choi, Y. J.; Inamoto, N. Tetrahedron Lett. 1984, 25, 553. (f)
Juaristi, E.; Gordillo, B.; Valle, L. Tetrahedron 1986, 42, 1963. (g) Gloyna, D.; Henning, H. G. Angew. Chem., Int. Ed. Engl. 1966, 5, 847. (h)
Kawashima, T.; Ishii, T.; Inamoto, N. Bull. Chem. Soc. Jpn. 1987, 60, 1831.
(i) Henning, H. G.; Gloyna, D. Z. Chem. 1966, 6, 28. (j) Kabachnik, M. I.;
Medved, T. Y.; Matrosov, E. I. Proc. Acad. Sci. USSR, Chem. Sect. 1975, 160-165, 460.

⁽¹⁴⁾ Varlet, J.-M.; Collignon, N.; Savignac, P. Can. J. Chem. 1979, 57, 3216.

⁽¹⁵⁾ Johnson, C. R.; Elliott, R. C.; Meanwell, N. A. Tetrahedron Lett. 1982, 23, 5005.

⁽¹⁶⁾ An exhaustive discussion of the bonding picture in phosphine chalcogens can be found in: Gilheany, D. G. Chem. Rev. **1994**, 94, 1339. See also: (a) Schmidt, M. W.; Gordon, M. S. J. Am. Chem. Soc. **1985**, 107, 1922. (b) Schmidt, M. W.; Gordon, M. S. Can. J. Chem. **1985**, 63, 1609. (c) Boatz, J. A.; Gordon, M. S. J. Comput. Chem. **1986**, 7, 306. (d) Basch, H.; Krauss, M.; Stevens, W. J. J. Mol. Struct. (THEOCHEM) **1991**, 235, 277.

⁽¹⁷⁾ Gilheany, D. G. In *The Chemistry of Organophosphorus Compounds*; Hartley, F. R., Ed.; Wiley-Interscience: Chichester, U.K., 1992; Vol. 2, Chapter 1.

⁽¹⁹⁾ Cramer, C. J.; Denmark, S. E.; Miller, P. C.; Dorow, R. L.; Swiss, K. A.; Wilson, S. R. J. Am. Chem. Soc. 1994, 116, 2437.

⁽²⁰⁾ Teluade, M.-P.; Savignac, P.; Aboujaoude, E. E.; Collignon, N. J. Organomet. Chem. 1986, 312, 283.

⁽²¹⁾ Juaristi, E.; Gordillo, B.; Valle, L. Tetrahedron 1986, 42, 1963.

⁽²²⁾ Schleyer, P. v. R.; Clark, T.; Kos, A. J.; Spitznagel, G. W.; Rohde, C.; Arad, D.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 6467.

^{(23) (}a) Gloyna, D.; Henning, H. G. Angew. Chem., Int. Ed. Engl. 1966, 5, 847. (b) Henning, H. G.; Gloyna, D. Z. Chem. 1966, 6, 28.

Scheme 2

Figure 1. Phosphoryl- and thiophosphoryl-stabilized carbanionic reagents.

and co-workers.²¹ Combination of 1 equiv each of 2-diphenylphosphinoyl and 2-(diphenylthiophosphinoyl)-2-(1,3)dithianyl carbanions Li⁺3⁻ and Li⁺4⁻ with cyclohexanone produced dithiane 5 in 67% along with recovered 3 (0.33 equiv) and 4 (1.0 equiv) (Scheme 2). The potential side reaction of enolate formation has been ruled out as evidenced by complete deuterium incorporation in recovered 4 when the reaction mixture was quenched with D₂O. These findings were interpreted to support the stronger polar nature of P=O bonds which can facilitate cycloelimination of the incipient β -oxyanionic phosphine oxide.

In recent years we have been involved in exploring the chemistry of phosphorus-stabilized anions with regard to structure, ^{19,24} reactivity, and stereoselectivity.²⁵ Recent reports from these laboratories have disclosed several unique structural features of thiophosphonamide anions derived from 6a, 7a, and $8a^{24c,d}$ (Figure 1). In marked contrast to the solution structures observed in the corresponding phosphonamide anions (6b⁻, 8b⁻),^{24c,d} Li⁺6a⁻ and Li⁺8a⁻ displayed a striking dichotomy in their hybridization states. In solution, Li^+6a^- and $Li^+8a^$ exhibited the following characteristics: nearly planar sp² carbanionic carbons; solvent-separated ion pairs; monomeric structures. On the other hand, the spectroscopic studies of Li^+7a^- support the existence of a lithium carbon contact in solution. In addition, an intriguing modulation of the hybridization of Li^+7a^- from sp^3 to sp^2 was found upon changing the degree of lithium solvation by the addition of HMPA (4 equiv).

Inspired by these findings and the higher rotational barriers (9.1-11.4 kcal/mol) found in Li^+8a^- compared to Li^+8b^- (6.7–7.9 kcal/mol),¹⁹ we sought to examine the significance of these factors on the alkylation behavior of chiral, P=S-stabilized carbanions.²⁶ In addition, on the basis of highly diastereose-lective alkylations of 2-benzyl-3-isopropyl-6-methyl-1,3,2-ox-azaphosphorinane 2-oxide (Li⁺(*cis*)-9⁻),^{25h} we have undertaken the alkylation studies of the *P*-ethyl and *P*-methoxymethyl analogs. Our ultimate goal in the design and development of

(26) We have recently discovered that the alkylation of the corresponding 2-thio analogs of Hanessian's C_2 -symmetric phosphonamides^{10a,b} proceeds with higher selectivity. Brice, L. J. Unpublished observations in these laboratories.

Scheme 3

chirally modified phosphorus reagents is to access either enantiomer of optically active alkylphosphonates with these three main α -substitution patterns by virtue of highly diastereoselective alkylation with appropriate phosphonamidate stereoisomers. We describe herein our endeavors toward this end by the employment of chiral thiophosphoryl-stabilized carbanionic reagents derived from (*S*)-*N*-isopropyl-4-amino-2-butanol.^{25h}

The selection of *P*-(methoxymethyl)-1,3,2-oxazaphosphorinane 2-oxide **11** as the representative α -heteroatom-substituted phosphonate was based on several criteria. First, enantiomerically enriched α -hydroxyphosphonates have been shown to serve as biologically significant components (bioisosteres of α -hydroxy esters) in a peptidic framework for the synthesis of transition state analog inhibitors of proteolytic enzymes.^{le,f} Second, a variety of α -heteroatom-substituted phosphonates possessing potential biological activity can be readily synthesized by Mitsunobu²⁷ type transformation of the corresponding α -hydroxyphosphonates.²⁸ Third, despite their importance for the synthesis of enol ethers,^{6,29} the alkylation of α -alkoxyphosphonates in a chiral environment has never been addressed.³⁰

Results

Syntheses of Oxazaphosphorinane 2-Oxides 9-11 and 2-Sulfides 16-18. The preparation of (S)-*N*-isopropyl-4-amino-2-butanol (14) from ethyl (S)-3-hydroxybutyrate $(12)^{31}$ was carried out by a sequence of reactions similar to that employed in the synthesis of the corresponding *N*-tert-butyl analog^{25b} (Scheme 3). Treatment of 12 with in-situ-prepared trimethyl-aluminum *N*-isopropylamide³² in toluene at ambient temperature afforded 3-hydroxybutyramide (13) in 82% yield. The enantiomeric excess of 13 after recrystallization was determined to be 99.6% by HPLC analysis of the corresponding 3,5-dinitrophenyl carbamate derivative.³³ Borane reduction of the amide 13 at room temperature produced 1,3-amino alcohol 14 in essentially quantitative yield after distillation.

The oxazaphosphorinane 2-oxides, (6S)-(u)-9 (cis-9), (6S)-(u)-10 (cis-10) and (6S)-(l)-9 (trans-9), (6S)-(l)-10 (trans-10), were synthesized by simultaneous addition of the appropriate alkylphosphonic dichloride³⁴ and (S)-N-isopropyl-4-amino-2-butanol (14) in the presence of triethylamine to afford the easily

^{(24) (}a) Denmark, S. E.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112,
864. (b) Denmark, S. E.; Miller, P. C.; Wilson, S. R. J. Am. Chem. Soc.
1991, 113, 1468. (c) Denmark, S. E.; Swiss, K. A.; Wilson, S. R. J. Am. Chem. Soc. 1993, 115, 3826. (d) Denmark. S. E.; Swiss, K. A. J. Am. Chem. Soc. 1993, 115, 12195. (e) Denmark, S. E.; Cramer, C. J. J. Org. Chem.
1990, 55, 1806.

^{(25) (}a) Denmark, S. E.; Rajendra, G.; Marlin, J. E. Tetrahedron Lett.
1989, 30, 2469. (b) Denmark, S. E.; Dorow, R. L. J. Org. Chem. 1990, 55, 5926. (c) Denmark, S. E.; Marlin, J. E. J. Org. Chem. 1991, 56, 1003. (d) Denmark, S. E.; Stadler, H.; Dorow, R. L.; Kim, J.-H. J. Org. Chem. 1991, 56, 5063. (e) Denmark, S. E.; Chatani, N.; Pansare, S. V. Tetrahedron 1992, 48, 2191. (f) Reference 7d. (g) Denmark, S. E.; Amburgey, J. J. Am. Chem. Soc. 1993, 115, 10386. (h) Denmark, S. E.; Chen, C.-T. J. Org. Chem. 1995, 6, 133.

^{(27) (}a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D. L. Org. React. 1992, 42, 335.

^{(28) (}a) Gajda, T. Synthesis **1988**, 327. (b) Yokomatsu, T.; Shibuya, S. *Tetrahedron Asymmetry* **1992**, *3*, 377. (c) Hammershmidt, F.; Völlenkle, H. Liebigs Ann. Chem. **1989**, 577.

^{(29) (}a) Birse, E. F.; McKenzie, A.; Murray, A. W. J. Chem. Soc., Perkin Trans. 1 1988, 1039. (b) Kluge, A. F.; Cloudsdale, I. S. J. Org. Chem. 1979, 44, 4847. (c) Earnshaw, C.; Wallis, C. J.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1979, 3099. (d) Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A. Tetrahedron 1985, 41, 3825. (e) Ley, S. V.; Lygo, B. Tetrahedron Lett. 1984, 25, 113.

⁽³⁰⁾ Cheshire, D. R. In *Comprehensive Organic Synthesis, Alkylation of Carbon-Carbon \sigma Bonds;* Pattenden, G., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 3; Chapter 1.4.

⁽³¹⁾ Seebach, D.; Sutter, M. A.; Weber, R. H.; Züger, M. F. Org. Synth. 1984, 63, 1.

^{(32) (}a) Basha, A.; Lipton, M.; Weinreb, S. M. *Tetrahedron Lett.* **1977**, 4171. (b) Lipton, M. F.; Basha, A.; Weinreb, S. M. *Org. Synth.* **1980**, *59*, 492.

⁽³³⁾ Pirkle, W. H.; Mahler, G.; Hyun, M. H. J. Liq. Chromatogr. 1986, 9 (2 and 3), 443.

^{(34) (}a) Bhongle, N. N.; Notter, R. H.; Turcotle, J. G. *Synth. Commun.* **1987**, *17*, 1071. (b) McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. *Tetrahedron Lett.* **1977**, 115.

^a Ratio determined by ³¹P NMR.

separable diastereomers in good overall yields (89% (R = Ph), 88% (R = Me)) (Table 1).^{35,36} The synthesis of 11 was performed by an alternative route involving the Arbuzov reaction³⁷ of phosphite **15** with bromomethyl methyl ether (MOMBr). The phosphite 15 (trans/cis, 11/1),³⁸ derived from the condensation of 1,3-amino alcohol 14 with ethyl dichlorophosphite in refluxing CH₂Cl₂ in 84% yield, was treated with MOMBr in CH₃CN at room temperature in the presence of triethylamine to provide cis-11 and trans-11 in a ratio of 8.4/1 and in 81% overall yield. It is important to note that the employed electrophile, MOMBr, is so reactive that the Arbuzov reaction can be performed under very mild conditions. In addition, an important feature associated with the role of triethylamine is that it serves as an HBr scavenger. Similar reaction conditions in the absence of triethylamine resulted in considerably lower yields due to the acid-catalyzed P-N bond cleavage. The stereostructures of 9-11 were assigned spectroscopically by analogy with the corresponding N-tert-butyl analog whose full stereostructure was confirmed by X-ray crystallographic analysis^{25b} and by the diagnostic downfield shift of ³¹P resonances in the u series.³⁹

The enantiomerically enriched thiophosphonamidates 16, 17, and 18 were prepared by thiation of the corresponding phosphonamidates, 9, 10, and 11, with Lawesson's reagent⁴⁰ in warm

(39) (a) Gallagher, M. J. In Methods in Stereochemical Analysis, Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers Inc.: Deerfield, FL, 1987; Vol. 8, Chapter 9, (b) Spassov, S. L.; Lyapova, M. J.; Ivanova, M. E. Phosphorus Sulfur Relat. Elem. 1988, 37, 199. (c) Bentrude, W. G.; Setzer, W. N.; Sopchik, A. E.; Chandrasekaran, S.; Ashby, M. T. J. Am. Chem. Soc. 1988, 110, 7119. (d) Bentrude, W. G.; Setzer, W. N.; Sopchik, A. E.; Bajwa, G. S.; Burright, D. D.; Hutchinson, J. P. J. Am. Chem. Soc. 1986, 108, 6669. (e) Bajwa, G. S.; Chandrasekaran, S.; Hargis, J. H.; Sopchik, A. E.; Blatter, D.; Bentrude, W. G. J. Am. Chem. Soc. 1982, 104, 6385. (f) Setzer, W. N.; Sopchik, A. E.; Bentrude, W. G. J. Am. Chem. Soc. 1985, 107, 2083. (g) Harrison, J. M.; Inch, T. D.; Lewis, G. J. J. Chem. Soc., Perkin Trans. 1 1975, 1892. (h) Goodridge, R. J.; Hambley, T. W.; Ridley, D. D. Aust. J. Chem. 1986, 39, 591.
 Table 2.
 Preparation of Thiophosphonamidates 16–18

H 0 H ₃ C - ^{blg} 0 - ^{pl} - R	+ Ar-P S	H ₃ C = H ₃ C - Pm-R
`⊬Pr	Ar = 4-(MeO)C ₆ H ₄	` <i>⊢</i> Pr

R	solvent (<i>T</i> , °C)	product	yield, %
Ph (cis-9)	toluene (110)	cis-16	90
Ph (trans-9)	toluene (105)	trans- 16	94
CH ₃ (cis-10)	benzene (80)	cis- 17	71
CH_3 (trans-10)	toluene (110)	trans-17	76
OCH ₃ (cis-11)	toluene (80)	cis- 18	79

benzene (or toluene) to afford the easily purified, crystalline products in good yields (71-94%) (Table 2). In general, the cis stereoisomers are more susceptible to decomposition when the thiation reactions are conducted at elevated temperature and prolonged reaction time. The yield of *cis*-17 dropped to 55% when the reaction was carried out at 110 °C. In addition, the unfavorable temperature effect became more severe in case of *cis*-11. Essentially complete decomposition of *cis*-11 resulted when the transformation was performed at 110 °C. Thus, carefully monitoring the reaction progress by ³¹P NMR spectroscopy was necessary to ensure the best thiation results. It is important to note that the thiation proceeded with complete retention of configuration at phosphorus as evidenced by ³¹P NMR analysis of the crude reaction products and was ultimately secured by chemical correlation (*vide infra*).

The selected spectroscopic data and R_f values of phosphonamidates 9–11 and their 2-thioxo analogs are compiled in Table 3. Several important and informative features are noteworthy. First, a significant upfield shift in ³¹P resonances was observed for R = Ph relative to R = Me. The chemical shift difference ($\Delta\delta$, negative numbers are upfield shifts) for phosphonamidates 9 and thiophosphonamidates 16 was about -8 ppm relative to the corresponding methyl-substituted analogs 10 and 17. Even larger differences in chemical shift were observed for R = OMe compared to R = Me (-12 ppm (11) and -11 ppm (18)). The trend in the change in ³¹P NMR chemical shifts seems consistent with the inductive effect associated with the R substituent.⁴¹

Second, the ³¹P resonances of the cis stereoisomers were more downfield to a similar extent in both phosphonamidates 9-11and thiophosphonamidates 16-18 as compared to those of the

32. 781.

⁽³⁵⁾ Yaun, C.; Li, S.; Cheng, Z. Synthesis 1988, 186.

⁽³⁶⁾ The like (l) and unlike (u) nomenclature is used throughout to designate the configuration of the phosphorus and α -stereogenic centers with respect to (S)-C(6). See: Prelog, V.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1982, 21, 654. For reasons of simplicity (due to priority changes) and parallels between the phosphoryl and thiophosphoryl series, we designate the relative configuration between C(6) and P(2) as cis for HC-(6)' and XP(2) proximal and trans for HC(6) and XP(2) distal.

^{(37) (}a) Bhattacharya, A. K.; Thygarajan, G. Chem. Rev. 1981, 81, 415.
(b) Brill, T. S.; Landon, S. J. Chem. Rev. 1984, 84, 577.

^{(38) (}a) Huang, Y.; Mullah, N. N.; Sopchik, A. E.; Arif, A. M.; Bentrude, W. G. Tetrahedron Lett. **1991**, 32, 899. (b) Hutchins, R. O.; Maryanoff, B. E.; Albrand, J. P.; Cogne, A.; Gagnaire, D.; Robert, J. B. J. Am. Chem. Soc. **1972**, 94, 9151. (c) Huang, Y.; Arif, A. M.; Bentrude, W. G. J. Org. Chem. **1993**, 58, 6235. (d) Quin, L. D. The Heterocyclic Chemistry of Phosphorus; Wiley-Interscience: New York, 1981; p 196.

^{(40) (}a) Horner, L.; Lindel, H. Phosphorus Sulfur Relat. Elem. 1982,
12, 259. (b) Kawashima, T.; Kojima, S.; Inamoto, N. Chem. Lett. 1989,
849. (c) Shabana, R.; El-Kateb, A.; Osman, F. H. Chem. Ind. (London)
1984, 6, 552. (d) Cava, M. P.; Levinson, M. I. Tetrahedron 1985, 41, 5061.
(41) Grim, S. O.; McFarlane, W.; Davidoff, E. F. J. Org. Chem. 1967,

Table 3. Spectroscopic Data and R_f Values of Substrates 9–11 and Their 2-Oxide Analogs 16–18

			X = O				X = S			
R	compd	$\delta^{31} \mathrm{P} (\mathrm{ppm})^a$	$\delta C(1') (ppm)^b$	$^{1}J_{\rm CP}({\rm Hz})$	R_{f}	compd	$\delta^{31} P (ppm)^{a}$	$\delta C(1') (ppm)^b$	$^{1}J_{CP}$ (Hz)	R_{f}^{c}
Ph	cis-9	25.2	36.74	128.9	0.35 ^d	cis-16	88.8	44.73	94.6	0.23
Ph	trans-9	22.6	34.15	119.6	0.50^{d}	trans-16	84.4	39.44	83.9	0.30
Me	cis-10	33.2	20.62	135.2	0.28^{e}	cis-17	95.8	28.83	100.7	0.25
Me	trans-10	30.1	17.98	123.4	0.48^{e}	trans-17	92.5	23.48	90.0	0.20
OMe	cis- 11	20.6	67.82	156.0	0.33 ^f	cis-18	85.0	74.07	116.0	0.15
OMe	trans-11	17.8			0.43					

^a CDCl₃ at 121.6 or 162 MHz. ^b CDCl₃ at 75.5 or 100 MHz. ^c Benzene. ^d EtOAc/i-PrOH, 19/1. ^c Acetone/hexane, 5/1. ^f EtOAc/i-PrOH, 49/1.

н х

Table 4. Alkylation with cis-Phosphonamidates cis-9-11 and cis-Thiophosphonamidates cis-16-18

н

Х

$H_{3}C \xrightarrow{IS} O_{N} \xrightarrow{P} R \xrightarrow{1} Dase/solvent/T \stackrel{\circ}{\sim} H_{3}C \xrightarrow{IS} O_{N} \xrightarrow{P} I' R$ $\stackrel{i}{\rightarrow} Pr$ $\stackrel{i}{\rightarrow} Pr$ $\stackrel{i}{\rightarrow} Pr$										
R	х	educt	conditions ^a	$\mathbf{R}^{1}\mathbf{X}$	product	ratio (1'R/1'S) ^b	yield,° %	$\delta_{ m major}$ ³¹ P, ppm	$\delta_{minor}{}^{31}P$, ppm	$\Delta \delta^{\scriptscriptstyle d}$
Ph	0	cis-9 ^e	А	MeI	19	33.8/1	93	29.1	28.2	0.9
	0	cis -9 e	А	BnBr	20	16.5/1	89	27.9	25.6	2.3
	S	cis -16	Α	MeI	21	>1000/1/	98.5	95.1	96.0	-0.9
	S	cis- 16	А	BnBr	22	>1000/1	93	94.25	94.40	-0.15
Me	0	cis-10	А	n-BuI	23	1/19.6 ^g	94	34.94	35.01	-0.07
	0	cis-10	А	i-BuI	24	1/408	87	35.37	35.58	-0.21
	0	cis-10_	А	BnBr	25	1/19.6 ^g	96	33.31	33.41	-0.1
	S	cis-17	В	<i>n</i> -BuI	26	$1/15.6^{g}$	99.6	100.95	101.34	-0.39
	S	cis-17	С	<i>n</i> -BuI	26	$1/6.1^{g}$	36 ^h			
OMe	0	cis-11	Α	MeI	27	2.25/1	92	23.1	24.4	-1.3
	0	cis-11	А	BnBr	28	3/1	99	21.72	23.74	-2.0
	S	cis- 18	А	MeI	29	1/1.9	97'			
	Ś	cis-18	С	MeI	29	15.6/1	84.4	88.3	90.2	-1.9
	S	cis-18	D	MeI	29	1/11.1	93			

^{*a*} A, *t*-BuLi/THF/-7.0 °C; B, *n*-BuLi/THF/-70 °C; C, *t*-BuLi/THF/-95 °C/HMPA (4.4 equiv); D, *t*-BuLi/Et₂O/-95 °C/PMDTA (1.2 equiv). ^{*b*} Determined by HPLC or ³¹P NMR. ^{*c*} Isolated yield. ^{*d*} $\delta_{major} - \delta_{minor}$. ^{*e*} See ref 25h. ^{*f*} Signal to noise minimum. ^{*s*} Due to priority change. ^{*h*} *cis*-17 was recovered in 55% yield. ^{*i*} Percent conversion based on ³¹P NMR analysis.

corresponding trans stereoisomers. This observation has been, in general, deemed characteristic in various 1,3,2-dioxa- and 1,3,2-oxazaphosphorinanes⁴² and may be explained in terms of favorable anomeric effect associated with those stereoisomers where the P=X bond is axially disposed in the heterocycle. This anomeric effect is manifested in the X-ray crystal structures of the corresponding *cis-N-tert*-butyl analogs and *cis*-2-(1-hydroxybenzyl)-*N*-isopropyl stereoisomers,⁴³ where a nearly planar nitrogen was observed only in the cis series.

