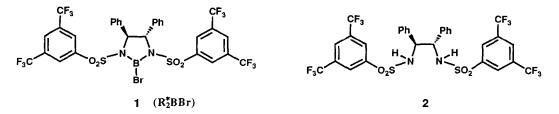
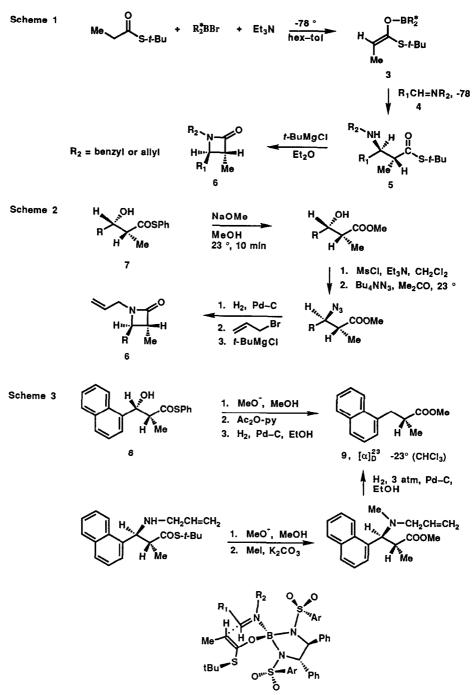
Highly Enantioselective and Diastereoselective Synthesis of β -Amino Acid Esters and β -Lactams from Achiral Esters and Imines

E. J. Corey, Carl P. Decicco and Ronald C. Newbold


Department of Chemistry, Harvard University, Cambridge, Massachusetts, 02138


Summary: The reaction of S-tert-butyl thiopropionate with a number of N-benzyl or N-allyl aldimines (4) as promoted by the chiral diazaborolidine 1 and triethylamine afforded the β -amino acid esters 5 with high diastereoselectivity and enantioselectivity, providing a simple route to chiral β -lactams 6.

The condensation of immes with ester enolates to form β -lactams is an important route to this structural class which has been extended beyond the original Gilman-Speeter version (involving zinc enolates)¹ to boron,² lithium,³ aluminum,⁴ and tin⁵ enolates. Recently a number of groups have described the stereoselective synthesis of chiral β -lactams by reactions in which either the imine^{5b,6} or ester^{3b,7} component is chiral. We report herein the first method for the asymmetric synthesis of chiral β -amino acid esters and β -lactams from *achiral* imines and esters using the chiral organoboron reagent 1.⁸ This and related reagents have been used successfully in enantioselective Diels-Alder,⁹ aldol,^{8,9} carbonyl allylation,¹⁰ carbonyl propargylation,¹¹ olefin bis-hydroxylation,¹² Ireland-Claisen rearrangement¹³ and Darzens¹⁴ reactions.¹⁵ The chiral controller group 2 from which reagent 1 is derived (by reaction with BBr₃) is readily separated from the β -amino acid ester for reuse.

As previously reported,⁸ the reaction of the S,S-diazaborolidine 1 with S-tert-butyl thiopropionate with triethylamine in toluene-hexane at -78 ° produces the "transoid" boron enolate 3 (Scheme 1). Reaction of 3 at -78 ° with the N-benzyl or N-allyl imines of a variety of aldehydes (4) proceeded with high diastereoselectivity and high enantioselectivity to form mainly the β -amino acid esters 5. Treatment of the β -amino acid esters 5 with tert-butylmagnesium chloride in ether at -78 ° to 20 ° resulted in ring closure to form the trans- α , β -disubstituted β -lactams 6. The trans arrangement of the α , β -substituents of 6 was indicated by the ¹H NMR coupling constants (J_{$\alpha\beta$}), observed in each case to be 2 Hz. The experimental results for seven substrates are summarized in Table 1.

In each case the major products 5 and 6 were readily purified by chromatography on silica gel. Enantioselectivities were determined in most cases by HPLC analysis using Daicel chiral columns as

indicated in Table 1.^{16,17} HPLC or ¹H NMR measurements of MTPA derivatives of the primary alcohol corresponding to 5 gave ee values in agreement ($\pm 0.5\%$) with the Daicel column measurements.¹⁶ The absolute configuration of each product was determined by chemical correlation as summarized below.