Third, the ³¹P resonance of the thiophosphonamidates 16– 18 appeared significantly downfield compared to the 2-oxo counterparts ($\Delta \delta = 62-65$ ppm). This phenomenon has been explained, in most instances, in terms of the decreasing $p\pi$ – $d\pi$ back-bonding in the 2-thioxo compounds.⁴⁴ However, in view of the experimental evidence in support of significant covalent character in the P=S bond stated previously, this difference in chemical shifts of thiophosphonamidates might also be rationalized by the increased polarizability of the sulfur atom. This rationale is also corroborated by the consistent downfield shifts of C(1') in the thiophosphonamidates **16–18** as compared to those for the 2-oxo analogs due to their stronger deshielding anisotropic effect (Table 3), despite the fact that phosphonates are more electron-withdrawing substituents than the corresponding thiophosphonates.⁴⁵ The more electronegative nature associated with phosphonates is reflected in the significantly larger coupling constants ${}^{1}J_{CP}$ observed (120–156 Hz) in **9–11** relative to those (84–116 Hz) of the corresponding 2-thioxo counterparts **16–18**.

Fourth, with regard to TLC mobility the cis stereoisomers in the oxazaphosphorinane 2-oxides 9-11 are more polar than their *trans*-diastereomers ($\Delta R_f = 0.1-0.2$). In marked contrast, there are small differences in mobility between *cis*- and *trans*-stereo-isomers for the 2-sulfide analogs. In addition, the phosphona-midates 9-11 are significantly more polar than the corresponding 2-thioxo counterparts 16-18 due to the larger dipole associated with the P=O group.

Alkylation in the Cis Series. The alkylation studies were first carried out with the *cis*-thiophosphonamidates and comparisons with their P=O analogs were made by selecting the electrophiles that led to the least selective alkylations.^{25h} As summarized in Table 4, the alkylation behavior of *cis*-1,3,2oxazaphosphorinane 2-oxides *cis*-9, *cis*-10, and *cis*-11 was found to be highly dependent on the nature of R substituents and electrophiles. For example, methylation of Li⁺*cis*-9⁻ (R = Ph) proceeded with high selectivity (ds \geq 16/1). The alkylation of

^{(42) (}a) Majoral, J. P.; Navech, J. Bull. Soc. Chim. Fr. 1971, 1331, 2609.
(b) Inch, T. D.; Lewis, G. J. J. Chem. Soc., Chem. Commun. 1973, 310. (c) Bentrude, W. G.; Tomasz, J. Synthesis 1984, 27.

^{(43) (}a) Dorow, R. L. Ph.D. Thesis, University of Illinois, 1990. (b) For the X-ray crystal structure of 2-(1-hydroxybenzyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-oxide, see: the supplementary material in Gordon, N. J.; Evans, S. A., Jr. J. Org. Chem. 1993, 58, 5293. (44) (a) Postle, S. R. Phosphorus Sulfur Relat. Elem. 1977, 3, 269. (b)

^{(44) (}a) Postle, S. R. Phosphorus Sulfur Relat. Elem. 1977, 3, 269. (b)
Schmidt, M. W.; Gordon M. S. J. Am. Chem. Soc. 1985, 107, 1922. (c)
Cremer, S. E.; Cowles, J. M.; Farr, F. R.; Hwang, H.-O.; Kremer, P. W.;
Peterson, A. C.; Gray, G. A. J. Org. Chem. 1992, 57, 511. (d) Liang, C.;
Allen, L. C. J. Am. Chem. Soc. 1987, 109, 6449. (e) Albright, T. A.;
Freeman, W. J.; Schweizer, E. E. J. Org. Chem. 1975, 40, 3437. (f) Davies,
J. A.; Mierzwiak, J. G.; Syed, R. J. Coord. Chem. 1988, 17, 25.

⁽⁴⁵⁾ Modro, T. A. Can. J. Chem. 1977, 55, 3681 and references cited therein.

Table 5. Alkylations with trans-Phosphonamidates trans-9 and trans-Thiophosphonamidates trans-16 and trans-17

	1) base/THF/- 70 °C	
H ₃ CZ-0-/ -X N /+Pr	2) R ¹ X	H₃C ZOO-F=X N /+Pr

R	X	educt	base	R ¹ X	ratio $(1'S/1'R)^a$	product	yield, ^b %	$\delta_{ m major}{}^{31} m P,ppm$	$\delta_{minor}{}^{31}$ P, ppm	$\Delta \delta^c$
Ph	0	trans -9 ^d trans -9 ' e	t-BuLi t-BuLi	MeI BnBr	5.8/1 1.2/1	30 31	100 98	27.44	27.86 24.3	-0.42
Me	S S S	trans-16 trans-16 trans-17	t-BuLi t-BuLi n-BuLi	MeI BnBr <i>n</i> -BuI	44.3/1 15.6/1 1/12.6 ^f	32 33 34	97 95 87 ^s	91.57 89.07 97.65	92.73 90.16 98.00	-1.16 -1.09 -0.35

^{*a*} Determined by HPLC or ³¹P NMR analysis. ^{*b*} Isolated yield. ^{*c*} $\delta_{major} - \delta_{minor}$. ^{*d*} Reference 25h. ^{*e*} The *N-tert*-butyl analog was used (ref 25b). ^{*f*} Due to priority change. ^{*s*} About 12% of the starting material remained.

the *P*-ethyl anion Li^+cis -10⁻ also proceeded smoothly to afford the products with high diastereomeric selectivity in a range of 19/1 ($\mathbf{R}^1 = n$ -Bu and Bn) to 40/1 ($\mathbf{R}^1 = i$ -Bu) and in good overall yield (87-96%). In marked contrast, the alkylation of Li^+cis -11⁻ proceeded with surprisingly poor diastereoselectivity (2-3/1). Consistent with enolate alkylations where increasing the steric bulk of the electrophile leads to higher diastereoselection,⁴⁶ the alkylation of $Li^+cis-10^-$ with *i*-BuI provided the isobutylation products 24 in 87% with excellent diastereoselectivity (40/1). Despite the fact that benzylation (ds = 3/1) was only marginally more selective than the corresponding methylation (ds = 2.3/1), the alkylation profile of Li⁺cis-11⁻ likewise followed similar steric approach control. On the contrary, the methylation of Li^+cis-9^- proceeded with higher selectivity (34/1) than that of the corresponding benzylation (17/ 1). This unusual behavior has been observed throughout the other four different N-substituted analogs.^{25h}

The thiophosphoryl-stabilized anions were found to be excellent substrates to effect high asymmetric induction in alkylation reactions. The alkylation profile of thiophosphonamidates cis-16-18 was also dependent on the group R and followed a similar trend as for the 2-oxo analogs. As illustrated in Table 4, the alkylation of thiophosphonamidate Li⁺cis-16⁻ proceeded with significantly higher diastereoselectivity than that of phosphonamidate $Li^+cis-9^{-.47}$ A single diastereomer of the alkylation products was obtained in high yield ($\geq 93\%$). In contrast to the alkylation behavior of the *P*-benzyl anions Li⁺cis- 9^- and Li⁺cis-16⁻, butylation of P-ethylphosphonamidate $Li^+cis-10^-$ proceeded with slightly higher diastereoselection (20/ 1) as compared to the 2-thioxo counterpart Li^+ cis-17⁻ (16/1).⁴⁸ Further, conducting the butylation with $Li^+cis-17^-$ in the presence of HMPA (4.4 equiv) resulted in a significant decrease in reaction rate and diastereoselectivity (6.1/1).

The methylation of P-(methoxymethyl)thiophosphonamidate Li^+cis -18⁻ was even more surprising. A poor but reversed diastereoselection (1/2) was observed when the reaction was conducted under the same reaction conditions as for Li^+cis -11⁻. Interestingly, a significant improvement in diastereoselectivity (16/1) could be accomplished upon the addition of HMPA (4.4 equiv). Furthermore, the configuration at the newly created stereocenter in the major alkylation product was the same as that from Li^+cis -11⁻ (vide infra). To our surprise, a reversal of diastereoselectivity to a similar extent (1/11.1) was observed

when the methylation was performed in diethyl ether in the presence of PMDTA (1.2 equiv).⁴⁹

Alkylation in the Trans Series. Considerable improvements in diastereoselective alkylation of the trans stereoisomers were observed by the employment of thiophosphoryl-stabilized carbanions (Table 5). The alkylation behavior of trans-phosphonamidates was also highly dependent on the steric and electronic demand of R substituents and electrophiles. The alkylation with Li+trans-16⁻ proceeded with uniformly higher selectivity $(15 \sim 44/1)$ than that of Li⁺trans-17⁻ (13/1) Table 5. Benzyl bromide remained the least selective electrophile in this study. The methylation of thiophosphonamidate Li⁺trans-16⁻ proceeded smoothly in 10 min to afford the methylation products (l)-32 in high yield (97%) with excellent diastereoselectivity (44/1). However, only moderate diastereocontrol (6/1) resulted from the methylation with the corresponding 2-oxo counterpart Li⁺trans-9⁻. Similarly, a significant increase in the benzylation diastereoselection (15/1 vs 1.2/1) was accomplished by replacing phosphonamidate Li+trans-9'- (N-tert-butyl analog) with thiophosphonamidate Li⁺trans-16⁻. Attempts to generalize the alkylation by the use of a secondary halide, i.e., 2-iodopropane, proved fruitless. Multicomponent product mixtures were obtained along with recovered trans-16 (38%). This result is in accord with the increasing basicity of thiophosphoryl-stabilized carbanions.²⁰ Presumably, the competing E2 process becomes dominant under such circumstances. To test the influence of additives on lithium solvation, the butylation of Li⁺trans-17⁻ was conducted under similar reaction conditions in the presence of HMPA (4 equiv). While a single stereoisomer was isolated, the reaction proceeded sluggishly and less than 10% conversion was observed even after prolonged reaction time.

Epimerization Study and Chemical Shift Correlation. To secure the identity of the minor diastereomers derived from the highly diastereoselective alkylations, authentic samples were prepared by epimerization at the α -stereogenic center by employing a deprotonation—reprotonation protocol on the diastereomerically pure, major alkylation products (Table 6). Deprotonation of the major diastereomers was effected with *t*-BuLi in THF at -70 °C followed by warming to -20 °C. The resulting anions were quenched with a solution of acetic acid in THF to provide a mixture of diastereomers with significant enrichment (1/1-5/1) in the minor isomers not easily accessible by the previous alkylation studies. The identities of these minor diastereomers were unambiguously confirmed by spectroscopic correlation with the alkylation products and/or by full characterization of the isolated, purified materials.

We have also noted a relationship between the sense of asymmetric induction in the alkylation and the ³¹P NMR

⁽⁴⁶⁾ Evans, D. A. In Asymmetric Synthesis; Morrison, J. D.; Ed.; Academic Press: New York, 1984; Vol. 3, Chapter 1.

⁽⁴⁷⁾ The selectivities of >1000/1 in Table 4 represent conservative estimates based on the measured signal/noise ratio in the ³¹P NMR spectra of these compounds (>9000/1 for **21**; >6500/1 for **22**). None of the minor products were detected.

⁽⁴⁸⁾ The diastereoselectivity difference between the benzylation of P-ethyloxazaphosphorinane 2-sulfide and 2-oxide was found to be even larger (11.5/1 vs 20/1).

⁽⁴⁹⁾ PMDTA: pentamethyldiethylenetriamine. A profound effect of PMDTA on the diastereoselective addition with the *P*-phenylthiomethyl analogue has been noted (ref 25i).

Table 6. Epimerization of Major Alkylation Products 19-25

H₃C ∠S	2~ ^P 7~ ^R 1) N T ^R 2) +Pr	+BuLi/TH	+F/- 70 → - 20 ° +F/T °C		X P [−] ^B + H ₃ C [−] N 1 ¹ Pr ¹ Pr ¹ Pr ¹	$\frac{H}{\frac{J^{S}}{N}} = \frac{X}{\frac{J^{S}}{N}} = \frac{1}{\frac{J^{S}}{N}} = \frac{1}$
R	R1	X	educt	<i>T</i> , °C	ratio (1'R/1'S)"	yield, ^b %
Ph	Me	0	(u)- 19	-70	27/73	95
Ph	Bn	0	(u)- 20	-70	53/47	87
Ph	Me	S	(u)-21	-20	17/83	98
Ph	Bn	S	(u)-22	-10	45/55	100
Me	<i>n</i> -Bu	0	(u)-23	-70	33/67	99
Me	i-Bu	0	(u)-24	-70	67/33	100
Me	Bn	0	(u)- 25	-70	32/68	83
Ph	Me	S	(<i>l</i>)- 32	-20	52/48	100

^a Determined by HPLC or ³¹P NMR. ^b Isolated overall yield.

chemical shifts of the alkylation products. Chemical shifts and chemical shift differences of the products from both the oxazaphosphorinane 2-oxides and 2-sulfides are included in Tables 4 and 5. In all cases except the products **19** and **20** derived from alkylation with Li^+cis-9^- , the ³¹P NMR resonances of the major diastereomers are further upfield than those of the minor diastereomers. This observation also applies to all of the R¹ groups (electrophiles) surveyed. This trend suggests that the sense of asymmetric induction in the alkylation of thiophosphonamidates is the same as that produced in preponderance by the alkylation of the corresponding 2-oxo analogs.

Stereochemical Correlation. The stereochemical course of alkylations in the P=O and P=S series was unambiguously established by chemical correlation as outlined in Scheme 4. First, the stereochemical course of alkylation of cis-9 and cis-16 was shown to be the same by stereospecific, oxidative transformation of the major P=S methylation product (u)-21 to the major P=O methylation product (u)-19. The absolute configuration at the newly created stereogenic center was thus found to be R in both cases by comparison of the optical rotations of dimethyl phosphonate (+)-35 derived from both (u)-19 and the corresponding N-tert-butyl analog, the configuration of which had previously been secured by X-ray crystallographic analysis.^{25b,h} Thus, the electrophilic attack on both the P-benzylphosphonamidate cis-9 and the 2-thioxo analog cis-16 occurred preferentially from the re face of the derived anions. The absolute configurations of the alkylation products in the P-ethyl series (cis-10 and cis-17) were then assigned to be S on the basis of the assumption that they both have the same facial preference in the electrophilic approach (vide infra).

The major alkylation products in the trans series were assigned in a similar fashion (Scheme 4). Treatment of (l)-32 with mCPBA in CH₂Cl₂ at 0 °C afforded phosphonamidate (l)-30 in 92% yield and likewise with complete stereospecificity. Hydrolytic cleavage of the heterocycle in the (l)-30 with 6 N HCl at 110 °C followed by esterification of the intermediate phosphonic acid produced (-)-35 indicating the S configuration. Thus, the electrophilic attack in both P-benzylphosphonamidate trans-9 and the 2-thioxo analog trans-16 proceeded with the same stereochemical preference, i.e., from the *si* face of the resulting anions. The configuration of the predominant butylation product in 34 (Table 5) was tentatively assigned to possess R configuration by analogy.

It is of interest to note that the stereochemical course of alkylation was controlled by the local asymmetric environment provided by the phosphorus stereogenic center. Since the oxidation of (u)-21 and (l)-32 with mCPBA proceeded smoothly at 0 °C to afford the corresponding phosphonamidates (u)-19 and (l)-30, respectively, with complete retention of configura-

tion⁵⁰ in quantitative yield, either enantiomer of dimethyl phosphonates in high optically purity can be obtained by taking advantage of the highly diastereoselective alkylation from the respective thiophosphonamidate stereoisomers.

To demonstrate the utility of *P*-(methoxymethyl)thiophosphonamidates for the synthesis of enantiomerically enriched α -hydroxyphosphonates and determine the stereochemical outcome in the methylation, a diastereomeric mixture (2.3/1) of the methylation products **27** was subjected to dealkylation reaction with TMSI⁵¹ at ambient temperature followed by hydrolytic desilylation of the resulting silyl phosphonates and esterification (Scheme 5). Dimethyl (1-methoxyethyl)phosphonate **36** was obtained in 67% yield along with a small amount (19%) of (1-hydroxyethyl)phosphonate **37**, whose absolute configuration was assigned as *R* by comparison of the optical rotation of **37** with the literature values.^{52a,b} Moreover, highly diastereomerically enriched (*u*)-**27** and (*l*)-**27** can be obtained in quantitative yield by independent oxidation of the 2-thioxo counterparts (*u*)-**29** and (*l*)-**29**.

These thioxo to oxo oxidative transformations again proceeded with complete retention of configuration at the phosphorus stereogenic center. In addition, the diastereomeric ratios of the oxidation products correspond well with those of the starting materials. While no epimerization of the C(1') stereocenter occurred under the reaction conditions, the minor differences in *u*/*l* ratios must be due to loss of one diastereomer. In view of limited success for the synthesis of enantiomerically enriched α -hydroxyphosphonates reported in recent years,⁵² the utilization of highly diastereoselective alkylation with Li⁺(*l*)-**18**⁻ by judicious choice of alkylation reaction conditions (solvents and additives) provides a useful synthesis of either antipode of dimethyl phosphonates **36** (or **37**) in high enantiomeric purity.

Discussion

Alkylation in the Cis Series. On the basis of X-ray crystallographic and spectroscopic studies of anions derived from 6-8^{,24} the stereochemical course of alkylation in the *P*-benzyl cis series can be rationalized in terms of the sp²-

(52) By resolution: (a) Sasaki, M. Agric. Biol. Chem. 1986, 50, 741. (b) Hammerschmidt, F.; Li, Y. -F. Tetrahedron Asymmetry 1993, 4, 109. (c) Khushi, T.; O'Toole, K. J.; Sime, J. T. Tetrahedron Lett. 1993, 34, 2375. (d) Reference 11c. (e) Ramos Tombo, G. M.; Bellus, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 1193. (f) Kagan, H. B.; Tahar, M.; Fiaud, J.-C. Tetrahedron Lett. 1991, 32, 5959. By condensation with silyl and hydrogen phosphites: (g) Gordon, N. J.; Evans, S. A., Jr. J. Org. Chem. 1993, 58, 5293, 5295. (h) Yokomatsu, T.; Yamagishi, T.; Shibuya, S. Tetrahedron Asymmetry 1993, 4, 1783. (i) Sum, V.; Davies, A. J.; Kee, T. P. J. Chem. Soc., Chem. Commun. 1992, 1771. (j) Yokomatsu, T.; Yamagishi, T.; Shibuya, S. Tetrahedron Asymmetry 1993, 4, 1401. (k) Yokomatsu, T.; Yamagishi, J.; Shibuya, S. Tetrahedron Asymmetry 1993, 4, 1779. (i) Reference 12b. (m) Blazis, V. J.; Koeller, K. J.; Spilling, C. D. Tetrahedron Asymmetry **1994**, 5, 499. (n) Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi, T.; Shibuya, S. Tetrahedron Asym. 1995, 6, 365. By quinine catalysis: (o) Wynberg, H.; Smaardijk, A. A. Tetrahedron Lett. 1983, 24, 5899. (p) Smaardijik, A. A.; Noorda, S.; Van Bolhuis, F.; Wynberg, H. Tetrahedron Lett. 1985, 26, 493. By asymmetric hydroboration of alkenylphosphonates: (q) Lalinde, N.; Tropp, B. E.; Engel, R. Tetrahedron 1983, 39, 2369.

^{(50) (}a) Herriott, A. W. J. Am. Chem. Soc. 1971, 93, 3304. (b) Bellet,
E. M.; Casida, J. E. J. Agric. Food Chem. 1974, 22, 207. (c) Jackson, J.
A.; Berkman, C. E.; Thompson, C. M. Tetrahedron Lett. 1992, 33, 6061.
(d) Cooper, D. B.; Hall, C. R.; Marrison, J. M.; Inch, T. D. J. Chem. Soc., Perkin Trans. 1 1977, 1969. (e) Lee, P. W.; Allahyari, L.; Fukuto T. R.
Biochem. Pharmacol. 1976, 25, 2671. (f) Ohkawa, H.; Mikami, N.;
Miyamoto, J. Agric. Biol. Chem. 1976, 40, 2125. (g) Wu, S.-Y.; Eto, M. J.
Pesticide Sci. 1987, 12, 95. (h) Harrison, J. M.; Inch, T. D.; Lewis, G. J. J.
Chem. Soc., Perkin Trans. 1 1975, 1892.

^{(51) (}a) Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. (b) McKenna, C. E.; Schmidhauser, J. J. Chem. Soc., Chem. Commun. 1979, 739. (c) Blackburn, G. M.; Ingleson, D. J. Chem. Soc., Chem. Commun. 1978, 870. (d) Zygmunt, J.; Kafarski, P.; Mastalerz, P. Synthesis 1978, 609.

Scheme 5

Scheme 6

hybridized anion in a reactive, parallel conformation A (Scheme 6). The conformer A preferentially adopts a chairlike conformation with the benzyl moiety in the equatorial position and the phenyl group in an antiparallel arrangement with the P=X group.^{25h} Thus, the electrophile approaches predominantly to the side opposite to the nitrogen substituent (i.e., *i*-Pr) to avoid a severe nonbonding steric interaction. The dramatic increase in alkylation selectivity for the P=S substrate cis-16 compared to the P=O substrate cis-9 was striking. It is tempting to ascribe this change to the demonstrated increase in P-C rotational barrier for the P=S anions. However, the Curtin-Hammett principle dictates that we consider the population and reactivity of all conformers. Since the P=S anions are solvent-separated ions, an alternative parallel anion conformation A' would be less disfavored for Li^+cis -16⁻ than for the dimeric Li^+cis -9⁻ in which the lithium and THF groups provide a steric shield. This, however, would lead to the incorrect prediction of decreased selectivity for cis-16. We propose that the lower selectivity in cis-9 arises from reaction through a different conformer A" (Scheme 6) which exposes the si face of the anion and would constitute a potential minimum.¹⁸ The corresponding conformation in cis-16 is expected to be much less energetically accessible due to poorer stabilization from the P-S σ orbital.¹⁸

The erosion of selectivity observed with *P*-ethylthiophosphonamidate Li^+cis -17⁻ indicates that the change in hybridization of the anions from sp² (Li^+cis -10⁻) to sp³ (Li^+cis -17⁻) is a crucial factor in determining the stereochemical outcome.

This hypothesis can be better visualized by the Newman projections of the *P*-ethyl anions $Li^+cis-10^-$ and $Li^+cis-17^-$ (Scheme 7). For the sp²-hybridized phosphoryl anion $Li^+cis-10^-$, the situation is analogous to that discussed above for $Li^+cis-10^-$, the situation is analogous to that discussed above for $Li^+cis-10^-$.

Scheme 7

 9^- . In the favored reactive conformation **B**, electrophilic attack occurs on the sterically more accessible face, path a. The similarity of benzylation selectivities for *cis*-9 and *cis*-10 suggest similar scenarios for this reaction pathway. The alternative parallel conformation **B'** is again disfavored due to methyl/ lithium interactions.

For the sp³-hybridized version (THF) of the thiophosphoryl anion Li⁺*cis*-17⁻, two limiting anion configurations must be considered (Scheme 7). In the anions C and D there are unfavorable nonbonding interactions between the methyl group (in C) or the incoming electrophile (in D) with the *N*-isopropyl group. Since these anions are most likely interconverting, their relative reactivity (not population) will determine the overall selectivity. Assuming a retentive S_E2 alkylation, it would appear that conformations related to C can explain the observed selectivity.

The addition of more than 4 equiv of HMPA presumably generates a solvent-separated ion pair which is now sp²-hybridized,^{24d} leading to the two limiting parallel conformations **E** and **E'** (Scheme 7). The erosion in selectivity compared to Li^+cis -10⁻ can be rationalized by competitive reaction via the minor parallel conformation **E'**, which should be less disfavored than **B'** due to the lack of an associated cation and its attendant solvent shell.

In contrast to the alkylation behavior of *P*-benzyl and *P*-ethyl anions Li^+cis -9⁻ and Li^+cis -10⁻, the alkylation of the corresponding *P*-methoxymethyl analog Li^+cis -11⁻ would be expected to furnish products derived from the opposite orientation of the R group (OMe) due to chelation of Li^+ by the phosphoryl and methoxy oxygens (conformer F) (Scheme 8). As a consequence, the "opposite" face of the anion would undergo

Scheme 8

Figure 2. Proposed five-membered chelates in the anions with α -imino stabilizing groups.

preferential electrophilic attack, leading to products with a reversal of configuration at the α -stereogenic center. However, as shown previously in Table 4, the alkylation of *P*-(meth-oxymethyl)phosphonamidate Li⁺cis-11⁻ led to the products with poor diastereoselectivity in ratios of 2.3~3/1 in favor of the *u* isomers.

One plausible explanation for this behavior is that the coordination of the methoxy oxygen to Li^+ is not strong enough to interrupt the coordination by solvent THF. Under such circumstances, the competing alkylation by way of the anion conformer **F**' similar to conformer **A** would result in erosion of selectivity and the observed stereochemical preference. Unfortunately, information concerning the preferred conformations and hybridization states of the phosphoryl- and thiophosphoryl-stabilized *P-alkoxymethyl* anions both in the solution and solid states is not available.

In marked contrast, five-membered chelates have been proposed in the highly diastereoselective alkylation of *P*-(iminomethyl)phosphonamides¹⁰ and -phosphonamidates¹¹ where both coordination of the nitrogen lone pair to Li⁺ (or K⁺) and concomitant delocalization of the anionic charge into the C=N π^* orbital (Figure 2).

The reversal in diastereoselectivity of alkylation of Li^+cis -18⁻ by modulation of lithium solvation is intriguing. On the basis of structure,⁵³ reactivity, and selectivity⁵⁴ of α -alkoxy carbanions, these observations can be understood in terms of two readily equilibrating sp³-hybridized anions G and G' with carbon-lithium contacts⁵⁵ (Scheme 9). Complete solvation of Scheme 9

Scheme 10

lithium ion by the addition of HMPA^{24d,56} (\geq 4 equiv) would facilitate the formation of a planar anion **H**, where predominant electrophilic attack from the side syn to the ring oxygen would be expected to furnish (*u*)-**29**. On the other hand, the significant increase in steric bulk of the lithium upon tridentate coordination with PMDTA⁵⁷ can alter the conformational preferences of the intermediate anions **I** and **J**. Under such circumstances, the epimer **I** would be favored on the basis of steric considerations. Alkylation of **I** with retention of configuration^{53,54} would afford (*l*)-**29** with the preferred *S* configuration at the newly created stereocenter.

Alkylation in the Trans Series. The alkylation behavior in the cis series, which exhibited significant improvement in alkylation diastereoselectivity by the utilization of thiophosphoryl-stabilized carbanions, strongly suggested that the unfavorable partitioning of reactive anionic conformers observed in Li^+ trans-9⁻ can be regulated by the use of the corresponding 2-thioxo analog Li^+ trans-16⁻.

The size of the nitrogen substituent has a small effect on the stereochemical course of the alkylation in the trans series.^{25h} Thus, the stereochemical outcome can be rationalized in terms of three competing reactive, anion conformers K, L α , and L β (Scheme 10). In the case of oxazaphosphorinane 2-oxides (X=O), conformer K is most likely favored. Conformers L β and L α are disfavored due to adverse steric interaction between

^{(53) (}a) Marsch, M.; Harms, K.; Zschage, O.; Hoppe, D.; Boche, G. Angew. Chem., Int. Ed. Engl. **1991**, 30, 321. (b) Boche, G.; Opel, A.; Marsch, M.; Harms, K.; Haller, F.; Lohrenz, J. C. W.; Thümmler, C.; Koch, W. Chem. Ber. **1992**, 125, 2265. (c) Boche, G.; Bosold, F.; Lohrenz, J. C. W.; Opel, A.; Zulauf, P. Chem. Ber. **1993**, 126, 1873.

^{(54) (}a) Matteson, D. S.; Tripathy, P. B.; Sarkar, A.; Sadhu, K. M. J. Am. Chem. Soc. 1989, 111, 4399. (b) Chan, P. C.-M.; Chong, J. M. Tetrahedron Lett. 1990, 31, 1985. (c) Chong, J. M.; Mar, E. K. Tetrahedron Lett. 1989, 30, 3011. (e) Chong, J. M.; Mar, E. K. Tetrahedron Lett. 1989, 30, 3011. (e) Chong, J. M.; Mar, E. K. Tetrahedron 1989, 45, 7709. (f) Lesimple, P.; Beau, J.-M.; Sinay, P. J. Chem. Soc. 1984, 106, 1130. (h) Sawyer, J. S.; Macdonald, T. L.; McGarvey, G. J. J. Am. Chem. Soc. 1984, 106, 1376. (i) Haller, J.; Hense, T.; Hoppe, D. Synlett 1993, 726 and references therein. (j) Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102, 1201. (k) Marshall, J. A.; Robinson, E. D. Tetrahedron Lett. 1989, 30, 1055. (l) Linderman, R. J.; Ghannam, A. J. Am. Chem. Soc. 1990, 112, 2392.

⁽⁵⁵⁾ The configurational stability of α -alkoxy-stabilized anions can be significant reduced by incorporation of a vinyl or phenyl substituent. see: (a) Zschage, O.; Schwark; J.-R.; Hoppe, D. Angew. Chem., Int. Ed. Engl. **1990**, 29, 296. (b) Hoppe, D.; Hintze, F.; Tebben, P. Angew. Chem., Int. Ed. Engl. **1990**, 29, 1424. The rate of epimerization in diastereomeric α -phenylthio-stabilized carbanions has been shown to be highly dependent on the extent of lithium solvation. See: (c) McDougal, P. G.; Condon, B. D.; Laffosse, M. D., Jr.; Lauro, A. M.; VanDerveer, D. Tetrahedron Lett. **1988**, 29, 2547.

⁽⁵⁶⁾ Reich, H. J.; Borst, J. P.; Dykstra, R. R.; Green, D. P. J. Am. Chem. Soc. 1993, 115, 8728.

^{(57) (}a) Lappert, M. F.; Engelhardt, L. M.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commun. **1982**, 1323. (b) Engelhardt, L. M.; Leung, W.-P.; Raston, C. L.; Salem, G.; Twiss, P.; White, A. H. J. Chem. Soc., Dalton Trans. **1988**, 2403. (c) Fraenkel, G.; Winchester, W. R. J. Am. Chem. Soc. **1988**, *110*, 8720. (d) Schümann, U.; Weiss, E.; Dietrich, H.; Mahdi, W. J. Organomet. Chem. **1987**, 322, 299.

the phenyl group and axial hydrogens (in $L\beta$) or the methyl group and solvated OLi unit ($L\alpha$). Since the stereocontrol elements in **K** are the axial hydrogens, poor diastereoselection in the alkylation can be expected. In the corresponding thiophosphonamidate Li⁺trans-16^{-,24c.d} the conformers L α and L β maybe favored due to reduced 1,3-diaxial interaction, given the increase in the rotational barrier, elongated P=S bonds, and lack of cation coordination. Indeed, the separated ion pair nature of Li⁺trans-16⁻ may allow L α in a twist boat version thereof to be favored.

Conclusion

The alkylation of 1,3,2-oxazaphosphorinane 2-sulfides proceeds with high selectivity in both cis and trans diastereomeric series. The enantiomerically enriched thiophosphonamidates of varying P-alkyl substitution were synthesized by thiation of the corresponding phosphonamidates with complete retention of configuration. The alkylation selectivity of P-benzylthiophosphonamidates was found to be significantly higher than that of the corresponding 2-oxo analogs. The alkylation selectivity of P-ethylthiophosphonamidates was attenuated in comparison to that observed in the corresponding 2-oxo analogs. This observation has been attributed to the hybridization and to the inherent selectivity difference between sp³ and sp² anions. Highly enantioselective syntheses of α -hydroxyphosphonates in either antipodal form can be achieved by the employment of highly diastereoselective alkylation with anions derived from the corresponding *P*-methoxymethyl analog in the presence of HMPA or PMDTA.

The application of chiral thiophosphoryl-stabilized carbanions in asymmetric carbon-carbon bond-forming reactions offers significant synthetic promise. Their ease of preparation and highly stereospecific transformation to the corresponding phosphonamidates make them a useful alternative for electrophilic substitution reactions.

Experimental Section

¹H NMR spectra were recorded at 300 or 400 MHz, ¹³C-NMR spectra at 100 or 75.5 MHz, and ³¹P-NMR at 121.6 or 162 MHz in deuteriochloroform with tetramethylsilane (TMS) or chloroform as an internal reference unless otherwise stated. Phosphorus-31 spectra were referenced to external 85% H₃PO₄ ($\delta = 0.00$ ppm). Chemical shifts are reported in ppm (δ): multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants are reported in hertz. In the carbon spectra all peaks for which a coupling constant is reported are doublets due to phosphorus coupling. Infrared spectra (IR) were recorded on an FT-IR spectrometer. Peaks are reported in cm⁻¹ with the following relative intensities: s (strong 67-100%), m (medium 33-67%), or w (weak 0-33%). Electron impact (EI) mass spectra were obtained with ionization voltages of 70 or 10 eV, and high-resolution EI mass spectra were obtained with an ionization voltage of 70 eV. Data are reported in the form m/z (intensity relative to base peak = 100). Elemental analyses were performed by the University of Illinois Microanalytical Service Laboratory. Bulb-to-bulb distillations were performed with boiling points refer to air bath temperatures and were uncorrected. Melting points (mp) were uncorrected. Analytical TLC was performed on Merck SiO₂ plates with QF-254 indicator. Visualization was accomplished with UV light, iodine, and KMnO₄. Column (flash) chromatography was performed by the method of Still.⁵⁸ Solvents for extraction and chromatography were technical grade and distilled from the indicated drying agents: hexane, pentane, dichloromethane (CaCl₂); diethyl ether, tert-butyl methyl ether (TBME) (CaSO₄/FeSO₄); ethyl acetate (K₂CO₃). Solvents used for recrystallization were spectral grade and are given after the mp. Solvents used in reactions were reagent grade and were freshly distilled from the indicated drying agents: tetrahydrofuran (THF), sodium/benzophenone; benzene and toluene,

(58) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

CaH₂. Medium-pressure chromatography was performed using Merck Lobar columns. Analytical high-pressure liquid chromatography (HPLC) was performed with a spectrophotometric detector. The columns used were a Supelco LC-Si 5 μ m column and Pirkle Covalent L-*N*-2-(naphthyl)alanine 5 μ m column with the detector wavelength at 254 nm. The flow rate and solvent systems were as denoted. Retention times (t_R) and integrated ratios were obtained from an integrator. Optical rotations were reported as follows: [α]_{wavelength}, solvent, and concentration (c = g/100 mL). *t*-BuLi was titrated according to the method of Gilman.⁵⁹ All reactions were run under an atmosphere of nitrogen.

(S)-N-(1-Methylethyl)-3-hydroxybutyramide (13). In an ovendried, 100-mL, three-necked flask equipped with a thermometer, N₂ inlet, and septum was placed Me₃Al (4.7 mL, 48.4 mmol, 2.0 equiv) in anhydrous toluene (15 mL). A solution of isopropylamine (4.2 mL, 48.4 mmol, 2.0 equiv) in toluene (4 mL) was added dropwise to the reaction flask at 0 °C. The reaction mixture was stirred at 10 °C for 1 h and then warmed to room temperature (rt) for 50 min. The solution was cooled to 0 °C, and (S)-ethyl 3-hydroxybutanoate (3.199 g, 24.2 mmol) was added dropwise using a cannula ($T \leq 0$ °C). After 20 min, the reaction mixture was warmed to rt and stirred for 23 h. The reaction mixture was cooled to 0 °C, and H₂O (35 mL) was added cautiously. The mixture was acidified to ca. pH 6 with 6 N HCl and filtered through a Celite-packed sintered-glass to remove the aluminum salts. The aqueous layer was extracted with EtOAc (4 \times 15 mL) followed by continuous extraction for 24 h. The combined organic layers were dried (K_2CO_3), filtered, and evaporated. The crude residue was purified by SiO₂ column chromatography (hexane/acetone, 3/2) to afford 2.878 g (82%) of 13 as a white solid. The enantiomeric purity of 13 was determined to be 99.6% by HPLC analysis of the corresponding 3,5-dinitrophenyl carbamate. An analytical sample was obtained by recrystallization from Et₂O/hexane: mp 61-62 °C (Et₂O/ hexane); ¹H NMR (300 MHz) 6.03 (broad d, J = 2.2, 1H, NH), 4.18 (d, J = 3.1, 1H, OH), 4.15-4.11 (m, 1H, HC(3)), 4.09-4.00 (m, 1H, HC(3))HC(1')), 2.28 (dd, $J_{gem} = 15.3$, $J_{vic} = 3.2$, 1H, $H_aH_bC(2)$), 2.19 (dd, $J_{\text{gem}} = 15.3, J_{\text{vic}} = 8.4, 1\text{H}, \text{H}_{a}H_{b}(2)), 1.17 \text{ (d, } J = 6.2, 3\text{H}, \text{H}_{3}\text{C}(4)),$ 1.12 (d, $J = 6.5, 6H, 2 \times H_3C(2')$); ¹³C NMR (75.5 MHz) 171.5 C(1), 64.8 C(3), 43.8 C(2), 41.2 C(1'), 22.7 C(2'), 22.6 C(4); IR (CCl₄) 3300 (s), 1644 (s); MS (70 eV) 145 (M⁺, 8), 44 (100); TLC R_f 0.13 (hexane/ acetone, 2/1); HPLC t_R 9.94 min (R), 15.60 min (S) (Pirkle Covalent L-N-2-(naphthyl)alanine, hexane/i-PrOH, 94/6, 1.5 mL/min); [a]_D +44.19° (CH₂Cl₂, c = 0.57). Anal. Calcd for C₇H₁₅NO₂ (145.20): C, 57.90; H, 10.41; N, 9.65. Found: C, 58.06; H, 10.41; N, 9.62.

(S)-N-(1-Methylethyl)-4-amino-2-butanol (14). To a flame-dried, 250-mL, three-necked, flask equipped with an addition funnel, thermometer, stir bar, and N2 inlet was introduced BH3 THF (40.6 mL, 1.0 M in THF, 40.6 mmol, 3.05 equiv) at 0 °C. Hydroxy amide 13 (1.925 g, 13.3 mmol) in anhydrous THF (13.5 mL) was added dropwise through the addition funnel to the borane solution $(T \sim 0 \, ^{\circ}\text{C})$ over a period of 50 min. The solution was stirred at 0 °C for 2 h and warmed to rt for 26.5 h. The reaction mixture was cooled to 0 °C and carefully quenched by the addition of H₂O (1.7 mL) and HCl (6 N, 41 mL) to pH \sim 1. The mixture was stirred at rt for 7 h followed by addition of KOH pellets (about 23 g) at 0 °C to ca. pH 11. The organic layer was decanted, and the aqueous layer and salts were extracted with Et₂O (4 \times 20 mL). A minimum amount of H₂O was added to dissolve the salts. The aqueous layer was continuously extracted with Et₂O for 24 h. The combined organic layers were dried (K₂CO₃), filtered, and evaporated. Kugelrohr distillation (80 °C, 10 Torr) of the residual liquid afforded 1.756 g (100%) of 14 as a colorless liquid: bp 85 °C (10 Torr, air bath); ¹H NMR (300 MHz) 3.96-3.86 (m, 1H, HC(2)), 2.95 $(dt, J_{HH} = 11.9, J_{HH} = 3.9, 1H, H_aH_bC(4)), 2.75-2.61 (m, 2H, H_aH_bC-4)$ (4), HC(1')), 1.59-1.52 (m, 1H, $H_aH_bC(3)$), 1.44-1.31 (m, 1H, H_aH_bC -(3)), 1.10 (d, J = 5.7, 3H, H₃C(1)), 1.00 (d, J = 6.3, 6H, $2 \times H_3C(2')$); ¹³C NMR (75.5 MHz) 69.1 C(2), 48.4 C(1'), 45.7 C(4), 37.1 C(3), 23.4 C(1), 22.7 C(2'), 22.4 C(2'); IR (neat) 3276 (s), 2965 (s), 1472 (s); MS (70 eV) 131 (M⁺, 13), 44 (100); TLC R_f 0.28 (acetone/hexane, 5/1); $[\alpha]_{D}$ -34.03° (CH₂Cl₂, c = 1.44). Anal. Calcd for C₇H₁₇NO (132.22): C, 64.07; H, 13.06; N, 10.67. Found: C, 63.95; H, 13.06; N, 10.63.

(59) Gilman, H.; St. John, N. B.; Schulze, F. Org. Synth. 1943, Collect. Vol. II, 425.

(S)-(2u,6l)-6-Methyl-3-(1-methylethyl)-2-(phenylmethyl)-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2l,6l)-6-Methyl-3-(1-methylethyl)-2-(phenylmethyl)-1,3,2-oxazaphosphorinane 2-Oxide (cis-9 and trans-9). Anhydrous Et₃N (1.8 mL, 12.8 mmol, 2.1 equiv) was added to refluxing CH2Cl2 (24 mL) in an oven-dried, 100-mL, threenecked flask equipped with a reflux condenser, N2 inlet, stir bar, and septum. Amino alcohol 14 (799 mg, 6.097 mmol) and benzylphosphonic dichloride (1.34 g, 6.4 mmol, 1.05 equiv) were each dissolved in anhydrous CH2Cl2 (14 mL) under nitrogen. Each solution was introduced to a 10 mL gas-tight syringe and added dropwise using a syringe pump over a period of 3.5 h to the reaction flask. The reaction mixture was stirred at reflux for 1 h after the addition was complete and then stirred at rt for 11 h. Water (20 mL) was added, and the aqueous solution was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layers were dried (K2CO3), filtered, and evaporated. ³¹P NMR spectroscopic analysis of crude products showed a ratio of 1.9/1 (cis/trans). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 19/1) to give 524 mg (32.2%) of trans-9 and 927 mg (56.9%) of cis-9. Analytical samples were obtained by recrystallization from hexane and pentane, respectively. Data for trans-9: mp 74-75 °C (hexane); ¹H NMR (300 MHz) 7.31-7.19 (m, 5H, Ph), 4.20-4.11 (m, 1H, HC(6)), 3.89-3.77 (m, 1H, (CH₃)₂CHN), 3.23 (dd, $J_{HP} = 19.9$, $J_{HH} = 15.2$, 1H, $H_aH_bC(1')$), 3.14-3.02 (m, 1H, $H_{eq}C(4)),\,2.89{-}2.79~(m,\,1H,\,H_{ax}C(4)),\,1.74{-}1.57(m,\,2H,\,H_2C(5)),\,1.31$ $(dd, J_{HP} = 6.1, J_{HH} = 1.1, 3H, H_3C(7)), 1.13 (d, J = 6.6, 3H, H_3C(9)),$ 0.88 (d, J = 6.8, 3H, H₃C(9)); ¹³C NMR (75.5 MHz) 132.9 (J = 8.1, C_{ipso}), 129.6 (J = 6.0, C_{ortho}), 128.4 (J = 2.5, C_{para}), 126.4 (J = 3.2, C_{meta}), 77.2 (J = 8.2, C(6)), 46.0 (J = 3.8, (CH₃)₂CHN), 38.1 (J = 2.4, C(4), 34.2 (J = 119.6, C(1')), 34.0 (J = 6.2, C(5)), 22.5 (J = 6.4, C(7)), 21.4 (C(9)), 20.0 (J = 3.4, C(9')); ³¹P NMR (121.65 MHz) 22.63; IR (CDCl₃) 3081 (w), 2977 (m), 1248 (s, P=O); MS (70 eV) 267 (M⁺, 9), 252 (100); TLC Rf 0.5 (EtOAc/i-PrOH, 19/1); HPLC t_R 8.25 min (Supelco LC-Si, hexane/2-propanol, 24/1, 1 mL/min); [a]D -46.9° $(CH_2Cl_2, c = 1.3)$. Anal. Calcd for $C_{14}H_{22}NO_2P$ (267.30): C, 62.90; H, 8.30; N, 5.24; P, 11.59. Found: C, 62.98; H, 8.30; N, 5.28; P, 11.67. Data for cis-9: mp 58-59 °C (pentane); ¹H NMR (300 MHz) 7.32-7.15 (m, 5H, Ph), 4.44-4.34 (m, 1H, HC(6)), 3.92-3.80 (m, 1H, (CH₃)₂CHN), 3.23 (dd, $J_{HP} = 18.9$, $J_{HH} = 15.0$, 1H, $H_{a}H_{b}C(1')$), 3.16 (dd, $J_{\rm HP} = 17.0$, $J_{\rm HH} = 15.0$, 1H, $H_a H_b C(1')$, 3.01–2.89 (m, 1H, $H_{ax}C(4)$, 2.73-2.63 (m, 1H, $H_{eq}C(4)$), 1.61-1.56 (m, 1H, $H_{eq}C(5)$), 1.23 (d, J = 6.6, 3H, H₃C(9)), 1.20 (dd, $J_{HH} = 6.1$, $J_{HP} = 1.2$, 3H, $H_3C(7)$), 1.09 (d, J = 6.8, 3H, $H_3C(9)$), 0.97-0.74 (m, 1H, $H_{ax}C(5)$); ¹³C NMR (75.5 MHz) 133.6 (J = 9.5, C_{ipso}), 129.8 (J = 5.9, C_{ortho}), 128.1 $(J = 3.1, C_{para})$, 126.3 $(J = 3.6, C_{meta})$, 72.8 (J = 8.1, C(6)), 46.3 $(J = 4.6, (CH_3)_2 CHN), 37.1 C(4), 36.7 (J = 128.9, C(1')), 32.1 (J = 128.9)$ 3.7, C(5)), 21.9 (J = 8.3, C(7)), 20.9 (C(9)), 20.2 (J = 5.3, C(9')); ³¹P NMR (121.65 MHz) 25.20; IR (CDCl₃) 3031 (w), 2975 (m), 1264 (s, P=O); MS (70 eV) 267 (M⁺, 3), 252 (100); TLC R_f 0.35 (EtOAc/i-PrOH, 19/1); HPLC t_R 8.33 min (Supelco LC-Si, EtOAc/i-PrOH, 9/1, 1.0 mL/min); $[\alpha]_D + 29.2^\circ$ (CH₂Cl₂, c = 0.47). Anal. Calcd for C₁₄H₂₂-NO₂P (267.30): C, 62.90; H, 8.30; N, 5.24; P, 11.59. Found: C, 62.84; H, 8.32; N, 5.29; P, 11.47.