The *N*-allyl β -lactams 6, R₁ = PhCH₂CH₂, and 6, R₁ = PhCH=CH, (Table 1, entries e and f) were correlated with one another by catalytic hydrogenation of the double bonds (H₂, 1 atm, Pd–C, EtOAc, 23 °, 0.5 h) to give the same dextrorotatory β -lactam (6 R₁ = PhCH₂CH₂, R₂ = CH₃CH₂CH₂). β -Lactam 6, R₁ = PhCH₂CH₂, R₂ = allyl (dextro form) was synthesized from the known β -hydroxy ester 7, R=PhCH₂CH₂, (prepared as described in ref. 8 with the *S*,*S* enantiomer of 1) as shown in Scheme 2, thus proving the absolute configuration. This same method of synthesis was used to convert β -hydroxy ester 7, R=Ph, and 7, R= β -naphthyl to the corresponding β -lactams 6, R=Ph, and 6, R= β -naphthyl, (dextro forms). The *N*-benzyl β -lactams of entries b and g in Table 1 were also correlated with the corresponding β -hydroxy esters 7 as shown in Scheme 2, except for the use of benzyl bromide for the *N*-substitution step. The remaining β -lactam 6, R₁=1-naphthyl, R₂=H₂C=CHCH₂, was correlated with β -hydroxy ester 8¹⁸ as shown in Scheme 3.

The removal of the N-allyl or N-benzyl protecting group from β -lactams 6 by standard methods¹⁹ provides access to chiral β -lactams with a wide variety of N-substituents. Since the *R*,*R*-enantiomer of **1** is readily available, the enantiomeric forms of the β -lactams 6 can be produced equally well by the present methodology. Another important advantage of this process for the synthesis of chiral β -lactams derives from the ready separability of the β -amino acid esters 5 and the chiral controller group 2, which allows efficient recycling of the latter. General experimental procedures for this synthesis of chiral β -amino acid esters^{20,21} and β -lactams²² are provided.

The enantioselective formation of the β -amino acid esters 5 from the S,S-diazaborolidine 1 would appear to be a consequence of three factors: (1) The thermodynamically less favorable Z-isomer of the aldimine component preferentially complexes with boron enolate 3 for steric reasons. (2) The condensation proceeds preferentially via a chair-like 6-membered transition state. (3) The transition state assembly represented by 10 is preferred for steric reasons over the other chair-like arrangement.

In conclusion, the methodology described herein provides a novel and useful route to many chiral β -lactams.²³

	Imine 4			β-Amino Thioester 5				β-Lactam 6		
Entry	R ¹	R ²	Time ^a	Yield	$[\alpha]_{D}^{23}$	anti/syn ^b	Yield	$[\alpha]_{D}^{23}$	ee	
а	phenyl	allyl	10 min	74%	-62.4	> 99 1	92%	+13 9	90°	
b	phenyl	benzyl	10 min	72	-74.8	> 99.1	96	-12 5	92 ¢	
с	1-naphthyl	allyl	10 min	77	-56.2	> 99 1	91	-165.0	>99 d	
d	2-naphthyl	allyl	30 min	70	-84.5	> 99 : 1	94	+2.0	95 e	
e	cınnamyl	allyl	10 min	76	-30 5	> 99.1	86	+29.5	>99 d	
f	hydrocinnamyl	allyl	6 h	67	-45 9	97.3	90	+187	90 f	
g	hydrocinnamyl	benzyl	6 h	74	-37.8	92 8	86	+22 0	90e	

Table I	Ta	ab	le	1
---------	----	----	----	---

^a For reaction of 3 and 4 ^b Determined by HPLC analysis on a silica gel column. ^c Determined by conversion to the α -methoxy- α -(trifluoromethyl)phenylacetic ester of 2-methyl-3-(R₂-amino)-3-phenyl-1-propanol and both ¹H NMR and HPLC analysis (identical results). ^d Determined by HPLC using a Daicel OJ column, 2 5% *i*-PrOH-hexane ^e Determined by HPLC using a Daicel AS column, 2 5% *i*-PrOH-hexane. ^f Determined by HPLC using a Daicel AD column, 2.5% *i*-PrOH-hexane.