(S)-(2u,6l)-2-Ethyl-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2l,6l)-2-Ethyl-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide (cis-10 and trans-10). Anhydrous Et₃N (1.2 mL, 8.63 mmol, 2.1 equiv) and anhydrous CH₂-Cl₂ (22 mL) were introduced to an oven-dried, 100-mL, three-necked, round-bottomed flask equipped with a reflux condenser topped with a $N_{2}\xspace$ inlet, glass stopper, and septum. The solution was heated to gentle reflux. (S)-N-Isopropyl-4-amino-2-butanol (14) (539 mg, 4.11 mmol) and ethylphosphonic dichloride (461 µL, 4.31 mmol, 1.05 equiv) were each dissolved in anhydrous CH2Cl2 (5 mL) under nitrogen. Each solution was introduced to a 5-mL gas-tight syringe and added dropwise using a syringe pump over 3 h. The reaction mixture was heated to reflux for 3 h after the addition was complete and stirred at rt for 2.5 h. H₂O (15 mL) was added. The aqueous layer was separated and extracted with CH_2Cl_2 (5 × 30 mL). The combined extracts were dried (K₂CO₃), filtered, and evaporated. The residual yellow oil was purified by silica gel column chromatography (acetone/hexane, 5/1) to give 384 mg (45.5%) of trans-10 and 358 mg (42%) of cis-10. Analytical samples were obtained by Kugelrohr distillation. Data from trans-10: bp 70 °C (0.1 Torr, air bath); ¹H NMR (300 MHz) 4.25-4.18 (m, 1H,

HC(6)), 3.95-3.83 (m, 1H, $(H_3C)_2CHN$), 3.18-3.04 (ddt, J = 17.0, 13.0, 4.0, 1H, $H_{eq}C(4)$, 2.95–2.86 (m, 1H, $H_{ax}C(4)$), 1.81–1.60 (m, 4H, H₂C(5), H₂C(1')), 1.31 (d, J = 6.3, 3H, H₃C(7)), 1.10 (dt, $J_{HP} =$ 19.0, $J_{\text{HH}} = 7.5$, 3H, H₃C(2')), 1.11 (d, J = 6.8, 3H, H₃C(9_a)), 1.0 (d, $J = 6.7, 3H, H_3C(9_b)$; ¹³C NMR (75.5 MHz) 75.3 (J = 7.4, C(6)), 45.4 $(J = 4.1, (H_3C)_2CHN)$, 38.0 (J = 2.6, C(4)), 34.2 (J = 5.4, C(5)), 22.6 $(J = 7.0, H_3CC(6))$, 21.2 $(C(9_a))$, 20.3 $(J = 2.6, C(9_b))$, 18.0 $(J = 2.6, C(9_b))$ 123.4, C(1')), 6.6 (J = 2.6, C(2')); ³¹P NMR (121.65 MHz) 30.06; IR (CCl₄) 2975 (s), 1225 (s); MS (70 eV) 205 (M⁺, 7), 190 (100); TLC R_f 0.48 (acetone/hexane, 5/1); $[\alpha]_D = 88.09^\circ$ (CH₂Cl₂, c = 1.39). Anal. Calcd for C₉H₂₀NO₂P (205.23): C, 52.67; H, 9.82; N, 6.82; P, 15.09. Found: C, 52.58; H, 9.83; N, 6.82; P, 15.12. Data from cis-10: bp 60 °C (0.1 Torr, air bath); 1H NMR (300 MHz) 4.49-4.39 (m, 1H, HC-(6)), 3.70-3.58 (m, 1H, (H₃C)₂CHN), 3.12-2.97 (ddd, J = 16.3, 11.0,5.4, 1H, $H_{ax}C(4)$, 2.97–2.87 (ddt, J = 16.3, 11.0, 5.1, 1H, $H_{ea}C(4)$), 1.87-1.82 (m, 1H, $H_{eq}C(5)$), 1.71 (dq, $J_{HP} = 15.4$, $J_{HH} = 7.8$, 2H, $H_2C(1')$, 1.67–1.54 (m, 1H, $H_{ax}C(5)$), 1.24 (d, $J = 6.3, 3H, H_3C(7)$), 1.16 (d, J = 6.6, 3H, H₃C(9_a)), 1.05 (d, J = 6.6, 3H, H₃C(9_b)), 1.02 $(dt, J_{HP} = 19.4, J_{HH} = 7.5, 3H, H_3C(2')); {}^{13}C NMR (75.5 MHz) 71.5$ $(J = 7.4, C(6)), 45.8 (J = 4.5, (H_3C)_2CHN), 36.8 (C(4)), 33.2 (J = 10.0)$ 3.1, C(5), $22.1 (J = 8.2, H_3CC(6))$, 20.6 (J = 135.2, C(1')), 20.4 (J = 135.2, C(1')), 20.46.1, C(9_a)), 20.2 (C(9_b)), 7.3 (J = 7.0, C(2')); ³¹P NMR (121.65 MHz) 33.17; IR (CCl₄) 2971 (s), 1217 (s); MS (70 eV) 205 (M⁺, 9), 190 (100); TLC $R_f 0.28$ (acetone/hexane, 5/1); $[\alpha]_D + 10.12^\circ$ (CH₂Cl₂, c =0.81). Anal. Calcd for C₉H₂₀NO₂P (205.23): C, 52.67; H, 9.82; N, 6.82; P, 15.09. Found: C, 52.63; H, 9.86; N, 6.86; P, 15.21.

(S)-(2u,6l)-2-(Methoxymethyl)-6-methyl-3-(1-methylethyl)-1,3,2oxazaphosphorinane 2-Oxide (cis-11). In an oven-dried 250-mL, three-necked round-bottomed flask fitted with a reflux condenser topped with a N₂ inlet, glass stopper, and septum was introduced anhydrous CH₂Cl₂ (35 mL). Freshly distilled ethyl dichlorophosphite (630 μ L, 5.51 mmol, 1.05 equiv) was added followed by addition of anhydrous Et₃N (1.61 mL, 11.56 mmol, 2.2 equiv) with generation of white smoke. The resulting mixture was heated to gentle reflux, and a solution of (S)-N-isopropyl-4-amino-2-butanol (14) (689 mg, 5.25 mmol) in anhydrous CH2Cl2 (14 mL) was added dropwise over a period of 25 min. The reaction mixture was stirred at reflux for 12 h. After having been cooled to rt, the mixture was added anhydrous hexane (140 mL) with precipitation of white solids. The solution was filtered through a Schlenk tube and the solvent removed under reduced pressure. The residual oil was purified by Kugelrohr distillation (90 °C, 10 Torr) to give the intermediate phosphite 15 (906 mg, 84%) as a colorless liquid. ³¹P NMR spectroscopic analysis showed a diastereomeric ratio of 10.7/1 (trans/cis).

A solution of the phosphite 15 (447 mg, 2.18 mmol) in anhydrous CH₃CN (10 mL) was introduced to an oven-dried, 25-mL, three-necked, round-bottomed flask equipped with a N2 inlet, glass stopper, and septum in the presence of the molecular sieves 4 Å (0.25 g). Methyl bromomethyl ether (320 μ L, 3.92 mmol, 1.8 equiv) was added over 1 min followed by addition of anhydrous Et₃N (304 µL, 2.18 mmol, 1.0 equiv). The reaction mixture was stirred at rt for 18 h and then passed through a short plug of Celite to remove the molecular sieves. The filtrate was immediately quenched with 10% aqueous NaHCO3 (10 mL) and H₂O (10 mL). The aqueous layer was extracted with CH₂Cl₂ (4 \times 40 mL), and the combined organic extracts were dried (K2CO3), filtered, and concentrated under reduced pressure to afford a yellow oil. The residual oil was analyzed by ³¹P NMR spectroscopy which showed a ratio of 8.4/1 (cis/trans). The residual oil was purified by SiO2 column chromatography (EtOAc/i-PrOH, 49/1) to yield 356 mg (74%) of cis-11 as a colorless oil. An analytical sample was obtained by Kugelrohr distillation: bp 80 °C (0.1 Torr, air bath); ¹H NMR (300 MHz) 4.48-4.40 (m, 1H, HC(6)), 3.87-3.75 (m, 1H, (CH₃)₂CHN), 3.58 (dd, J =7.5, 1.4, 2H, $H_2C(1')$, 3.34 (d, J = 1.0, 3H, H_3CO), 3.06–2.98 (m, 2H, H₂C(4)), 1.87–1.74 (m, 2H, H₂C(5)), 1.26 (dd, $J = 6.2, 1.4, CH_3C$ -(6)), 1.16 (dd, $J = 6.7, 1.2, 3H, (H_3C)_a(H_3C)_bCHN)$, 1.07 (dd, J = 6.8, J = 61.2, 3H, $(H_3C)_a(H_3C)_bCHN$; ¹³C NMR (75.5 MHz) 73.6 (J = 8.0, C(6)), 67.8 $(J = 156.0, C(1')), 60.8 (J = 14.5, OCH_3), 45.8 (J = 5.0, C(1'))$ $(H_3C)_2CHN)$, 37.3 (C(4)), 32.5 (J = 4.5, C(5)), 22.1 (J = 7.3, $CH_3C(6)$), 20.7 ((H_3C)_a(H_3C)_bCHN), 20.2 (J = 2.9, (H_3C)_a(H_3C)_bCHN); ³¹P NMR (121.65 MHz) 20.61; IR (CCl₄) 2975 (s), 1228 (s); MS (70 eV) 221 $(M^+, 5)$, 206 (100); TLC $R_f 0.33$ (EtOAc/i-PrOH, 49/1); $[\alpha]_D + 2.74^\circ$

 $(CH_2Cl_2, c = 0.59)$. Anal. Calcd for $C_9H_{20}NO_3P$ (221.23): C, 48.86; H, 9.11; N, 6.33; P, 14.00. Found: C, 48.66; H, 9.28; N, 6.22; P, 13.80.

(S)-(21.61)-6-Methyl-3-(1-methylethyl)-2-(phenylmethyl)-1.3.2-oxazaphosphorinane 2-Sulfide (cis-16). General Procedure. In a flame-dried, 25-mL, three-necked, round-bottomed, flask equipped with a glass stopper, reflux condenser, and septum was placed Lawesson's reagent (338 mg, 0.835 mmol, 1.04 equiv). A solution of cis-9 (429 mg, 1.605 mmol) in anhydrous toluene (7 mL) was added using a cannula. The resulting heterogeneous mixture was stirred at 110 °C and became homogeneous in 3 min. The reaction was complete in 3 h as judged by ³¹P NMR spectroscopic analysis of a crude, concentrated aliquot. The reaction mixture was cooled to rt and quenched with aqueous NaHCO₃ (9 mL, saturated NaHCO₃/H₂O 7/2). The aqueous layer was separated and extracted with benzene (3 \times 30 mL). The combined organic extracts were dried (MgSO₄), filtered, and evaporated to give a yellowish oil. The oil was purified by SiO₂ column chromatography (benzene) to give 408 mg (90%) of cis-16 as a white solid. An analytical sample was obtained by recrystallization from pentane: mp 48-49.5 °C (pentane); ¹H NMR (300 MHz) 7.33-7.22 (m, 5H, Ph), 4.58-4.50 (m, 1H, HC(6)), 3.72 (dm, $J_{HP} = 13.2$, $J_{HH} =$ 6.6, 1H, (CH₃)₂CHN), 3.54 (dd, $J_{HP} = 25.7$, $J_{HH} = 15.0$, 1H, H_aH_bC -(1')), 3.49 (dd, $J_{\rm HP} = 22.8$, $J_{\rm HH} = 15.0$, $H_a H_b C(1')$), 3.09–2.97 (m, 1H, $H_{ax}C(4)$), 2.74 (ddt, $J_{HP} = 17.4$, $J_{HH} = 12.1$, 4.9, 1H, $H_{eo}C(4)$), 1.77-1.68 (m, 1H, HegC(5)), 1.42-1.30 (m, 1H, HaxC(5)), 1.29 (dd, $J_{\rm HH} = 6.2, J_{\rm HP} = 1.5, 3H, CH_3C(6)), 1.19 (J = 6.6, 3H, (CH_3)_a(CH_3)_b$ CHN), 0.93 (J = 6.7, 3H, (CH₃)_a(CH₃)_bCHN); ¹³C NMR (75.5 MHz) 132.5 (J = 10.1, C_{ipso}), 130.0 (J = 6.0, C_{ortho}), 128.0 (J = 3.0, C_{para}), 126.7 (J = 3.6, C_{meta}), 71.0 (J = 7.3, C(6)), 47.3 (J = 5.0, (CH₃)₂CHN), 44.7 (J = 94.6, C(1')), 36.7 (C(4)), 33.7 (J = 2.1, C(5)), 22.2 (J = 2.1, C(5))9.3, $CH_3C(6)$), 20.7 (J = 8.3, (CH_3)_a(CH_3)_bCHN), 18.8 ((CH_3)_a(CH_3)_b-CHN); ³¹P NMR (161.9 MHz) 88.79; IR (CHCl₃) 3022 (m), 2976 (s), 1227 (m); MS (70 eV) 283 (M⁺, 5), 192 (100); TLC R_f 0.23 (benzene); $[\alpha]_D$ +36.9° (CHCl₃, c = 0.58). Anal. Calcd for C₁₄H₂₂NOPS (283.37): C, 59.34; H, 7.83; N, 4.94; P, 10.93; S, 11.31. Found: C, 59.36; H, 7.84; N, 5.00; P, 10.85; S, 11.22.

(S)-(2u,6l)-6-Methyl-3-(1-methylethyl)-2-(phenylmethyl)-1,3,2-oxazaphosphorinane 2-Sulfide (trans-16). By following the general procedure, from Lawesson's reagent (560 mg, 1.38 mmol, 1 equiv) and trans-9 (740 mg, 27.66 mmol) in anhydrous toluene (11 mL) after heating at 110 °C for 14 h was obtained the crude thiophosphonamidate as a yellowish oil. The residual oil was purified by SiO₂ column chromatography (benzene) to give 734 mg (93.6%) of trans-16 as a white solid. An analytical sample was obtained by recrystallization from hexane: mp 76-77 °C (hexane); ¹H NMR (400 MHz) 7.35-7.22 (m, CH, Ph), 4.45-4.37 (m, 1H, HC((6)), 4.20 (dsept, $J_{HP} = 13.4$, $J_{\rm HH} = 6.7, 1 \text{H}, (\text{CH}_3)_2 \text{CHN}, 3.44 \text{ (d, } J_{\rm HP} = 16.1, 2 \text{H}, \text{H}_2 \text{C}(1')), 3.23$ (ddt, $J_{\rm HP} = 23.7$, $J_{\rm HH} = 13.7$, 4.2, 1H, $H_{\rm eq}C(4)$), 3.10–3.02 (m, 1H, $H_{ax}C(4)$, 1.77–1.66 (m, 2H, $H_2C(5)$), 1.37 (dd, $J_{HH} = 6.1$, $J_{HP} = 1.1$, 3H, H₃CC(6)), 1.10 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_bCHN), 0.83 (d, J =6.6, 3H, $(CH_3)_a(CH_3)_bCHN$; ¹³C NMR (100 MHz) 132.6 (J = 8.4, C_{ipso}), 129.9 (J = 5.3, C_{ortho}), 128.1 ($J = 3.1 C_{para}$), 126.6 (J = 3.8, C_{meta}), 76.1 (J = 9.2, C(6)), 47.7 (J = 5.3, (CH₃)₂CHN), 39.4 (J =83.9, C(1')), 38.2 (C(4)), 34.4 (J = 5.3, C(5)), 22.9 (J = 7.6, CH₃C-(6)), 21.2 (J = 2.3, (CH_3)_a(CH_3)_bCHN), 20.0 (J = 3.8, (CH_3)_a(CH_3)_b-CHN); ³¹P NMR (161.9 MHz) 84.39; IR (CCl₄) 2975 (m), 1175 (s); MS (70 eV) 283 (M⁺, 25), 192 (100); TLC R_f 0.30 (benzene); $[\alpha]_D$ -90.4° (CH₂Cl₂, c = 0.25). Anal. Calcd for C₁₄H₂₂NOPS (283.37): C, 59.34; H, 7.83; N, 4.94; P, 10.93; S, 11.31. Found: C, 59.36; H, 7.86; N, 4.92; P, 10.87; S, 11.25.

(S)-(2l,6l)-2-Ethyl-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide (*cis*-17). By following the general procedure, from Lawesson's reagent (966 mg, 2.39 mmol, 1.06 equiv) and *cis*-10 (925 mg, 4.51 mmol) in anhydrous benzene (18 mL) after heating at reflux for 3 h and 50 min was obtained the crude thiophosphonamidate as a yellowish oil. The residual oil was purified by SiO₂ column chromatography (benzene) to give 711 mg (71%) of *cis*-17 as a white solid. An analytical sample was obtained by recrystallization from pentane: mp 57–58 °C (pentane); ¹H NMR (400 MHz) 4.65–4.55 (m, 1H, HC(6)), 3.53 (dsept, $J_{HP} = 13.2$, $J_{HH} = 6.6$, 1H, (CH₃)₂CHN), 3.13 (ddt, $J_{HH} = 11.2$, $J_{HP} = 7.1$, $J_{HH} = 3.9$, 1H, $H_{ax}C(4)$), 2.93 (ddt, $J_{HP} = 22.5$, $J_{HH} = 12.0$, 4.2, $H_{eq}C(4)$), 2.16–1.98 (m, 2H,CH₂CH₃),

1.85–1.78 (m, 1H, $H_{eq}C(5)$), 1.68 (ddt, $J = 13.7, 11.0, 4.9, 1H, H_{ax}C(5)$), 1.30 (dd, $J_{HH} = 6.1, J_{HP} = 1.2, 3H, H_3CC(6)$), 1.20 (d, $J = 6.6, 3H, (CH_3)_a(CH_3)_bCHN$), 1.15 (dt, $J_{HP} = 20.8, J_{HH} = 7.6, 3H, CH_2CH_3$), 1.08 (d, $J = 6.8, 3H, (CH_3)_a(CH_3)_bCHN$); ¹³C NMR (100 MHz) 70.5 (J = 6.9, C(6)), 47.0 ($J = 4.6, (CH_3)_2CHN$), 36.8 (C(4)), 34.3 (J = 2.3, C(5)), 28.8 ($J = 100.71, CH_2CH_3$), 22.2 ($J = 9.2, CH_3C(6)$), 21.2 ($J = 9.2, (CH_3)_a(CH_3)_bCHN$), 18.0 (($CH_3)_a(CH_3)_bCHN$), 7.2 ($J = 6.9, C(2H_3)_a(CH_3)_bCHN$), 18.0 (($CH_3)_a(CH_3)_bCHN$), 7.2 ($J = 6.9, CH_2CH_3$); ³¹P NMR (161.9 MHz) 95.77; IR (CCl_4) 2973 (s), 1169 (s); MS (70 eV) 222 (M + 1⁺, 12), 221 (M⁺, 100); TLC R_f 0.25 (benzene); [α]_D +33.2° (CH₂Cl₂, c = 0.30). Anal. Calcd for C₉H₂₀NOPS (221.30): C, 48.85; H, 9.11; N, 6.33; P, 14.00; S, 14.49. Found: C, 48.76; H, 9.09; N, 6.32; P, 13.95; S, 14.45.

(S)-(2u,6l)-2-Ethyl-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide (trans-17). By following the general procedure, from Lawesson's reagent (815 mg, 2.01 mmol, 1.06 equiv) and trans-10 (780 mg, 3.8 mmol) in anhydrous toluene (15.2 mL) after heating at 110 °C for 3 h was obtained the crude thiophosphonamidate as a yellowish oil. The residual oil was purified by SiO₂ column chromatography (benzene) to give 638 mg (75.8%) of trans-17 as a white solid. An analytical sample was obtained by recrystallization from pentane: mp 46-47 °C (pentane); ¹H NMR (400 MHz) 4.33 (dsept, $J_{\rm HP} = 13.4, J_{\rm HH} = 6.8, 1 \rm H, (CH_3)_2 CHN), 4.32 - 4.22 (m, 1 \rm H, HC(6)),$ 3.21 (ddt, $J_{\text{HP}} = 21.0$, $J_{\text{HH}} = 13.7$, 3.9, 1H, $H_{\text{eq}}C(4)$), 3.06-2.94 (m, 1H, $H_{ax}C(4)$), 2.12 (ddq, $J_{HP} = 15.1$, $J_{HH} = 15.1$, 7.6, 1H, $H_aH_bCCH_3$), 1.87 (ddq, $J_{\rm HH} = 15.1$, $J_{\rm HP} = 12.5$, $J_{\rm HH} = 7.6$, 1H, $H_aH_bCCH_3$), 1.74– 1.65 (m, 2H, $H_2C(5)$), 1.35 (dd, $J_{HH} = 6.1$, $J_{HP} = 1.7$, 3H, $H_3CC(6)$), 1.15 (dt, $J_{\text{HP}} = 21.2$, $J_{\text{HH}} = 7.6$, 3H, CH_2CH_3), 1.12 (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN)$, 1.02 (d, J = 6.8, 3H, $(CH_3)_a(CH_3)_bCHN)$; ¹³C NMR (100 MHz) 75.3 $(J = 9.2, C(6)), 47.2 (J = 5.3, (CH_3)_2CHN), 38.0$ (C(4)), 34.5 (J = 5.3, C(5)), 23.5 $(J = 90.0, CH_2CH_3)$, 22.9 $(J = 7.6, CH_2CH_3)$ $CH_3C(6)$), 21.2 (J = 3.1, (CH_3)_a(CH_3)_bCHN), 20.4 (J = 3.8, (CH_3)_a(CH_3)_b-CHN), 7.3 (J = 4.6, CH₂CH₃); ³¹P NMR (161.9 MHz) 92.47; IR (CCl₄) 2973 (s), 1175 (s); MS (70 eV) 222 (M + 1^+ , 12), 221 (M⁺, 100); TLC $R_f 0.20$ (benzene); $[\alpha]_D - 72.16^\circ$ (CH₂Cl₂, c = 0.51). Anal. Calcd for C₉H₂₀NOPS (221.30): C, 48.85; H, 9.11; N, 6.33; P, 14.00; S, 14.49. Found: C, 48.88; H, 9.16; N, 6.32; P, 13.96; S, 14.42.

(S)-(2l,6l)-2-(Methoxymethyl)-6-methyl-3-(1-methylethyl)-1,3,2oxazaphosphorinane 2-Sulfide (cis-18). By following the general procedure, from Lawesson's reagent (340 mg, 1.01 mmol, 1.05 equiv) and cis-11 (425 mg, 1.92 mmol) in anhydrous toluene (18 mL) after being heated at 80 °C for 4.5 h was obtained the crude thiophosphonamidate as a yellowish oil. The residual oil was purified by SiO₂ column chromatography (petroleum ether/Et₂O, 3/1) to give 358 mg (78.5%) of cis-18 as a white solid. An analytical sample was obtained by recrystallization from pentane: mp 42-43 °C (pentane); ¹H NMR (400 MHz) 4.62-4.55 (m, 1H, HC(6)), 3.89-3.76 (m, 3H, (CH₃)₂CHN, H₂C(1')), 3.45 (d, 3H, OCH₃), 3.18-3.03 (m, 2H, H₂C(4)), 1.90-1.78 (m, 2H, $H_2C(5)$), 1.33 (dd, J = 6.1, 1.2, 3H, $H_3CC(6)$), 1.18 (d, J =6.8, 3H, $(CH_3)_a(CH_3)_bCHN$, 1.10 (d, J = 6.8, 3H, $(CH_3)_a(CH_3)_bCHN$); ¹³C NMR (100 MHz) 74.1 (J = 116.0, C(1')), 71.8 (J = 7.6, C(6)), 60.9 (J = 10.7, OCH₃), 47.1 (J = 6.1, (CH₃)₂CHN), 36.9 (C(4)), 33.6 $(J = 3.1, C(5)), 22.3 (J = 8.4, CH_3C(6)), 20.7 (J = 6.9, (CH_3)_a(CH_3)_b)$ CHN), 19.2 ((CH₃)_a(CH₃)_bCHN); ³¹P NMR (161.9 MHz) 84.96; IR (CCl₄) 2974 (s), 1174 (s); MS (70 eV) 237 (M⁺, 5), 192 (100); TLC R_f 0.52 (petroleum Et₂O/Et₂O, 3/1); $[\alpha]_D$ +40.53° (CH₂Cl₂, c = 0.76). Anal. Calcd for C₉H₂₀NO₂PS (237.30): C, 45.55; H, 8.50; N, 5.90; P, 13.05; S, 13.51. Found: C, 45.55; H, 8.49; N, 5.92; P, 12.99; S, 13.47.

(S)-(2u,6l,1'u)-3-(1-Methylethyl)-2-(1'-phenylethyl)-6-methyl-1,3,2oxazaphosphorinane 2-Oxide and (S)-(2u,6l,1'l)-3-(1-Methylethyl)-2-(1'-phenylethyl)-6-methyl-1,3,2-oxazaphosphorinane 2-Oxide ((u)-19 and (l)-19). In an oven-dried, 50 mL, three-necked, flask equipped with a stir bar, thermometer, septum, and N₂ inlet was placed *cis-9* (87 mg, 0.33 mmol) in anhydrous THF (15 mL). The solution was cooled to an internal temperature of -72 °C. To this solution was added *t*-BuLi (1.58 M in pentane; 268 μ L, 42.3 mmol, 1.3 equiv), and a pale yellow color appeared. After the mixture was stirred for 30 min, methyl iodide (102 μ L, 1.63 mmol, 5 equiv) was added. The color faded in about 10 min. H₂O (4 mL) was added after 20 min. After the reaction mixture had warmed to rt, THF was removed under reduced pressure. H₂O (5 mL) was added, and the aqueous solution was extracted with CH₂Cl₂ (4 × 20 mL). The combined organic layers were dried (K₂-CO₃), filtered, and concentrated to afford a white solid. ³¹P NMR

spectroscopy showed a ratio of 24/1 (*ull*) and HPLC analysis showed a ratio of 97/3, (u/l). The crude residue was purified by MPLC (EtOAc/ *i*-PrOH, 99/1) to obtain 82 mg (89.5%) of (*u*)-19 and 3 mg (3.4%) of (l)-19. An analytical sample of (u)-19 was obtained by recrystallization from pentane. Data for (u)-19: mp 108-109.5 °C (pentane); ¹H NMR (300 MHz) 7.33-7.19 (m, 5H, Ph), 4.42-4.32 (m, 1H, HC(6)), 3.87-3.75 (m, 1H, (CH₃)₂CHN), 3.22 (qd, $J_{HH} = 7.4$, $J_{HP} = 0.7$, 1H, HC-(1')), 2.95–2.84 (m, 1H, $H_{ax}C(4)$), 2.59–2.48 (m, 1H, $H_{eq}C(4)$), 1.62 $(dd, J_{HP} = 17.5, J_{HH} = 7.4, 3H, H_3C(2')), 1.61 - 1.52 (m, 1H, H_{eq}C(5)),$ 1.21 (d, J = 6.6, 3H, H₃C(9)), 1.21 (dd, $J_{HH} = 4.5$, $J_{HP} = 1.4$, 3H, $H_3C(7)$), 0.84–0.70 (m, 1H, $H_{ax}C(5)$), 1.08 (d, $J_{HH} = 6.8, 3H, H_3C$ -(9)); ¹³C NMR (75.5 MHz) 139.6 (J = 7.3, C_{ipso}), 128.7 (J = 5.6, C_{ortho}), 127.8 $(J = 2.1, C_{para})$, 126.5 $(J = 3.2, C_{meta})$, 72.3 (J = 8.2, C(6)), 46.3 $(J = 4.2, (CH_3)_2 CHN), 40.6 (J = 129.1, C(1')), 37.2 C(4), 31.9 (J = 129.1, C(1')), 37.2 C(4), 31.9 (J = 129.1, C(1')))$ 3.5, C(5), 21.9 (J = 8.2, C(7)), 20.8 (C(9)), 20.2 (J = 6.0, C(9)), 15.4(J = 4.9, C(2')); ³¹P NMR (121.65 MHz) 29.11; IR (CCl₄) 3031 (w), 2975 (s), 1248 (s, P=O); MS (70 eV) 281 (M⁺, 3.5), 134 (100); TLC R_f 0.29 (EtOAc/i-PrOH, 49/1); HPLC t_R 8.40 min (Supelco LC-Si, EtOAc/i-PrOH, 10.1/1, 1.0 mL/min); $[\alpha]_D + 37.4^\circ$ (CH₂Cl₂, c = 0.91). Anal. Calcd for C15H24NO2P (281.32): C, 64.04; H, 8.60; N, 4.98; P, 11.01. Found: C, 64.05; H, 8.61; N, 5.00; P, 10.93. Data for (1)-19: 'H NMR (300 MHz) 7.31-7.19 (m, 5H, Ph), 4.41-4.30 (m, 1H, HC-(6)), 3.87-3.76 (m, 1H, (CH₃)₂CHN), 3.19 (dq, $J_{HP} = 22.0$, $J_{HH} = 7.4$, 1H, HC(1')), 3.00-2.88 (m, 1H, HaxC(4)), 2.77-2.67 (m, 1H, HeqC-(4)), 1.64–1.56 (m, 1H, $H_{eq}C(5)$), 1.60 (dd, $J_{HP} = 17.8$, $J_{HH} = 7.4$, 3H, H₃C(2')), 1.20 (dd, $J_{HH} = 6.0$, $J_{HP} = 1.1$, 3H, H₃C(7)), 1.16 (d, $J_$ = 6.6, 3H, $H_3C(9)$), 0.95 (d, J = 6.8, 3H, $H_3C(9)$), 0.91–0.79 (m, 1H, HaxC(5)); ³¹P NMR (121.65 MHz) 28.19; MS (70 eV) 281 (M⁺, 4), 134 (100); High-resolution MS calcd for C15H24NO2P 281.1545, found 281.1544; TLC Rf 0.38 (EtOAc/i-PrOH, 49/1); HPLC t_R 6.39 min (Supelco LC-Si, EtOAc/i-PrOH, 10.1/1, 1.0 mL/min).

(S)-(2u,6l,1'u)-2-(1',2'-Diphenylethyl)-3-(1-methylethyl)-6-methyl-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2u,6l,1'l)-2-(1',2'-Diphenylethyl)-3-(1-methylethyl)-6-methyl-1,3,2-oxazaphosphorinane 2-Oxide ((u)-20 and (l)-20). In an oven-dried, 25 mL, three-necked, roundbottomed flask equipped with a stir bar, thermometer, septum, and N₂ inlet was placed cis-9 (93 mg, 0.35 mmol) in anhydrous THF (17 mL). The solution was cooled to an internal temperature of -72 °C, t-BuLi (1.58 M in pentane; 287 µL, 0.454 mmol, 1.3 equiv) was added, and a pale yellow color appeared. After the mixture was stirred for 30 min, benzyl bromide (125 µL, 1.05 mmol, 3.0 equiv) was added. The color faded in about 20 min. The mixture was stirred at this temperature for 1 h, and H₂O (2 mL) was added. The reaction mixture was warmed to rt, and THF was removed under reduced pressure. H₂O (3 mL) was added, and the aqueous solution was extracted with CH_2Cl_2 (4 × 10 mL). The combined organic layers were dried (K_2CO_3), filtered, and concentrated to afford a white solid. ³¹P NMR spectroscopy showed a ratio of 15.6/1 (u/l) and HPLC analysis showed a ratio of 15.6/1 (u/l). The crude residue was purified by MPLC (EtOAc/i-PrOH, 32.3/1) to obtain 103 mg (83%) of (u)-20 and 7 mg (5.5%) of (l)-20. An analytical sample of (u)-20 was obtained by recrystallization from hexane. Data for (u)-20: mp 123.5-124.8 °C (hexane); ¹H NMR (300 MHz) 7.28-7.00 (m, 10 H, Ph), 4.48-4.39 (m, 1H, HC(6)), 3.94-3.83 (m, 1H, (CH₃)₂CHN), 3.65 (ddd, $J_{gem} = 13.6$, $J_{HP} = 9.3$, $J_{HH} =$ 2.31, 1H, $H_aH_bC(2')$, 3.37 (ddd, $J_{HP} = 20.1$, $J_{HH} = 12.2$, $J_{HH} = 2.4$, 1H, HC(1')), 3.22 (ddd, $J_{gem} = 13.6$, $J_{HH} = 12.2$, $J_{HP} = 5.5$, 1H, $H_a H_b C$ -(2')), 2.95-2.83 (m, 1H, H_{ax}C(4)), 2.52-2.41 (m, 1H, H_{eq}C(4)), 1.59-1.54 (m, 1H, $H_{eq}C(5)$), 1.28 (dd, $J_{HH} = 6.4$, $J_{HP} = 1.0$, 3H, $H_3C(7)$), 1.23 (d, J = 6.6, 3H, H₃C(9)), 1.02 (d, J = 6.8, 3H, H₃C(9)), 0.92-0.78 (m, 1H, $H_{ax}C(5)$); ¹³C NMR (75.5 MHz) 139.9 ($J = 17.1, C_{ipso}$), 136.8 $(J = 7.1, C_{ipso'})$, 129.6 $(J = 6.0, C_{ortho})$, 128.7 $(C_{ortho'})$, 127.9 $(C_{para'})$, 127.7 $(J = 2.1, C_{para})$, 126.6 $(J = 3.0, C_{meta})$, 125.7 $(C_{meta'})$, 72.6 (J = 8.0, C(6)), 49.3 (J = 127.2, C(1')), 46.3 (J = 4.5, C(1' $(CH_3)_2CHN)$, 37.0 (C(4)), 35.5 (J = 2.2, C(2')), 31.9 (J = 3.4, C(5)), 22.0 (J = 8.2, C(7)), 20.8 (C(9)), 20.1 (J = 6.0, C(9)); ³¹P NMR (121.65) MHz) 27.94; IR (CCl₄) 3031 (s), 2975 (s), 1244 (s, P=O); MS (70 eV) 357 (M⁺, 20), 162 (100); TLC R_f 0.47 (EtOAc/i-PrOH, 49/1); HPLC t_R 8.38 min (Supelco LC-Si, EtOAc/i-PrOH, 15.6/1, 1.0 mL/ min); $[\alpha]_D - 46^\circ$ (CH₂Cl₂, c = 0.6). Anal. Calcd for C₂₁H₂₈NO₂P (357.41): C, 70.57; H, 7.90; N, 3.92; P, 8.67. Found: C, 70.57; H, 7.92; N, 3.91; P, 8.48. Data for (1)-20: 1H NMR (300 MHz) 7.37-6.98 (m, 10H, Ph), 4.47-4.39 (m, 1H, HC(6)), 3.77-3.67 (m, 1H,

 $(CH_3)_2CHN$, 3.58 (dd, $J_{gem} = 11.6$, $J_{HP} = 8.8$, 1H, $H_aH_bC(2')$), 3.27–3.12 (m, 2H, HC(1'), $H_aH_bC(2')$), 3.05–2.93 (m, 1H, $H_{ax}C(4)$), 2.87–2.77 (m, 1H, $H_{eq}C(4)$), 1.78–1.71 (m, 1H, $H_{eq}C(5)$), 1.24 (dd, $J_{HH} = 6.5$, $J_{HP} = 1.0$, 3H, $H_3C(7)$), 1.25–1.08 (m, 1H, $H_{ax}C(5)$), 1.14 (d, J = 6.6, 3H, $H_3C(9)$), 0.75 (d, J = 6.8, 3H, $H_3C(9)$); ³¹P NMR (121.65 MHz) 25.60; MS (70 eV) 357 (M⁺, 23), 134 (100); High-resolution MS calcd for $C_{20}H_{28}NO_2P$ 357.1858, found 357.1863; TLC R_f 0.54 (EtOAc/*i*-PrOH, 49/1); HPLC t_R 6.20 min (Supelco LC-Si, EtOAc/*i*-PrOH, 15.6/1, 1.0 mL/min).

(S)-(21,61,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Sulfide ((u)-21). In a flame-dried, 25-mL, twonecked, round-bottomed flask fitted with a N₂ inlet and septum was placed cis-16 (155 mg, 0.55 mmol) in anhydrous THF (5.5 mL). The solution was cooled to -78 °C and t-BuLi (2.19 M in pentane, 275 μ L, 0.60 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min. Anhydrous methyl iodide (102 μ L, 1.64 mmol, 3.0 equiv) was added with instant color dissipation. The reaction mixture was stirred for 30 min followed by addition of H_2O (7 mL). The resulting slurrish mixture was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 25 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of >9000/1 (u/l). The residual oil was purified by SiO2 column chromatography (hexane/EtOAc, 8/1) to yield 160 mg (98.5%) of (u)-21 as a white solid. An analytical sample was obtained by recrystallization from pentane: mp 81.5-84 °C (pentane); ¹H NMR (400 MHz) 7.34-7.22 (m, 5H, Ph), 4.58-4.49 (m, 1H, HC(6)), 3.71 (dsept, $J_{HP} = 19.8$, $J_{HH} = 6.6$, 1H, (CH₃)₂CHN), 3.41 (dq, $J_{HP} = 14.9$. $J_{HH} = 7.6$, 1H, HC(1')), 2.97 (ddt, $J_{HH} = 12.4$, $J_{\text{HP}} = J_{\text{HH}} = 9.4, J_{\text{HH}} = 4.8, 1\text{H}, H_{ax}C(4)), 2.56 \text{ (ddt, } J_{\text{HP}} = 17.1, J_{\text{HH}}$ = 12.2, 5.0, 1H, $H_{eq}C(4)$, 1.75-1.65 (m, 1H, $H_{eq}C(5)$), 1.69 (dd, J_{HP} = 20.0, J_{HH} = 7.3, 3H, H₃C(2')), 1.37-1.27 (m, 1H, H_{ax}C(4)), 1.32 (dd, $J_{\text{HH}} = 6.1$, $J_{\text{HP}} = 1.5$, 3H, $H_3C(6)$), 1.17 (d, J = 6.6, 3H, $(CH_{\beta})_{a}(CH_{\beta})_{b}CHN)$, 0.80 (d, J = 6.8, 3H, $(CH_{\beta})_{a}(CH_{\beta})_{b}CHN)$; ¹³C NMR (100 MHz) 139.9 (J = 8.4, C_{ipso}), 128.8 (J = 6.9, C_{ortho}), 127.9 (J =2.3, C_{meta}), 126.7 (J = 3.1, C_{para}), 70.6 (J = 7.6, C(6)), 47.3 (J = 93.8, C(1'), 47.2 (J = 5.3, (CH₃)₂CHN), 36.6 (C(4)), 33.7 (J = 3.1, C(5)), 22.2 $(J = 9.2, CH_3C(6))$, 20.4 $(J = 8.4, (CH_3)_a(CH_3)_bCHN)$, 18.7 $((CH_3)_a(CH_3)_bCHN)$, 16.7 (J = 1.5, C(2')); ³¹P NMR (161.9 MHz) 95.07; IR (CHCl₃) 3020 (s), 2978 (m), 1217 (s); MS (70 eV) 297 (M⁺, 4), 192 (100); TLC R_f 0.47 (hexane/EtOAc, 8/1); [α]_D +56.7 (CHCl₃, c = 0.79). Anal. Calcd for C₁₅H₂₄NOPS (297.39): C, 60.58; H, 8.13; N, 4.71; P, 10.41; S, 10.78. Found: C, 60.55; H, 8.14; N, 4.70; P, 10.39; S, 10.72.

(S)-(2l,6l,1'u)-2-(1',2'-Diphenylethyl)-3-(1-methylethyl)-6-methyl-1,3,2-oxazaphosphorinane 2-Sulfide ((u)-22). In a flame-dried, 25mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed cis-16 (100 mg, 0.354 mmol) in anhydrous THF (3.5 mL). The solution was cooled to -78 °C and t-BuLi (2.19 M in pentane, 178 µL, 0.39 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min. Anhydrous benzyl bromide (126 μ L, 1.06 mmol, 3.0 equiv) was added with instant color dissipation. The reaction mixture was stirred for 1 h followed by addition of H₂O (6 mL). The resulting slurrish mixture was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 25 mL). The combined organic layers were dried (Na₂-SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of >6500/1 (u/l). The residual oil was purified by SiO₂ column chromatography (benzene) to yield 123 mg (93%) of (u)-22 as a white solid. An analytical sample was obtained by recrystallization from hexane: mp 113-113.5 °C (hexane); ¹H NMR (400 MHz) 7.26-6.95 (m, 10H, Ar), 4.64-4.58 (m, 1H, HC(6)), 3.88 (ddd, $J_{HH} = 13.7$, $J_{HP} = 11.0$, $J_{HH} = 2.7$, 1H, $H_aH_bC(2')$, 3.64 (dsept, $J_{HP} = 20.0$, $J_{HH} = 6.8$, 1H, (CH₃)₂CHN), 3.48 $(ddd, J_{HP} = 14.2, J_{HH} = 12.0, J_{HH} = 2.7, 1H, HC(1')), 3.11 (ddd, J_{HH})$ = 13.7, J_{HH} = 12.0, J_{HP} = 4.6, $H_a H_b C(2')$, 3.03-2.94 (m, 1H, $H_{ax}C_{ax}$ (4)), 2.55 (ddt, $J_{HP} = 17.3$, $J_{HH} = 12.2$, 4.9, 1H, $H_{eq}C(4)$), 1.77–1.71 (m, 1H, $H_{eq}C(5)$), 1.47–1.37 (m, 1H, $H_{ax}C(5)$), 1.38 (dd, $J_{HH} = 6.2$, $J_{\text{HP}} = 1.1, 3\text{H}, \text{H}_3\text{C}(6)$, 1.18 (d, $J = 6.6, 3\text{H}, (CH_3)_a(CH_3)_bCHN$), 0.65 $(d, J = 6.6, 3H, (CH_3)_a(CH_3)_bCHN); {}^{13}C NMR (100 MHz) 139.6 (J =$ 18.3, C_{ipso}), 136.3 (J = 7.6, $C_{ipso'}$), 129.5 (J = 6.9, C_{ortho}), 128.6 ($C_{ortho'}$), 127.80 ($C_{meta'}$), 127.7 (J = 1.5, C_{meta}), 126.7 (J = 3.1, C_{para}), 125.7

 $(C_{para'})$, 70.9 (J = 7.6, C(6)), 55.7 (J = 91.6, C(1')), 47.0 (J = 4.6, (CH₃)₂CHN), 36.8 (C(4)), 36.5 (C(2')), 33.7 (J = 2.3, C(5)), 22.2 (J = 9.2, CH₃C(6)), 20.9 (J = 9.2, (CH₃)₆CHN), 18.4 ((CH₃)₆CH₃)_bCHN); ³¹P NMR (161.9 MHz) 94.25; IR (CCl₄) 3065 (w), 2971 (s), 1171 (s); MS (70 eV) 373 (M⁺, 2), 160 (100); TLC R_f 0.5 (benzene); [α]_D -23.5° (CHCl₃, c = 0.79). Anal. Calcd for C₂₁H₂₈NOPS (373.50): C, 67.53; H, 7.56; N, 3.75; P, 8.29; S, 8.58. Found: C, 67.60; H, 7.57; N, 3.75; P, 8.25; S, 8.48.

(S)-(2u,6l,1'l)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2u,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Oxide ((l)-23 and (u)-23). In an oven-dried, 100 mL, three-necked, roundbottomed flask equipped with a thermometer, stir bar, gas inlet, and septum was placed cis-10 (289 mg, 1.41 mmol) in anhydrous THF (45 mL). The solution was cooled to an internal temperature of -73 °C under nitrogen. To this solution was added t-BuLi (1.80 M in pentane, 780 μ L, 1.41 mmol, 1.0 equiv) with the appearance of a bright yellow color. The resulting reaction mixture was stirred at this temperature for 30 min. n-Butyl iodide (800 µL, 7.03 mmol, 5.0 equiv) was added over 10 s and the mixture was stirred for an additional 1.5 h. H_2O (10 mL) was added, and the mixture was allowed to warm to rt. The aqueous layer was separated and extracted with TBME (4×50 mL). The combined organic layers were dried (K₂CO₃), filtered, and concentrated under reduced pressure to give a pale-yellow oil. ³¹P NMR spectroscopic analysis showed a diastereomeric ratio of 19/1 (l/u). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 19/1) to yield 23 (345 mg, 94%) as a colorless viscous oil. An analytical sample of (l)-23 was obtained by Kugelrohr distillation. Data for (l)-23: bp 100 °C (0.1 Torr, air bath); ¹H NMR (300 MHz) 4.51-4.41 (m, 1H, HC(6)), 3.78-3.66 (m, 1H, (CH₃)₂CHN), 3.09 (ddd, J =22.3, 11.1, 5.6, 1H, H_{ax}C(4)), 3.03-2.92 (m, 1H, H_{eq}C(4)), 1.89-1.73 (m, 3H, $H_{eq}C(5)$, HC(1'), $H_aH_bC(2')$), 1.71–1.57 (m, 1H, $H_{ax}C(5)$), 1.49-1.35 (m, 1H, $H_aH_bC(2')$), 1.34-1.15 (m, 4H, $H_2C(3')$, $H_2C(4')$), 1.28 (d, J = 6.4, 3H, H_3 CHC(6)), 1.21 (d, J = 6.6, 3H, $(H_3C)_2$ CHN), 1.10 (d, J = 6.6, 3H, $(H_3C)_2$ CHN), 1.07 (dd, J = 17.1, 7.0, 3H, H_3 -CCH(1')), 0.87 (t, J = 6.9, 3H, H₃C(5')); ¹³C NMR (75.5 MHz) 71.2 $(J = 7.7, C(6)), 46.0 (J = 4.2, (CH_3)_2 CHN)), 36.9 (C(4)), 33.1 (J = 10.0)$ 2.8, C(5)), 31.9 (J = 133.6, C(1')), 29.8 (J = 14.1, C(3')), 19.5 (J = 14.1), C(3')), 19.5 (J = 14.1), C(3')), 29.5 (J = 14.1), 29.5 (J = 1 3.4, C(2')), 22.4 (C(4')), 22.1 (J= 8.2, C(7)), 20.4 ($C(9_a)$), 20.2 (J = 6.5, C(9_b)), 13.8 (C(5')), 13.7 (J = 4.6, C(6')); ³¹P NMR (121.65 MHz) 34.94; IR (CCl₄) 2967 (s), 1219 (s), 1177 (s); MS (70 eV) 261 (M⁺, 11), 246 (100); TLC R_f 0.33 (EtOAc/i-PrOH, 19/1); $[\alpha]_D$ +11.14° (CH₂Cl₂, c = 1.76). Anal. Calcd for C₁₃H₂₈NO₂P (261.33): C, 59.74; H, 10.80; N, 5.36; P, 11.85. Found: C, 59.65; H, 10.70; N, 5.33; P, 11.72. Data for (u)-23: ¹H NMR (300 MHz) 4.50-4.40 (m, 1H, HC(6)), 3.79-3.67 (m, 1H, (CH₃)₂CHN), 3.09 (ddd, J = 22.6, 11.4, 6.0, 1H, $H_{ax}C(4)$), 3.04–2.92 (m, 1H, $H_{eo}C(4)$), 1.90–1.85 (m, 1H, $H_{eq}C(5)$, 1.82–1.57 (m, 3H, HC(1'), $H_aH_bC(2')$, $H_{ax}C(5)$), 1.46–1.36 (m, 1H, $H_aH_bC(2')$), 1.33–1.16 (m, 4H, $H_2C(3')$, $H_2C(4')$), 1.27 (d, $J = 6.2, 3H, H_3CC(6)), 1.20 (d, J = 6.6, 3H, (H_3C)_a(H_3C)_bCHN),$ 1.13 (dd, $J = 20.2, 7.2, 3H, H_3CC(1'')$), 1.10 (d, J = 6.7, 3H, $(H_3C)_a(H_3C)_bCHN)$, 0.88 (t, $J = 7.0, 3H, H_3C(5')$); ³¹P NMR (121.65 MHz) 35.01; MS (70 eV) 261 (M⁺, 8), 246 (100); High-resolution MS calcd for C₁₃H₂₈NO₂P 261.1858, found 281.1859; TLC R_f 0.31 (EtOAc/i-PrOH, 19/1).