REFERENCES AND NOTES

- 1. Gilman, H.; Speeter, M. J. Am. Chem. Soc. 1943, 65, 2255.
- 2. Otsuka, M.; Yoshida, M.; Kobayashi, S.; Ohno, M. Tetrahedron Letters 1981, 22, 2109.
- (a) Gluchowski, C.; Cooper, L.; Bergbreiter, D. E.; Newcomb, M. J. Org Chem 1980, 45, 3413.
 (b) Ha, D.-C.; Hart, D. J.; Yang, T.-K. J. Am. Chem. Soc. 1984, 106, 4819.
- 4. Wada, M.; Airua, H.; Akiba, K.-y. Tetrahedron Letters 1987, 28, 3377.
- 5. (a) Mukaiyama, T.; Suzuki, H.; Yamada, T.; Chem. Letters 1986, 915. (b) Yamada, T.; Suzuki, H.; Mukaiyama, T. Chem. Letters 1987, 293.
- 6. Nagao, Y.; Dai, W.-M.; Ochiai, M. Tetrahedron Letters 1988, 29, 6133.
- (a) Shibasaki, M.; Iimori, T. Tetrahedron Letters 1985, 26, 1523. (b) Georg, G. I. Tetrahedron Letters 1984, 25, 3779. (c) Cainelli, G.; Contento, M.; Giacomini, D.; Panunzio, M. Tetrahedron Letters 1985, 26, 937. (d) Hatakana, M.; Nitta, H. Tetrahedron Letters 1987, 28, 69. (e) Miyachi, N.; Shibasaki, M. J Org. Chem. 1990, 55, 1975.
- 8. Corey, E. J.; Kim, S. S. J. Am Chem. Soc. 1990, 112, 4976.
- 9. Corey, E. J.; Imwinkelried, R.; Pıkul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493.
- 10. Corey, E. J.; Yu, C. M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495.
- 11. Corey, E. J.; Yu, C. M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878.
- 12. Corey, E. J.; Da Sılva Jardine, P.; Virgil, S.; Yuen, P. W.; Connell, R. D. J. Am Chem. Soc. 1989, 111, 9243.
- 13. Corey, E. J.; Lee, D.-H. J Am. Chem. Soc 1991, 113, 4026.
- 14. Corey, E. J.; Choi, S. Tetrahedron Letters, in press.
- 15. Corey, E. J. Pure Appl Chem. 1990, 62, 1209.
- 16. Satisfactory ¹H NMR, mass and infrared spectral data were obtained for each product.
- 17. Racemic mixtures were used to demonstrate discrimination between enantiomers.
- 18. Prepared from 1-naphthaldehyde and S-phenyl thiopropionate by the procedure of ref. 8 in 92% yield and >94% de using the S,S enantiomer of 1.
- 19. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; 2nd Ed.; John Wiley and Sons, Inc., New York; 1991; Chapter 7.
- 20. Imines were prepared by slow addition of the aldehyde to one equivalent of either allylamine or benzylamine and anhydrous MgSO4 (1 g/mmole) at 22°, sturring for 5 h and distillation *in vacuo*:
- 21 β -Amino Acid Ester Synthesis: The (-)-bis-3,5-di(trifluoromethyl)benzenesulfonamide 2 (300 mg, 0.39 mmol) was placed in a 50 ml round bottomed flask equipped with magnetic stir bar and sealed with a septum. The flask was evacuated and flushed with N₂ three times; all solvents were dry. Dichloromethane (6 ml) was added and the homogeneous solution was treated with boron tribromide (780 µl, 1M in CH₂Cl₂, 0.78 mmol). The solution was warmed to 45 ° and stirred for 3 h and concentrated at 1 mm Hg. Dichloromethane (2 ml) was added and the resulting mixture was warmed to dissolve the white boroborane complex. Hexane (16 ml) was added and the solution was cooled to -78 °, treated with *S*-tert-butyl thiopropionate (62 µl, 0.39 mmol), and stirred for 5 min. Triethylamine (60 µl, 0.43 mmol) was then added and the solution was stirred for 3 h at -78 °. The imine (0.39 mmol) in 1 ml of toluene (cooled to -78 °) was added via cannula over 10 min and the reaction was allowed to proceed for the time indicated in Table 1. Cold methanol was added to the reaction mixture at -78 ° and the solution was brought to 0 °. The β -amino acid ester and bis-sulfonamide were separated extractively and the ester was purified by chromatography on silica gel.
- 22. β -Lactam Synthesis: The β -aminothioester (0.1 mmol), dissolved in 0.5 ml anhydrous ether, was cooled to -78 ° under nitrogen *tert*-Butylmagnesium chloride (0.2 mmol, 110 µl, 1.81 M solution in ether) was added at -78 ° and the solution was stirred for 10 min, after which time the cooling bath was removed. A white precipitate was observed on warming. After stirring at 23 ° for 3 h, the solution was diluted with ether and pH 7 phosphate buffer. The crude β -lactam from the ethereal extract was purified by chromatography on silica gel using 20% ether in hexane for elution.
- 23. This research was assisted financially by grants from the National Institutes of Health and the National Science Foundation.

(Received in USA 12 June 1991)