(S)-(2u,6l,1'l)-2-(1',3'-Dimethylbutyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2u,6l,1'u)-2-(1',3'-Dimethylbutyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((l)-24 and (u)-24). In an oven-dried, 100 mL, three-necked, round-bottomed flask equipped with a thermometer, stir bar, gas inlet, and septum was placed cis-10 (320 mg, 1.56 mmol) in anhydrous THF (50 mL). The solution was cooled to an internal temperature of -73°C under nitrogen. To this solution was added t-BuLi (1.80 M in pentane, 865 μ L, 1.56 mmol, 1.0 equiv) with the appearance of a brightyellow color. The resulting reaction mixture was stirred at this temperature for 30 min. 1-Iodo-2-methylpropane (898 µL, 7.8 mmol, 5.0 equiv) was added over 10 s, and the mixture was stirred for an additional 3 h. H₂O (10 mL) was added, and the mixture was allowed to warm to rt. The aqueous layer was separated and extracted with TBME (4 \times 50 mL). The combined organic layers were dried (K2-CO₃), filtered, and concentrated under reduced pressure to give a paleyellow oil. ³¹P NMR spectroscopic analysis showed a diastereomeric ratio of 49/1 (l/u). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 19/1) to yield 24 (355 mg, 87%) as a colorless liquid. An analytical sample of (l)-24 was obtained by Kugelrohr distillation. Data for (1)-24: bp 95 °C (0.07 Torr, air bath); ¹H NMR (300 MHz) 4.54-4.44 (m, 1H, HC(6)), 3.82-3.70 (m, 1H, $(CH_3)_2CHN$, 3.12 (ddd, J = 22.5, 11.3, 5.9, 1H, $H_{ax}C(4)$), 3.06–2.95 (m, 1H, $H_{eq}C(4)$), 1.98–1.82 (m, 2H, $H_{eq}C(5)$, $H_aH_bC(2')$), 1.76–1.63 (m, 2H, HC(1'), HC(3')), 1.62-1.51 (m, 1H, H_{ax}C(5)), 1.39-1.27 (m, 1H, $H_aH_bC(2')$), 1.31 (dd, J = 6.5, 1.0, 3H, $H_3C(7)$), 1.24 (d, J =6.6, 3H, $H_3C(9_a)$), 1.14 (d, J = 6.8, 3H, $H_3C(9_b)$), 1.08 (dd, J = 18.7, 7.1, 3H, H_3 CHC(1')), 0.94 (d, J = 6.4, 3H, H_3 C(4')), 0.86 (d, J = 6.4, 3H, H₃C(5')); ¹³C NMR (75.5 MHz) 71.1 (J = 7.5, C(6)), 45.9 (J =4.8, (CH₃)₂CHN), 38.4 (J = 3.6, C(4)), 36.7 (C(5')), 33.0 (J = 3.2, C(2'), 29.6 (J = 134.07, C(1')), 24.9 (J = 14.8, C(3')), 23.5 (C(4')), 22.0 (J = 8.4, C(7)), 20.4 $(C(9_a))$, 20.3 (C(5')), 20.2 $(J = 6.8, C(9_b))$, 13.5 (J = 4.8, H₃CC(1')); ³¹P NMR (121.65 MHz) 35.37; IR (CCl₄) 2961 (s), 1260 (s), 1231 (s); MS (70 eV) 261 (M⁺, 5), 246 (100); TLC $R_f 0.28$ (EtOAc/*i*-PrOH, 19/1); $[\alpha]_D + 3.51^\circ$ (CH₂Cl₂, c = 0.855). Anal. Calcd for C13H28NO2P (261.33): C, 59.74; H, 10.80; N, 5.36; P, 11.85. Found: C, 59.70; H, 10.72; N, 5.43; P, 11.80. Data for (u)-24: ¹H NMR (300 MHz) 4.51-4.42 (m, 1H, HC(6)), 3.79-3.72 (m, 1H, $(H_3C)_2CHN$, 3.10 (ddd, $J = 22.4, 11.3, 6.3, 1H, H_{ax}C(4)$), 3.07–2.93 (m, 1H, $H_{eq}C(4)$), 1.96–1.81 (m, 2H, $H_{eq}C(5)$, $H_aH_bC(2')$), 1.75–1.59 $(m, 2H, HC(1'), HC(3')), 1.51-1.39 (m, 1H, H_{ax}C(5)), 1.28 (dd, J =$ 6.0, 1.0, 3H, H₃CC(6)), 1.23-1.09 (m, 1H, H_aH_bC(2')), 1.22 (d, J =6.6, 3H, $(H_3C)_a(H_3C)_bCHN$, 1.13 (dd, $J = 18.4, 7.1, 3H, H_3CC(1')$), 1.11 (d, J = 6.7, 3H, (H₃C)_a(H₃C)_bCHN), 0.92 (d, J = 6.5, 3H, H₃C-(4')), 0.82 (d, J = 6.5, 3H, H₃C(5')); ³¹P NMR (121.65 MHz) 35.58; MS (70 eV) 261 (M⁺, 6), 146 (100); High-resolution MS calcd for C₁₃H₂₈NO₂P 261.1858, found 261.1859; TLC R_f 0.26 (EtOAc/i-PrOH, 19/1).

(S)-(2u,6l,1'l)-6-Methyl-3-(1-methylethyl)-2-(1'-methyl-2'-phenylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((l)-25). In an oven-dried, 100 mL, three-necked, round-bottomed flask equipped with a thermometer, stir bar, gas inlet, and septum was placed cis-10 (311 mg, 1.51 mmol) in anhydrous THF (50 mL). The solution was cooled to an internal temperature of -73 °C under nitrogen. To this solution was added t-BuLi (1.53 M in pentane, 989 µL, 1.51 mmol, 1.0 equiv) with the appearance of a bright yellow color. The resulting reaction mixture was stirred at this temperature for 30 min. Benzyl bromide (540 μ L, 4.54 mmol, 3.0 equiv) was added over 10 s, and the mixture was stirred for an additional 1.5 h. $H_2O\ (7\ mL)$ was added, and the mixture was allowed to warm to rt. The aqueous layer was separated and extracted with TBME (4 \times 50 mL). The combined organic layers were dried (K₂CO₃), filtered, and concentrated under reduced pressure to give a pale-yellow oil. ³¹P NMR spectroscopic analysis showed a diastereomeric ratio of 19/1 (l/u). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 19/1) to yield 25 (429 mg, 96%) as a colorless viscous oil. An analytical sample of (l)-25 was obtained by recrystallization from pentane. Data for (l)-25: mp 73-74 °C (pentane); ¹H NMR (300 MHz) 7.28-7.11 (m, 5H, Ph), 4.55-4.46 (m, 1H, HC(6)), 3.84-3.72 (m, 1H, (CH₃)₂CHN), 3.31 (ddd, $J = 12.6, 8.9, 2.7, 1H, H_aH_bC(2'), 3.12 (ddd, J = 22.3, 11.1, 5.7, 1H)$ $H_{ax}C(4)$), 3.08–2.95 (m, 1H, $H_{eq}C(4)$), 2.42 (dt, J = 12.4, 5.7, 1H, $H_aH_bC(2')$, 2.17–2.00 (m, 1H, HC(1')), 1.92–1.87 (m, $H_{eq}C(5)$), 1.74– 1.60 (m, 1H, $H_{ax}C(5)$), 1.31 (d, J = 6.1, 3H, $H_3C(6)$), 1.24 (d, J = 6.6, 3H, $(H_3C)_a(H_3C)_bCHN$, 1.10 (d, J = 6.8, 3H, $(H_3C)_a(H_3C)_bCHN$), 0.95 $(dd, J_{HP} = 18.3, J_{HH} = 7.0, 3H, H_3CC(1')); {}^{13}C NMR (75.5 MHz) 139.8$ $(J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 127.9 (C_{para}), 125.7 (C_{meta}), 71.4 (J = 17.55, C_{ipso}), 128.6 (C_{ortho}), 128.6 (C$ 7.8, C(6)), 45.9 $(J = 4.4, (H_3C)_2CHN)$, 36.7 (C(4)), 35.9 (J = 1.9, CHN), 36.7 (C(4)), 35.9 (J = 1.9, CHN)C(2'), 34.1 (J = 133.7, C(1')), 32.8 (J = 3.1, C(5)), 21.9 (J = 8.2, $H_3CC(6)$), 20.2 ((H_3C)₂CHN), 20.1 (J = 6.2, (H_3C)₂CHN), 13.0 (J =4.3, H₃CC(1')); ³¹P NMR (121.65 MHz) 33.31; IR (CCl₄) 3027 (w), 2971 (s), 1248 (s), 1217 (s); MS (70 eV) 295 (M⁺, 22), 162 (100); TLC Rf 0.25 (EtOAc/i-PrOH, 19/1); HPLC t_R 12.70 min (Supelco LC-Si, EtOAc/*i*-PrOH, 15.6/1, 1.0 mL/min); $[\alpha]_D = -46.9^\circ$ (CH₂Cl₂, c =1.3). Anal. Calcd for C₁₆H₂₆NO₂P (295.35): C, 65.06; H, 8.87; N, 4.74; P, 10.49. Found: C, 64.89; H, 8.87; N, 4.78; P, 10.51.

(S)-(2l,6l,1'l)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Sulfide and (S)-(2l,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((l)-26 and (u)-26). In a flame-dried, 25-mL, two-necked, roundbottomed flask fitted with a N₂ inlet and septum was placed *cis*-17

(124 mg, 0.56 mmol) in anhydrous THF (5.6 mL). The solution was cooled to -78 °C and n-BuLi (2.76 M in hexane, 223 µL, 0.62 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 30 min. Anhydrous n-butyl iodide (319 µL, 2.8 mmol, 5 equiv) was added over 1 min. The reaction mixture was stirred for 5 h followed by addition of H_2O (10 mL). The resulting slurry was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3×30 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 15.6/1 (l/u). The residual oil was purified by SiO₂ column chromatography (hexane/EtOAc, 8/1) to yield 154 mg (99.4%) of 26 as a colorless oil. An analytical sample of 26 was obtained by Kugelrohr distillation. Data for (1)-26 and (u)-26: bp 85 °C (0.1 Torr, air bath); ¹H NMR (400 MHz) 74.60-4.51 (m, 1H, HC(6)), 3.61 (dsept, $J_{HP} = 19.8$, $J_{HH} = 6.6$, 1H, (CH₃)₂CHN), 3.14 (dddd, $J_{HP} = 18.3$, $J_{HH} = 10.3$, 8.1, 4.2, 1H, $H_{ax}C(4)$), 2.96 (ddt, $J_{HP} = 19.3$, $J_{HH} = 12.2$, 4.9, 1H, $H_{eq}C(4)$), 2.09-1.91 (m, 2H, HC(1'), HaHbC(2')), 1.87-1.80 (m, 1H, HeqC(5)), 1.67 $(dtd, J = 15.6, 10.5, 4.9, 1H, H_{ax}C(5)), 1.51-1.41$ (m, 1H, H_aH_bC -(2'), 1.39–1.20 (m, 4H, H₂C(3'), H₂C(4')), 1.29 (dd, J_{HH} = 6.2, J_{HP} = 1.4, 3H, CH₃C(6)), 1.21 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_bCHN), 1.09 (d, $J = 6.6, 3H, (CH_3)_a(CH_3)_bCHN), 0.90 (t, J = 7.1, 3H, H_3C(5')); {}^{13}C$ NMR (100 MHz) (*l*)-26: 70.0 (J = 6.9, C(6)), 47.1 (J = 4.6, $(CH_3)_2 CHN$, 37.8 (J = 97.7, C(1')), 36.7 (C(4)), 34.2 (J = 2.3, C(5)), 29.8 (J = 15.3, C(3')), 29.2 (C(2')), 22.4 (C(4')), 22.1 $(J = 9.2, CH_3C)$ (6)), 20.8 (J = 9.2, (CH_3)_a(CH_3)_bCHN), 18.2 ((CH_3)_a(CH_3)_bCHN), 13.9 $(C(5')), 13.2 (J = 4.6, C(1')CH_3), (u)-26: 70.0 (J = 6.9, C(6)), 47.1 (J)$ $= 4.6, (CH_3)_2 CHN), 38.2 (J = 97.7, C(1')), 36.7 (C(4)), 34.2 (J = 2.3),$ C(5), 29.7 (J = 15.3, C(3')), 29.2 (C(2')), 22.4 (C(4')), 22.1 (J = 9.2, $CH_3C(6)$), 20.8 (J = 9.2, (CH_3)_a(CH_3)_bCHN), 18.5 ((CH_3)_a(CH_3)_bCHN), 13.9 (C(5')), 12.9 (J = 2.3, C(1')CH₃); ³¹P NMR (161.9 MHz) (l)-26: 100.95, (u)-26: 101.34; IR (neat) 2967 (s), 1179 (s), 1170 (s); MS (70 eV) 277 (M⁺, 15), 160 (100); TLC R_f 0.49 (hexane/EtOAc, 8/1); $[\alpha]_D$ +30.0° (CHCl₃, c = 0.86). Anal. Calcd for C₁₃H₂₈NOPS (277.41): C, 56.29; H, 10.17; N, 5.05; P, 11.17; S, 11.56. Found: C, 56.30; H, 10.19; N, 5.03; P, 11.14; S, 11.52.

1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2u.6l,1'l)-2-(1'-Methoxyethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((u)-27 and (l)-27). In a flame-dried, 50-mL, three-necked, roundbottomed flask fitted with a glass stopper, N2 inlet, and septum was placed cis-11 (135 mg, 0.61 mmol) in anhydrous THF (20 mL). The solution was cooled to -78 °C, and t-BuLi (1.78 M in pentane, 343 μ L, 0.61 mmol, 1.0 equiv) was added. The resulting yellowish solution was stirred at this temperature for 30 min. Anhydrous methyl iodide $(190 \,\mu\text{L}, 3.04 \,\text{mmol}, 5.0 \,\text{equiv})$ was added with instant color dissipation. The reaction mixture was stirred for 30 min followed by addition of H_2O (3 mL). The resulting slurry was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 × 30 mL). The combined organic layers were dried (K2CO3), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereometric ratio of 69/31 (u/l). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOPH, 49/1) to yield 132 mg (92%) of 27 as a colorless oil. An analytical sample of 27 was obtained by Kugelrohr distillation. Data for (u)-27 and (l)-27: bp 90 °C (0.3 Torr, air bath); ¹H NMR (300 MHz) 4.54-4.45 (m, 1H, HC(6)), 4.01-3.88 (m, 1H, (CH₃)₂CHN), 3.53 (qd, J = 6.8, 1.0, 1H, $HC(1')_{major}$, 3.45 (d, J = 0.5, 3H, $CH_{3}O_{minor}$), 3.43 (s, 3H, $CH_{3}O_{major}$), 3.14-3.05 (m, 2H, H₂C(4)), 1.92-1.84 (m, 2H, H₂C(5)), 1.39 (dd, J $= 16.4, 6.9, 3H, H_3C(2')_{major}, 1.40 (dd, J = 16.8, 7.1, 3H, H_2C(2')_{minor}),$ 1.33 (dd, J = 6.1, 1.5, 3H, H₃CC(6)_{major}), 1.34 (dd, J = 5.8, 1.7, 3H, $H_3CC(6)_{minor}$, 1.24 (d, $J = 6.7, 3H, (CH_3)_a(CH_3)_bCHN_{major}$), 1.23 (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN_{minor}$, 1.17 (d, $J = 6.7, 3H, (CH_3)_a(CH_3)_b$ CHN_{minor}), 1.15 (d, J = 6.7, 3H, (CH₃)_a(CH₃)_bCHN_{major}); ¹³C NMR (100 MHz) for (u)-27: 73.8 (J = 158.7, C(1')), 73.1 (J = 8.4, C(6)), 58.1 $(J = 11.4, \text{ OCH}_3), 45.9 \ (J = 4.6, (\text{CH}_3)_2 C\text{HN}), 37.3 \ (\text{C}(4)), 32.3 \ (J = 11.4, \text{OCH}_3), 32.3 \ (J = 11.4, \text{OC$ 3.8, C(5)), 22.0 (J = 7.6, CH₃C(6)), 20.7 ((CH₃)_a(CH₃)_bCHN), 20.1 (J= 3.8, $(CH_3)_a(CH_3)_bCHN$, 14.4 (C(2')); ¹³C NMR (100 MHz) for (*l*)-**27**: 74.6 (J = 160.2, C(1')), 73.0 (J = 8.4, C(6)), 58.4 (J = 9.2, OCH₃), 46.2 (J = 3.8, (CH₃)₂CHN), 36.8 (C(4)), 32.3 (J = 3.1, C(5)), 22.0 (J $= 8.4, CH_3C(6)), 21.0 ((CH_3)_a(CH_3)_bCHN), 20.2 (J = 4.6, (CH_3)_a(CH_3)_b$ CHN), 14.5 (J = 2.3, C(2')); ³¹P NMR (161.9 MHz) for (u)-27: 23.05;

³¹P NMR for (*l*)-**27**: 24.36; IR (neat) 2974 (s), 1225 (s, P=O); MS (70 eV) 235 (M⁺, 3), 162 (100); TLC R_f 0.3 (EtOAc/*i*-PrOH, 49/1); $[\alpha]_D$ +14.47° (CH₂Cl₂, c = 0.47). Anal. Calcd for C₁₀H₂₂NO₃P (235.26): C, 51.05; H, 9.43; N, 5.95; P, 13.17. Found: C, 50.89; H, 9.43; N, 5.89; P, 13.06.

(S)-(2,6l,1'u)-2-(1'-Methoxy-2'-phenylethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide and (S)-(2,6l,1'l)-2-(1'-Methoxy-2'-phenylethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((u)-28 and (l)-28). In a flame-dried, 50mL, three-necked, round-bottomed flask fitted with a glass stopper, N2 inlet, and septum was placed cis-11 (117 mg, 0.53 mmol) in anhydrous THF (25 mL). The solution was cooled to -78 °C, and t-BuLi (1.78 M in pentane, 299 µL, 0.53 mmol, 1.0 equiv) was added. The resulting yellowish solution was stirred at this temperature for 30 min. Anhydrous benzyl bromide (189 μ L, 1.59 mmol, 3.0 equiv) was added with instant color dissipation. The reaction mixture was stirred for 30 min followed by addition of H₂O (3 mL). The resulting slurry was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (4×30 mL). The combined organic layers were dried (K₂CO₃), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 3/1 (u/l). The residual oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 49/1) to yield 164 mg (99%) of 28 as a colorless oil. An analytical sample of 28 was obtained by Kugelrohr distillation. Data for (u)-28 and (l)-28: bp 160 °C (0.4 Torr, air bath); ¹H NMR (400 MHz) 7.31-7.19 (m, 5H, Ph), 4.53-4.48 (m, 1H, HC(6)), 4.06-3.97 (m, 1H, (CH₃)₂CHN), 2.84 (ddd, J = 14.2, 10.7, 7.6, 1H, H_aH_bC - $(2')_{major}$, 2.78 (ddd, $J = 13.9, 11.5, 7.6, 1H, H_aH_bC(2')_{minor}$), 3.58 (ddd, 1H, $H_aH_bC(2')_{major}$, 3.24-3.06 (m, 3H, HC(1'), H₂C(4)), 3.18 (d, J_{HP} = 1.0, 3H, H_3CO_{minor}), 3.18 (s, 3H, H_3CO_{major}), 1.98–1.83 (m, 2H, $H_2C(5)$, 1.34 (d, J = 6.3, 3H, $H_3CC(6)$), 1.27 (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN_{major})$, 1.27 (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN_{minor})$, 1.23 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN_{minor}), 1.18 (d, J = 6.8, 3H, $(CH_3)_a(CH_3)_bCHN_{major}$; ¹³C NMR (100 MHz) for (*u*)-28: 138.9 (*J* = 15.3, C_{ipso}), 129.1 (C_{meta}), 128.0 (C_{ortho}), 126.0 (C_{para}), 80.1(J = 156.4, C(1'), 73.2 (J = 8.4, C(6)), 60.5 (J = 5.3, OCH₃), 46.2 (J = 4.6, $(CH_3)_2CHN$, 37.4 (C(4)), 37.1 (J = 3.1, C(2')), 32.3 (J = 3.8, C(5)), 21.9 $(J = 6.9, CH_3C(6)), 20.9 ((CH_3)_a(CH_3)_bCHN), 20.3 (J = 4.6,$ $(CH_3)_a(CH_3)_bCHN$; ¹³C NMR for (*l*)-28: 138.8 (*J* = 16.8, C_{ipso}), 128.9 (C_{meta}) , 128.1 (C_{ortho}) , 126.1 (C_{para}) , 80.8 (J = 156.4, C(1')), 73.0 (J = 156.4, C(1'))8.4, C(6)), 60.7 (J = 4.6, OCH₃), 46.2 (J = 4.6, (CH₃)₂CHN), 36.9 $(C(4)), 36.8 \ (J = 6.1, C(2')), 32.2 \ (J = 3.8, C(5)), 22.1 \ (J = 7.6, C(5)), 22.1 \ (J = 7.6, C(5)), C(5))$ $CH_3C(6)$), 21.0 ((CH_3)_a(CH_3)_bCHN), 20.4 (J = 4.6, (CH_3)_a(CH_3)_bCHN); ³¹P NMR (161.9 MHz) for (u)-28: 21.72; ³¹P NMR for (l)-28: 23.74; IR (CCl₄) 3030 (w), 2975 (s), 1250 (s); MS (70 eV) 311 (M⁺), 162 (100); TLC R_f 0.38 (EtOAc/i-PrOH, 49/1). Anal. Calcd for C₁₆H₂₆NO₃P (311.35): C, 61.72; H, 8.42; N,4.50; P, 9.95. Found: C, 61.44; H, 8.42; N, 4.51; P, 9.76.

(S)-(2u,6l,1'u)-2-(1'-Methoxyethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((u)-29). In a flame-dried, 25mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed cis-18 (45 mg, 0.19 mmol) in anhydrous THF (2 mL). The solution was cooled to -95 °C, and *t*-BuLi (1.9 M in pentane, 110 μ L, 0.21 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min followed by addition of anhydrous HMPA (146 µL, 0.84 mmol, 4.4 equiv). The reaction mixture was gradually warmed to -78 °C for 20 min. To this solution was added anhydrous methyl iodide (36 µL, 0.57 mmol, 3.0 equiv). The reaction was quenched with H₂O (5 mL) after the reaction mixture was stirred at -78°C for 4 h and gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereometric ratio of 15.6/1 (*ull*). The residual oil was purified by SiO₂ column chromatography (hexane/Et₂O, 3/1) to give 40 mg (84.4%) of 29 as a colorless oil. An analytical sample was obtained by Kugelrohr distillation: bp 65 °C (10⁻⁶ Torr, air bath); ¹H NMR (400 MHz) 4.60-4.51 (m, 1H, HC(6)), 3.98 (dsept, $J_{HP} = 19.8$, $J_{HH} = 6.6$, 1H, (CH₃)₂CHN), 3.64 (qd, $J_{HH} = 6.8$, $J_{HP} = 2.2$, 1H HC(1')), 3.47 (d, $J = 0.5, 3H, OCH_3$, 3.16-3.06 (m, 2H, $H_2C(4)$), 1.91-1.77 (m, 2H $H_2C(5)$, 1.45 (dd, $J_{HP} = 18.1$, $J_{HH} = 6.8$, 3H, $H_3C(2')$), 1.33 (dd, J_{HH})

= 6.2, $J_{HP} = 1.2$, 3H, H₃CC(6)), 1.19 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_b-CHN), 1.10 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN); ¹³C NMR (100 MHz) 80.7 (J = 119.0, C(1')), 71.2 (J = 7.6, C(6)), 58.9 (J = 9.2, C(1')-OCH₃), 47.2 (J = 5.3, (CH₃)₂CHN), 37.0 (C(4)), 33.7 (J = 3.1, C(5)), 22.3 (J = 7.6, CH₃C(6)), 20.7 (J = 6.1, (CH₃)_a(CH₃)_bCHN), 19.5 ((CH₃)_a(CH₃)_bCHN), 14.4 (J = 2.3, C(2')); ³¹P NMR (161.9 MHz) 88.33; IR (CHCl₃) 2978 (s), 1223 (w); MS (70 eV) 251 (M⁺, 9), 160 (100); TLC R_f 0.33 (hexane/Et₂O, 3/1); [α]_D +44.7° (CHCl₃, c = 0.64). Anal. Calcd for C₁₀H₂₂NOPS (251.33): C, 47.79; H, 8.82; N, 5.57; P, 12.32; S, 12.76. Found: C, 47.90; H, 8.89; N, 5.53; P, 12.20; S, 12.59.

(S)-(2l,6l,1'l)-2-(1'-Methoxyethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((1)-29). In a flame-dried, 25mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed cis-18 (87 mg, 0.37 mmol) in anhydrous ether (3.7 mL). The solution was cooled to -95 °C, and t-BuLi (1.9 M in pentane, 213 μ L, 0.41 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min followed by addition of anhydrous PMDTA (88 µL, 0.423 mmol, 1.15 equiv). The reaction mixture was gradually warmed to -78 °C for 20 min. To this solution was added anhydrous methyl iodide (69 μ L, 1.10 mmol, 3.0 equiv). The reaction was quenched with H₂O (5 mL) after the reaction mixture was stirred at -78 °C for 4 h and gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 1/11.1 (*ull*). The residual oil was purified by SiO_2 column chromatography (hexane/Et₂O, 3/1) to give 86 mg (93%) of 29 as a colorless oil. An analytical sample was obtained by Kugelrohr distillation: bp 60 °C (10⁻⁶ Torr, air bath); ¹H NMR (400 MHz) 4.54-4.45 (m, 1H, HC(6)), 4.10-3.92 (m, 1H (CH₃)₂CHN), 3.61 (qdd, $J_{HH} = 6.8$, $J_{HP} = 4.1$, $J_{HH} = 1.0$, 1H, HC(1')), 3.45 (dd, $J_{HH} =$ 1.2, $J_{\text{HP}} = 0.7$, 3H, OCH₃), 3.13-3.05 (m, 2H, H₂C(4)), 1.94-1.86 (m, 1H, $H_{eq}C(5)$), 1.84–1.71 (m, 1H, $H_{ax}C(5)$), 1.40 (ddd, $J_{HP} = 19.0$, $J_{\rm HH} = 6.8, 1.2, 3H, H_3C(2'), 1.31 (dt, J_{\rm HH} = 6.1, J_{\rm HP} = 1.1, J_{\rm HH} = 1.1,$ 3H, $H_3C(6)$), 1.15 (dd, $J_{HH} = 6.6$, $J_{HP} = 0.8$, 3H, (CH₃)_a(CH₃)_bCHN), 1.09 (d, J = 6.3, 3H, (CH₃)_a(CH₃)_bCHN); ¹³C NMR (100 MHz) 80.4 $(J = 120.5, C(1')), 70.8 (J = 7.6, C(6)), 59.0 (J = 8.4, C(1')OCH_3),$ 47.6 $(J = 5.3, (CH_3)_2 CHN)$, 36.7 (C(4)), 33.7 (J = 3.1, C(5)), 22.3 (J = 3.1, C(5)), 23.3 = 8.4, $CH_3C(6)$), 20.7 (J = 6.9, (CH_3)_a(CH_3)_bCHN), 20.0 ((CH_3)_a(CH_3)_b-CHN), 14.8 (J = 5.3, C(2')); ³¹P NMR (161.9 MHz) 90.18; IR (CHCl₃) 3016 (w), 2977 (s), 1231 (w); MS (70 eV) 251 (M⁺, 8), 160 (100); TLC $R_f 0.33$ (hexane/Et₂O, 3/1); $[\alpha]_D + 63.7^\circ$ (CHCl₃, c = 0.57). Anal. Calcd for C₁₀H₂₂NOPS (251.33): C, 47.79; H, 8.82; N, 5.57; P, 12.32; S, 12.76. Found: C, 47.81; H, 8.83; N, 5.58; P, 12.29; S, 12.72.

(S)-(21,61,1'1)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Oxide and (S)-(2l,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((l)-30 and (u)-30). In an oven-dried, 100-mL, three-necked, round bottomed flask equipped with a N2 inlet, stir bar, thermometer, and septum was placed trans-9 (308 mg, 1.15 mmol) in anhydrous THF (50 mL). The solution was cooled to an internal temperature of -72°C. To this solution was added *t*-BuLi (1.58 M in pentane; 729 μ L, 1.15 mmol, 1.0 equiv) with the formation of a pale yellow color. The mixture was stirred for 30 min, and methyl iodide (358 μ L, 5.76 mmol, 5.0 equiv) was added. The color dissipated in about 30 s. The mixture was stirred for 30 min and H₂O (3 mL) was added. After the reaction mixture had warmed to rt, THF was removed under reduced pressure. H₂O (10 mL) was added, and the aqueous solution was extracted with CH_2Cl_2 (4 × 25 mL). The combined organic layers were dried (K₂-CO₃), filtered, and concentrated to afford a white solid. HPLC analysis showed a ratio of 5.8/1 (l/u). The crude product was purified by MPLC (EtOAc/i-PrOH, 99/1) to afford 279 mg (86%) of (l)-30 and 50 mg (14%) of (u)-30. Analytical samples were obtained by recrystallization from hexane. Data for (l)-30: mp 107.5-108.3 °C (hexane); ¹H NMR (300 MHz) 7.36-7.20 (m, 5H, Ph), 4.09-3.90 (m, 2H, HC(6), $(CH_3)_2CHN$, 3.24 (dq, $J_{HP} = 18.4$, $J_{HH} = 7.4$, 1H, HC(1')), 3.10-2.98 (m, 1H, $H_{eq}C(4)$), 2.67–2.57 (m, 1H, $H_{ax}C(4)$), 1.61(dd, $J_{HP} = 17.2$, $J_{\rm HH} = 7.4, 3H, H_3C(2'), 1.61 - 1.40 \text{ (m, 2H, } H_2C(5)), 1.22 \text{ (d, } J = 6.2,$ 3H, $H_3C(7)$), 1.18(d, J = 6.6, 3H, $H_3C(9)$), 1.13(d, J = 6.8, 3H, H_3C -(9)); ¹³C NMR (75.5 MHz) 139.3 (J = 6.8, C_{ipso}), 128.2 (J = 6.0, C_{ortho}), 127.9 $(J = 2.0, C_{para})$, 126.2 $(J = 3.0, C_{meta})$, 76.0 (J = 8.6, C(6)), 46.0 $(J = 3.7, (CH_3)_2 CHN), 39.1 (J = 123.7, C(1')), 37.7 (J = 1.7, C(4)),$ 33.6 (J = 7.2, C(5)), 22.2 (J = 5.3, C(7)), 21.3 (C(9)), 20.1 (J = 4.7, C(5)), 20.1 (J = 4.7, C(5C(9)), 15.6 (J = 4.7, C(2')); ³¹P NMR (121.65 MHz) 25.35; IR (CCl₄) 3028 (w), 2975 (s), 1254 (s, P=O); MS (70 eV) 281 (M⁺, 3), 134 (100); TLC Rf 0.44 (EtOAc/i-PrOH, 49/1); HPLC t_R 8.64 min (Supelco LC-Si, EtOAc/i-PrOH, 24/1, 1.0 mL/min); [a]_D -78.88° (CH₂Cl₂, c = 1.61). Anal. Calcd for $C_{15}H_{24}NO_2P$ (281.32): C, 64.04; H, 8.60; N, 4.98; P, 11.01. Found: C, 64.24; H, 8.62; N, 4.99; P, 10.94. Data for (u,u)-30: mp 88-90.2 °C (hexane); ¹H NMR (300 MHz) 7.42-7.20 (m, 5H, Ph), 4.24-4.12 (m, 1H, HC(6)), 3.68-3.56 (m, 1H, $(CH_3)_2CHN$, 3.25 (dq, $J_{HP} = 17.7$, $J_{HH} = 7.3$, 1H, HC(1'), 3.1-2.97 (m, 1H, $H_{eq}C(4)$), 2.88–2.78 (m, 1H, $H_{ax}C(4)$), 1.58 (dd, $J_{HP} = 17.1$, $J_{\text{HH}} = 7.3, 3\text{H}, \text{H}_3\text{C}(2')), 1.69 - 1.56 \text{ (m, 2H, H}_2\text{C}(5)), 1.35 \text{ (dd, } J_{\text{HH}} =$ 6.0, $J_{\text{HP}} = 1.2$, 3H, H₃C(7)), 1.02 (d, J = 6.6, 3H, H₃C(9)), 0.46 (d, J= 6.7, 3H, $H_3C(9)$; ³¹P NMR (121.65 MHz) 26.56; MS (70 ev) 281 $(M^+, 3)$, 134 (100); High-resolution MS calcd for $C_{15}H_{24}NO_2P$ 281.1545, found 281.1544; TLC Rf 0.54 (EtOAc/i-PrOH, 49/1); HPLC t_R 6.03 min (Supelco LC-Si, EtOAc/i-PrOH, 24/1, 1.0 mL/min).

(S)-(2u,6l,1'l)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Sulfide ((1)-32). In a flame-dried, 25-mL, twonecked, round-bottomed flask fitted with a N2 inlet and septum was placed trans-16 (107 mg, 0.38 mmol) in anhydrous THF (3.8 mL). The solution was cooled to -78 °C and *t*-BuLi (2.19 M in pentane, 189 μ L, 0.41 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min. Anhydrous methyl iodide (70 µL, 1.13 mmol, 3 equiv) was added with instant color dissipation. The reaction mixture was stirred for 10 min followed by addition of H₂O (5 mL). The resulting slurry was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 44.3/1 (l/u). The residual oil was purified by SiO₂ column chromatography (benzene) to yield 108 mg (97%) of (l)-21 as a white solid. An analytical sample was obtained by recrystallization from Et2O/hexane: mp 157-158 °C (Et2O/ hexane); ¹H NMR (400 MHz) 7.40-7.21 (m, 5H, Ph), 4.45-4.35 (m, 2H, HC(6), (CH₃)₂CHN), 3.61 (dq, $J_{HP} = 14.4$, $J_{HH} = 7.1$, 1H, HC-(1')), 3.22 (ddt, $J_{HP} = 17.9$, $J_{HH} = 13.8$, 3.8, 1H, $H_{eq}C(4)$), 2.99–2.91 (m, 1H, $H_{ax}C(4)$), 1.70–1.60 (m, 2H, $H_2C(5)$), 1.56 (dd, $J_{HP} = 20.3$, $J_{\rm HH} = 7.2, J_{\rm HH} = 7.2, 3H, H_3C(2')), 1.23 \, (\rm dd, J_{\rm HH} = 6.1, J_{\rm HP} = 1.5,$ 3H, H₃CC(6)), 1.16 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_bCHN), 1.12 (d, J =6.8, 3H, $(CH_3)_a(CH_3)_bCHN$; ¹³C NMR (100 MHz) 139.0 (J = 5.4, C_{ipso}), 128.6 (J = 5.9, C_{ontho}), 128.0 (J = 2.6, C_{meta}), 126.6 (J = 3.1, C_{para}), 75.7 (J = 9.7, C(6)), 48.1 (J = 4.8, (CH₃)₂CHN), 41.4 (J = $87.3, C(1'), 38.2 (C(4)), 34.4 (J = 6.5, C(5)), 22.6 (J = 6.9, CH_3C(6)),$ 21.4 ((CH_3)_a(CH_3)_bCHN), 20.4 (J = 5.4, (CH_3)_a(CH_3)_bCHN), 16.82 (C(2')); ³¹P NMR (161.9 MHz) 91.57; IR (CHCl₃) 3025 (m), 2979 (s), 1229 (w); MS (70 eV) 297 (M⁺, 4), 192 (100); TLC R_f 0.26 (hexane/ EtOAc, 6/1; $[\alpha]_D - 140.95^\circ$ (c = 0.53, CHCl₃). Anal. Calcd for C₁₅H₂₄NOPS (297.40): C, 60.58; H, 8.13; N, 4.71; P, 10.41; S, 10.78. Found: C, 60.60; H, 8.16; N, 4.71; P, 10.32; S, 10.75.

(S)-(2u,6l,1'l)-2-(1',2'-Diphenylethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide and (S)-(2u,6l,1'u)-2-(1',2'-Diphenylethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((1)-33 and (u)-33). In a flame-dried, 25-mL, twonecked, round-bottomed flask fitted with a N2 inlet and septum was placed trans-16 (120 mg, 0.423 mmol) in anhydrous THF (4.2 mL). The solution was cooled to -78 °C, and t-BuLi (2.19 M in pentane, 213 µL, 0.47 mmol, 1.1 equiv) was added. The resulting yellowish solution was stirred at this temperature for 10 min. Anhydrous benzyl bromide (151 μ L, 1.27 mmol, 3.0 equiv) was added with instant color dissipation. The reaction mixture was stirred for 2 h followed by addition of H₂O (5 mL). The resulting slurrish mixture was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3 \times 20 mL). The combined organic layers were dried (Na₂-SO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 15.6/1 (l/u). The residual oil was purified by SiO2 column chromatography (petroleum ether/Et₂O, 4/1) to yield 141 mg (89%) of (1)-33 and 9 mg (6%) of (u)-33. An analytical sample of (l)-33 was obtained by Kugelrohr distillation. Data for (l)-33: bp 145 °C (10⁻⁴ Torr, air bath); ¹H NMR (400 MHz) 7.35-6.91 (m, 10H, Ar), 4.49 (dsept, $J_{HP} = 20.0$, $J_{HH} =$ 6.6, 1H, $(CH_3)_2CHN$, 4.38–4.29 (m, 1H, HC(6)), 3.66 (ddd, J = 15.9,

11.4, 1.7, 1H, H_aH_bC(2')), 3.38-3.19 (m, 3H, H_{eo}C(4), H_{ax}C(4), HC-(7'), 3.03 (ddd, $J = 14.2, 10.4, 3.9, 1H, H_aH_bC(2')$), 1.68-1.59 (m, 2H, H₂C(5)), 1.19 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_bCHN), 1.15 (d, J =4.9, 3H, H₃CC(6)), 1.15 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_bCHN); ¹³C NMR (100 MHz) 139.4 (J = 18.3, C_{ipso}), 136.2 (J = 5.3, $C_{ipso'}$), 129.2(J = 5.3, 6.1, C_{ortho}), 128.4 ($C_{ortho'}$), 127.9 ($C_{meta'}$), 127.9 ($J = 2.3, C_{meta}$), 126.6 $(J = 3.1, C_{para})$, 125.8 $(C_{para'})$, 75.6 (J = 9.2, HC(6)), 49.6 (J = 86.2, HC(6))HC(1'), 48.1 (J = 4.6, (CH₃)₂CHN), 38.1 (C(4)), 37.6 (J = 2.3, C(2')), 34.4 $(J = 6.1, C(5)), 22.5 (J = 6.9, CH_3C(6)), 21.4 ((CH_3)_a(CH_3)_b)$ CHN), 20.5 $(J = 5.3, ((CH_3)_a(CH_3)_bCHN); {}^{31}P NMR (161.9 MHz)$ 89.07; IR (CHCl₃) 3086 (w), 2978 (s), 1265 (m); MS (70 eV) 373 $(M^+, 2)$ 160 (100); TLC R_f 0.35 (petroleum ether/Et₂O, 4/1); $[\alpha]_D$ -8.22° (CHCl₃, c = 2.97). Anal. Calcd for C₂₁H₂₈NOPS (373.48): C, 67.53; H, 7.56; N, 3.75; P, 8.29; S, 8.58. Found: C, 67.55; H, 7.58; N, 3.73; P, 8.24; S, 8.50. Data for (u)-33: ¹H NMR (400 MHz) 7.43-7.03 (m, 10H, Ar), 4.37-4.26 (m, 1H, C(6)), 3.91 (dsept, $J_{HP} =$ 20.0, 6.8, 1H, (CH₃)₂CHN), 3.74 (ddd, $J_{HP} = 17.1$, $J_{HH} = 9.3$, 4.6, 1H, HC(1')), 3.46 (ddd, $J_{HH} = 14.2$, $J_{HP} = 12.2$, $J_{HH} = 4.8$, 1H, HaHbC-(2'), 3.25 (ddd, $J_{\text{HH}} = 14.2$, $J_{\text{HP}} = 13.4$, $J_{\text{HH}} = 9.3$, 1H, HaHbC(2')), 3.14-2.97 (m, 2H, H₂C(4)), 1.72-1.58 (m, 2H, H₂C(5)), 1.27 (d, J_{HH} $= 6.2, J_{HP} = 1.6, 3H, H_3CC(6)), 0.97 (d, J = 6.6, 3H, (CH_3)_a(CH_3)_b$ CHN), 0.15 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN); ³¹P NMR (161.9 MHz) 90.16; MS (70 eV) 373 (M⁺, 2), 160 (100); High-resolution MS calcd for C₂₁H₂₈NOPS 373.1629, found: 373.1628; TLC R_f 0.42 (petroleum ether/Et₂O, 4/1).

(S)-(2u,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Sulfide and (S)-(2u,6l,1'l)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((u)-34 and (l)-34). In a flame-dried, 25-mL, two-necked, roundbottomed flask fitted with a N2 inlet and septum was placed trans-17 (100 mg, 0.45 mmol) in anhydrous THF (2.3 mL). The solution was cooled to -78 °C and *n*-BuLi (2.75 M in hexane, 173 μ L, 0.48 mmol, 1.05 equiv) was added. The resulting yellowish solution was stirred at this temperature for 60 min. Anhydrous *n*-butyl iodide (155 μ L, 1.36 mmol, 3.0 equiv) was added over 30 s. The reaction mixture was stirred for 7 h followed by addition of H₂O (5 mL). The resulting slurry was gradually warmed to rt. The aqueous layer was separated and extracted with TBME (3×25 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 12.6/1 (u/l). The residual oil was purified by SiO₂ column chromatography (hexane/EtOAc, 8/1) to yield 110 mg (87%) of 34 as a colorless oil. An analytical sample of 34 was obtained by Kugelrohr distillation. Data for (u)-34 and (l)-34: bp 95 °C (0.1 Torr, air bath); ¹H NMR (400 MHz) 4.39 (dsept, $J_{HP} = 20.0$, $J_{HH} = 6.6$, 1H, (CH₃)₂CHN), 4.36-4.27 (m, 1H, HC(6)), 3.25 (ddt, $J_{HP} = 18.3$, $J_{HH} = 14.2$, 4.2, 1H, $H_{eq}C$ -(4)), 3.05 (ddd, $J = 14.6, 11.0, 3.9, 1H, H_{ax}C(4)$), 2.34–2.22 (m, 1H, HC(1')), 1.71-1.64 (m, 2H, H₂C(5)), 1.63-1.16 (m, 6H, H₂C(2')), H₂C-(3'), H₂C(4')), 1.36 (dd, $J_{HH} = 6.3$, $J_{HP} = 1.2$, 3H, CH₃C(6)), 1.15 (dd, $J_{\rm HP} = 20.0, J_{\rm HH} = 6.8, 3H, CH_3CH(1')), 1.14$ (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN)$, 1.07 (d, J = 6.8, 3H, $(CH_3)_a(CH_3)_bCHN)$, 0.89 (t, $J = 7.2, 3H, H_3C(5')$; ¹³C NMR (100 MHz) for (*u*)-34: 74.6 (J =8.4, C(6)), 47.8 $(J = 4.6, (CH_3)_2 CHN)$, 38.1 (C(4)), 34.6 (J = 6.1,C(5), 31.2 (J = 93.08, C(1')), 29.5 (C(2')), 29.2 (J = 16.02, C(3')), 23.0 (J = 7.6, $CH_3C(6)$), 22.4 (C(4')), 21.7 (CH_3)_a(CH₃)_bCHN), 20.3 $(J = 6.1, (CH_3)_a(CH_3)_bCHN), 13.8 (C(5')), 12.9 (J = 2.3, CH_3C(1'));$ ¹³C NMR for (*l*)-**34**: 74.8 (J = 9.2, C(6)), 47.7 (J = 3.8, (CH₃)₂CHN), 38.0 (C(4)), 34.6 (J = 6.1, C(5)), 31.2 (J = 93.1, C(1')), 29.8 (C(2')), 29.4 (J = 16.0, C(3')), 23.0 $(J = 7.6, CH_3C(6))$, 22.5 (C(4')), 21.7 $((CH_3)_a(CH_3)_bCHN)$, 20.3 (J = 6.1, (CH₃)_a(CH₃)_bCHN), 13.8 (C(5')), 13.1 (CH₃C(1')); ³¹P NMR (161.9 MHz) (u)-34: 97.65, (l)-34: 98.00; IR (neat) 2967 (s), 1173 (s); MS (70 eV) 277 (M⁺, 12), 160 (100); TLC $R_f 0.44$ ((u)-34), 0.41 ((l)-34) (hexane/EtOAc, 8/1); $[\alpha]_D = 63.8^{\circ}$ (CHCl₃, c = 0.81). Anal. Calcd for C₁₃H₂₈NOPS (277.41): C, 56.29; H, 10.17; N, 5.05; P, 11.17; S, 11.56. Found: C, 56.34; H, 10.15; N, 5.03; P, 11.08; S, 11.49.

(S)-(21,61,1'1)-6-Methyl-3-(1-methylethyl)-2-(1'-methylpentyl)-1,3,2-oxazaphosphorinane 2-Sulfide ((l)-21). In a flame-dried, 25mL, two-necked, round-bottomed flask fitted with a N₂ inlet and septum was placed diastereomerically pure (u)-21 (64 mg, 0.22 mmol) in anhydrous THF (2.2 mL). The solution was cooled to -78 °C, and t-BuLi (2.19 M in pentane, 118 μ L, 0.26 mmol, 1.2 equiv) was added. The resulting yellowish solution was stirred at this temperature for 1 h and at -20 °C for 10 min. A solution of acetic acid (37 μ L, 0.65 mmol, 3.0 equiv) in anhydrous THF (650 μ L) was added. The reaction mixture became colorless and then quenched with aqueous NaHCO₃ (saturated NaHCO₃/H₂O, 1/1, 5 mL). The aqueous layer was separated and extracted with TBME $(3 \times 20 \text{ mL})$. The combined organic layers were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 17/83 (u/l). Column chromatographic purification (hexane/EtOAc, 8/1) of the residual oil on SiO₂ afforded 63 mg (98.3%) of 21 as a white solid. Recrystallization of 21 from hexane/Et₂O (3/1) led to the highly diastereomerically enriched (l)-21: mp 67-70 °C (pentane); ¹H NMR (300 MHz) 7.37-7.21 (m, 5H, Ph), 4.55-4.42 (m, 1H, HC(6)), 3.79-3.61 (m, 1H, (CH₃)₂CHN), 3.38 (dq, $J_{HP} = 14.8$, $J_{HH} = 7.3$, 1H, HC-(1')), 3.09-2.93 (m, 1H, H_{ax}C(4)), 2.91-2.79 (m, 1H, H_{eq}C(4)), 1.87-1.78 (m, 1H, $H_{eq}C(5)$), 1.63 (dd, $J_{HP} = 20.0, J_{HH} = 7.3, 3H, H_3C(2')$), 1.49-1.36 (m, 1H, H_{ax}C(5)), 1.30 (dd, $J_{HH} = 6.2$, $J_{HH} = 1.0$, 3H, CH₃C-(6)), 1.12 (d, J = 6.6, 3H, $(CH_3)_a(CH_3)_bCHN$), 0.82 (d, J = 6.8, $(CH_3)_a(CH_3)_bCHN$; ¹³C NMR (75.5 MHz) 138.4 ($J = 5.1, C_{ipso}$), 129.0 $(J = 6.1, C_{ortho}), 127.9 (J = 2.9, C_{meta}), 126.9 (J = 3.4, C_{para}), 70.1 (J$ = 7.6, C(6)), 47.7 (J = 4.8, (CH₃)₂CHN), 46.9 (J = 93.8, C(1')), 36.6 (C(4)), 33.8 (J = 2.9, C(5)), 22.1 $(J = 8.7, CH_3C(6))$, 20.3 (J = 7.3, C(4))(CH₃)_a(CH₃)_bCHN), 19.8 ((CH₃)_a(CH₃)_bCHN), 19.8 (C(2')); ³¹P NMR (161.9 MHz) 96.00; IR (CHCl₃) 3023 (m), 2977 (s); MS (70 eV) 297 $(M^+, 5)$, 192 (100); TLC $R_f 0.47$ (hexane/EtOAc, 8/1); $[\alpha]_D + 52.9^\circ$ (CHCl₃, c = 0.42). Anal. Calcd for C₁₅H₂₄NOPS (297.39): C, 60.58; H, 8.13; N, 4.71; P, 10.41; S, 10.78. Found: C, 60.62; H, 8.14; N, 4.74; P, 10.38; S, 10.73.

(S)-(2l,6l,1'l)-2-(1',2'-Diphenylethyl)-3-(1-methylethyl)-6-methyl-1,3,2-oxazaphosphorinane 2-Sulfide ((1)-22). In a flame-dried, 25mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed diastereometically pure (u)-22 (67 mg, 0.18 mmol) in anhydrous THF (1.8 mL). The solution was cooled to -78 °C, and t-BuLi (2.19 M in pentane, 98 µL, 0.21 mmol, 1.2 equiv) was added. The resulting yellowish solution was stirred at this temperature for 40 min and at -10 °C for 10 min. A solution of acetic acid (30.6 μ L, 0.53 mmol, 3.0 equiv) in anhydrous THF (530 μ L) was added. The reaction mixture became colorless and then quenched with aqueous NaHCO₃ (saturated NaHCO₃/H₂O, 1/1, 5 mL). The aqueous layer was separated and extracted with TBME (3 \times 15 mL). The combined organic layers were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 45/55 (u/l). Column chromatographic purification (hexane/ EtOAc, 6/1) of the residual oil on SiO₂ afforded 66 mg (99.8%) of 22 as a white solid. Recrystallization of 22 from hexane led to the pure (u)-22. The filtrate was concentrated to give the highly diastereomerically enriched (1)-22 as a colorless oil: ¹H NMR (300 MHz) 7.33-6.94 (m, 10H, Ar), 4.60–4.47 (m, 1H, HC(6)), 3.68 (dsept, $J_{\rm HP} = 18.5$, $J_{\text{HH}} = 6.7, 1\text{H}, (\text{CH}_3)_2 \text{CHN}, 3.59 \text{ (ddd, } J_{\text{HH}} = 13.3, J_{\text{HP}} = 10.1, J_{\text{HH}}$ = 3.0, 1H, HC(1')), 3.45 (ddd, J_{HP} = 18.2, J_{HH} = 11.5, 2.9, 1H, H_aH_bC -(2')), 3.22 (ddd, $J_{\text{HP}} = 13.8$, $J_{\text{HH}} = 11.5$, 7.3, 1H, $H_a H_b C(2')$), 3.13-2.89 (m, 2H, H₂C(4)), 1.94-1.84 (m, 1H, H_{eq}C(5)), 1.64-1.51 (m, 1H, $H_{ax}C(5)$, 1.33 (dd, $J_{HH} = 6.2$, $J_{HH} = 1.0$, 3H, $CH_3C(6)$), 1.11 (d, $J = 6.6, 3H, (CH_3)_a(CH_3)_bCHN), 0.69 (d, J = 6.8, 3H, (CH_3)_a(CH_3)_b$ CHN); ³¹P NMR (121.65 MHz) 94.40; MS (70 eV) 373 (M⁺, 2) 160 (100); High-resolution MS calcd for C₂₁H₂₈NOPS 373.1629, found 373.1624; TLC Rf 0.5 (benzene).

(S)-(2u,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Sulfide ((u)-32). In a flame-dried, 25-mL, twonecked, round-bottomed flask fitted with a N₂ inlet and septum was placed diastereomerically pure oxazaphosphorinane 2-sulfide (l)-32 (52 mg, 0.18 mmol) in anhydrous THF (1.8 mL). The solution was cooled to -78 °C, and t-BuLi (2.19 M in pentane, 96 μ L, 0.21 mmol, 1.2 equiv) was added. The resulting yellowish solution was stirred at this temperature for 1 h and at -20 °C for 10 min. A solution of acetic acid (30 μ L, 0.53 mmol, 3.0 equiv) in anhydrous THF (530 μ L) was added. The reaction mixture became colorless and quenched with aqueous NaHCO₃ (saturated NaHCO₃/H₂O, 1/1, 5 mL). The aqueous layer was separated and extracted with TBME (3 × 15 mL). The combined organic layers were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed a diastereomeric ratio of 48/52 (l/u). Column chromatographic purification (hexane/EtOAc, 6/1) of the residual oil on SiO₂ afforded 50 mg (99.8%) of **32** as a white solid. Recrystallization of **32** from hexane/ Et₂O (3/1) led to the pure (*l*)-**32**. The filtrate was concentrated to give the highly diastereomerically enriched (*u*)-**32** as a colorless oil. Data for (*u*)-**32**: ¹H NMR (300 MHz) 7.40–7.20 (m, 5H, Ph), 4.45–4.34 (m, 1H, HC(6)), 3.92 (dsept, $J_{HP} = 18.7$, $J_{HH} = 6.7$, 1H, (CH₃)₂CHN), 3.68 (dq, $J_{HP} = 14.3$. $J_{HH} = 7.1$, 1H, HC(1')), 3.22–3.02 (m, 2H, H₂C(4)), 1.76–1.62 (m, 2H, H₂C(5)), 1.58 (dd, $J_{HP} = 19.7$, $J_{HH} = 7.1$, 3H, H₃C(2')), 1.40 (dd, $J_{HH} = 6.2$, $J_{HP} = 1.6$, 3H, (CH₃)_a(CH₃)_bCHN), 0.35 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN), 0.35 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN); ³¹P NMR (121.65 MHz) 92.73; MS (70 eV) 297 (M⁺, 4), 192 (100); High-resolution MS calcd for C₁₅H₂₄NOPS 297.1317, found 297.1317; TLC *R*_f 0.26 (hexane/EtOAc, 6/1).

(S)-(2u,6l,1'u)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Oxide ((u)-19). In a 25-mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed a diastereomeric pure 2-thioxooxazaphosphorinane (u)-21 (74 mg, 0.25 mmol) in anhydrous CH₂Cl₂ (2.5 mL). The solution was cooled on ice and a solution of mCPBA (85%, 76 mg, 0.38 mmol, 1.5 equiv) in anhydrous CH₂Cl₂ (2.5 mL) was added using a cannula over 30 s with instant sulfur colloid precipitation. The resulting reaction mixture was stirred for 40 min and quenched with saturated NaHCO₃ (5 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed 100% retention at the phosphorus center and a single diastereomer ($\delta = 29.05$). Column chromatographic purification (EtOAc/ i-PrOH, 19/1) of the crude residue on SiO₂ yielded 71 mg (100%) of (u)-19 as a white solid.

(S)-(21,61,1'1)-6-Methyl-3-(1-methylethyl)-2-(1'-phenylethyl)-1,3,2oxazaphosphorinane 2-Oxide ((1)-30). In a 25-mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed a diastereomeric pure 2-thioxooxazaphosphorinane (l)-32 (66 mg, 0.22 mmol) in anhydrous CH₂Cl₂ (2.2 mL). The solution was cooled on ice and a solution of mCPBA (85%, 67 mg, 0.33 mmol, 1.5 equiv) in anhydrous CH₂Cl₂ (2.2 mL) was added using a cannula over 30 s with instant sulfur colloid precipitation. The resulting reaction mixture was stirred for 40 min and quenched with saturated NaHCO₃ (5 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed 100% retention at the phosphorus center and a single diastereomer ($\delta = 27.5$). Column chromatographic purification (EtOAc/*i*-PrOH, 49/1) of the crude residue on SiO₂ yielded 57 mg (92%) of (l)-30 as a white solid.

(*R*)-Dimethyl (1-Phenylethyl)phosphonate ((*R*)-35). In a 25-mL round-bottomed flask fitted with a reflux condenser was placed (*u*)-19 (120 mg, 0.43 mmol) in aqueous HCl (6 N, 18 mL). The resulting homogeneous solution was stirred at reflux for 14 h. The reaction mixture was concentrated and the residue purified by ion exchange chromatography (H₂O, 20 mm × 8 cm, AG 50W-X8) to give 73 mg of phosphonic acid. The amino alcohol hydrochloride salt 14·HCl was eluted with 6 N HCl. The eluent was concentrated and redissolved in H₂O (2 mL). The solution was basicified with KOH pellets at 0 °C until the pH reached *ca.* 11. The aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried (K₂-CO₃), filtered, and concentrated. The residual oil was purified by Kügelrohr distillation (75 °C, 10 Torr) to give 27 mg (48%) of 14 as a colorless oil.

In a 30-mL Pyrex tube was placed the phosphonic acid in anhydrous CH₃OH/Et₂O (5.5 mL, 1/10). The solution was cooled on ice, and freshly distilled CH₂N₂ in Et₂O was added until the solution stayed yellow. Excess of CH₂N₂ was quenched with a solution of acetic acid in Et₂O (1/20). The solution was concentrated, and the residual oil was purified by SiO₂ column chromatography (EtOAc/*i*-PrOH, 49/1) to afford 85 mg (93%) of (*R*)-**35** as a colorless oil. An analytical sample was obtained by Kugelrohr distillation: bp 95 °C (0.1 Torr, air bath); ¹H NMR (400 MHz) 7.38-7.24 (m, 5H, Ph), 3.69 (d, J_{HP} = 10.7, OCH₃), 3.53 (d, J_{HP} = 10.5, 3H, OCH₃), 3.22 (dq, J_{HP} = 22.5, J_{HH} = 7.4, 1H, HC(1)), 1.59 (dd, J_{HP} = 18.6, J_{HH} = 7.3, 3H, CHCH₃Ph); ³¹P NMR (161.9 MHz) 32.75; TLC *R_f* 0.26 (EtOAc/*i*-PrOH, 49/1); [α]_D +2.9°; [α]₄₀₅ +15.3° (CH₂Cl₂, *c* = 2.66).

(S)-Dimethyl (1-Phenylethyl)phosphonate ((S)-35). In a 25-mL round-bottomed flask fitted with a reflux condenser was placed oxazaphosphorinane 2-oxide (l)-30 (100 mg, 0.35 mmol) in aqueous HCl (6 N, 15 mL). The resulting homogeneous solution was stirred at reflux for 14 h. The reaction mixture was concentrated, and the residue purified by ion exchange chromatography (H₂O, 20 mm × 8 cm, AG 50W-X8) to give 64 mg of phosphonic acid. The amino alcohol hydrochloride salt 14·HCl was eluted with 6 N HCl. The eluent was concentrated and redissolved in H₂O (2 mL). The solution was basicified with KOH pellets at 0 °C until the pH reached *ca.* 11. The aqueous layer was extracted with CH₂Cl₂ (3 × 40 mL). The combined organic layers were dried (K₂CO₃), filtered, and concentrated. The residual oil was purified by Kügelrohr distillation (75 °C, 10 Torr) to give 25 mg (53%) of 14 as a colorless oil.

In a 30-mL Pyrex tube was placed the phosphonic acid in anhydrous Et₂O/CH₃OH (5.5 mL, 10/1). The solution was cooled on ice, and freshly distilled CH₂N₂ in Et₂O was added until the solution stayed yellow. Excess of CH₂N₂ was quenched with a solution of acetic acid in Et₂O (1/20). The solution was concentrated, and the residual oil was purified by SiO₂ column chromatography (EtOAc/*i*-PrOH, 49/1) to afford 73 mg (95.4%) of (*S*)-**35** as a colorless oil. An analytical sample was obtained by Kugelrohr distillation: bp 95 °C (0.1 Torr, air bath); ¹H NMR (400 MHz) 7.38–7.24 (m, 5H, Ph), 3.69 (d, $J_{HP} = 10.5$, 3H, OCH₃), 3.53 (d, $J_{HP} = 10.5$, 3H, OCH₃), 3.22 (dq, $J_{HP} = 22.5$, $J_{HH} = 7.5$, 1H, HC(1)), 1.59 (dd, $J_{HP} = 18.6$, $J_{HH} = 7.3$, 3H, CHCH₃Ph); ³¹P NMR (161.9 MHz) 32.76; TLC R_f 0.26 (EtOAc/*i*-PrOH, 49/1); $[\alpha]_D - 3.73^\circ$; $[\alpha]_{405} - 18.1^\circ$ (c = 2.36, CH₂Cl₂).

(S)-(2u,6l,1'u)-2-(1'-Methoxyethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((u)-27). In a 25-mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed a diastereomeric mixture of (u)-29 and (l)-29 (ds = 15.6/1, 31 mg, 0.12 mmol) in anhydrous CH₂Cl₂ (2 mL). The solution was cooled on ice, and a solution of mCPBA (85%, 37 mg, 0.19 mmol, 1.5 equiv) in anhydrous CH₂Cl₂ (1 mL) was added using a cannula over 30 s with instant sulfur colloid precipitation. The resulting reaction mixture was stirred for 45 min and quenched with saturated NaHCO₃ (3 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed 100% retention at the phosphorus center and a diastereomeric ratio of 96.5/3.5 (u/l). Column chromatographic purification (EtOAc/ i-PrOH, 24/1) of the residual oil on SiO2 yielded 29 mg (100%) of (u)-27 as a colorless oil: ¹H NMR (400 MHz) 4.48 (dqd, J = 12.7, 6.2, 2.7, 1H, HC(6)), 3.98-3.86 (m, 1H, (CH₃)₂CHN), 3.51 (dq, J =7.0, 6.8, 1H, HC(1')), 3.41 (d, $J_{HP} = 0.5$, 3H, OCH₃), 3.13-3.03 (m, 2H, H₂C(4)), 1.89–1.79 (m, 2H, H₂C(5)), 1.37 (dd, $J_{HP} = 16.4$, $J_{HP} =$ 6.8, 3H, $H_3C(2')$), 1.30 (dd, $J_{HH} = 6.3$, $J_{HP} = 1.5$, 3H, $H_3C(6)$), 1.21 $(d, J = 6.6, 3H, (CH_3)_a(CH_3)_bCHN), 1.12 (d, J = 6.8, 3H, (CH_3)_a(CH_3)_b$ CHN); ³¹P NMR (161.9 MHz) for (*u*)-27: 23.44; ³¹P NMR for (*l*)-27: 24.72; TLC R_f 0.3 (EtOAc/i-PrOH, 49/1).

(S)-(2u,6l,1'l)-2-(1'-Methoxyethyl)-6-methyl-3-(1-methylethyl)-1,3,2-oxazaphosphorinane 2-Oxide ((1)-27). In a 25-mL, two-necked, round-bottomed flask fitted with a N2 inlet and septum was placed a diastereomeric mixture of 2-thioxooxazaphosphorinanes (u)-29 and (l)-**29** (ds = 1/11.1, 73 mg, 0.29 mmol) in anhydrous CH₂Cl₂ (2mL). The solution was cooled on ice, and a solution of mCPBA (85%, 88 mg, 0.43 mmol, 1.5 equiv) in anhydrous CH₂Cl₂ (3.7 mL) was added using a cannula over 30 s with instant sulfur colloid precipitation. The resulting reaction mixture was stirred for 45 min and quenched with saturated NaHCO3 (3 mL). The aqueous layer was separated and extracted with CH₂Cl₂ (3 \times 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated. ³¹P NMR spectroscopic analysis of the crude products showed 100% retention at the phosphorus center and a diastereomeric ratio of 8.8/91.2 (u/l). Column chromatographic purification (EtOAc/i-PrOH, 24/1) of the residual oil on SiO₂ yielded 67 mg (98.7%) of (l)-27 as a colorless oil: ¹H NMR (400 MHz) 4.49-4.41 (m, 1H, HC(6)), 3.92 (dsept, $J_{HP} = 20.0$, $J_{HH} = 6.6$, 1H, $(CH_3)_2CHN$, 3.49 (dq, $J_{HP} = 9.0$, $J_{HH} = 7.1$, 1H, HC(1')), 3.40 (d, J_{HP} $= 0.7, 3H, OCH_3), 3.06-3.01 (m, 2H, H_2C(4)), 1.88-1.76 (m, 2H, M_2C(4))$ $H_2C(5)$), 1.34 (dd, $J_{HP} = 17.0$, $J_{HH} = 7.0$, 3H, $H_3C(2')$), 1.28 (dd, J_{HH} = 6.1, J_{HP} = 1.5, 3H, H₃CC(6)), 1.17 (d, J = 6.6, 3H, (CH₃)_a(CH₃)_b-

Alkylations of Phosphoryl-Stabilized Carbanions

CHN), 1.11 (d, J = 6.8, 3H, (CH₃)_a(CH₃)_bCHN); ³¹P NMR (161.9 MHz) for (u)-**27**: 23.45; ³¹P NMR for (l)-**27**: 24.69; TLC R_f 0.3 (EtOAc/*i*-PrOH, 49/1).

(R)-Dimethyl (1-Hydroxyethyl)phosphonate (37) and Dimethyl (1-Methoxyethyl)phosphonate (36). In an oven-dried NMR tube was introduced a diastereomeric mixture of (u)-27 and (l)-27 (ds = 71/29, 80 mg, 0.34 mmol) in anhydrous CDCl₃ (0.7 mL). The solution was cooled to -40 °C and treated with a solution of iodotrimethylsilane (242 μ L, 1.71 mmol, 5 equiv) in anhydrous CDCl₃ (0.7 mL). The NMR tube was sealed, and the reaction mixture was warmed to rt. The reaction progress was monitored by ¹H and ¹³C NMR spectroscopies, and the diagnostic C(6) signal disappeared in 4.5 h. The reaction mixture was allowed to stand at rt for 2 d to effect partial demethylation and concentrated in vacuo. The brownish residue was dissolved in acetone (3 mL) and treated with aqueous HCl (6 N, 570 μ L, 3.4 mmol, 10 equiv). The solution was stirred for 24 h and concentrated under reduced pressure. The brownish oil dissolved in CH₃OH (1 mL) was purified by ion exchange chromatography (H₂O, 20 mm × 9 cm, AG 50W-X8). In a 50-mL Pyrex tube were placed the purified phosphonic acids in CH₃OH/Et₂O (1/6, 10 mL). The solution was cooled on ice and treated with freshly distilled CH₂N₂ in Et₂O until a yellow solution was obtained. Excess of CH₂N₂ was quenched with a solution of HOAc in Et_2O (1/20). The colorless solution was evaporated, and the residual yellowish oil was purified by SiO₂ column chromatography (EtOAc/i-PrOH, 24/1) to afford 38 mg (67%) of 36 and 10 mg (19%) of (R)-37. An analytical sample of 37 was obtained by Kugelrohr distillation. Data for (R)-37: bp 100

°C (0.1 Torr, air bath); ¹H NMR (400 MHz) 4.08–4.07 (m, 1H, HC-(1)), 3.92–3.91 (bs, 1H, OH), 3.81 (d, $J_{HP} = 10.3$, 3H, P(O)OCH₃), 3.80 (d, $J_{HP} = 10.3$, 3H, P(O)OCH₃), 1.44 (dd, $J_{HP} = 17.6$, $J_{HH} = 7.1$, 3H, H₃C(2)); ³¹P NMR (161.9 MHz) 28.52; MS (70 eV) 110 (M – CH₃C(O)H⁺, 100); TLC R_f 0.12 (EtOAc/*i*-PrOH, 24/1); [α]_D – 5.4° (acetone, c = 0.50), -2.83° (CH₃OH, c = 0.50). Data for **36**: ¹H NMR (300 MHz) 3.81 (d, J = 10.4, 3H, P(O)OCH₃), 3.80 (d, J = 10.4, P(O)OCH₃), 3.64 (quintet, $J_{HP} = J_{HH} = 7.1$, 1H, HC(1)), 3.48 (s, 3H, C(1)OCH₃), 1.40 (dd, $J_{HP} = 17.4$, $J_{HH} = 7.1$, 3H, H₃C(2)); ³¹P NMR (161.9 MHz) 26.65; TLC R_f 0.2 (EtOAc/*i*-PrOH, 24/1).

Acknowledgment. We are grateful to the National Institutes of Health (GM 45532) for generous support of this research. C.-T.C. thanks the University of Illinois for a Graduate Fellowship. We also thank M. Kranz for helpful discussions.

Supporting Information Available: Complete ¹H and ¹³C NMR assignments along with complete listings of IR and MS data for all characterized compounds (17 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA951255T