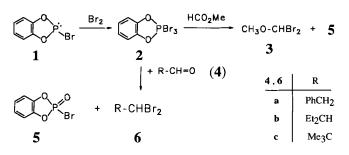
Brominative Deoxygenation of Some Aldehydes and Ethers

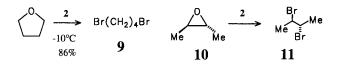

Ulrich von Roman, Rudolf Knorr, Claudia Behringer und Jakob Ruhdorfer

Munich, Institute of Organic Chemistry, University

Received May 3rd, 1993

Abstract. Three aldehydes (4a-c) are transformed into 1,1-dibromides (6a-c) by 2,2,2-tribromo-2,2-dihydro-1,3,2-benzodioxaphosphole (2). This reagent (2) is also very active

H. Gross and coworkers [1–3] described preparations of the catechyl phosphorus tribromide (2) from the monobromide **1** and of the α , α -dibromo ether **3** from methyl formate with 2; they have also reported [2, 3] the application of 2 and 3 in some C-O bond cleavage reactions. We have recently shown [4, 5] that substitution of a ketonic oxygen atom by bromine may be accomplished conveniently either with the tribromophosphole 2 of with the less reactive reagent 3. Extension of this brominative deoxygenation to aldehydes 4 could be useful because the expected 1,1-dibromo derivatives 6 possess synthetic significance [6, 7]; but only heptanal has been converted into 1,1-dibromoheptane [7] with 2, whereas chloral [8] and fluoral [9] were reported to react by addition rather than by substitution. For a comparison of this procedure with other known methods we chose to study only the three test compounds 4a-c because these represent "difficult" cases for reasons of ready polymerization (of 4a), too many side-products (with 4c [10, 11]), partial rearrangement (with 4c [6, 10]) or complete rearrangement (with 4b [6]). For example, the dibromide 6b is unknown because the bis(trifluoromethylsulfonyl) acylal of 2-ethylbutanal (4b) gave only the rearranged dibromide 7 [6].


Phenylacetaldehyde (4a) reacted quickly with the tribromide reagent 2 to give 75% of 1,1-dibromo-2-phenylethane (6a) and 21% of E- and Z- β -bromostyrene. This in the cleavage of ethers; its reactions may show some features of carbonium as well as of $S_N 2$ character.

one-step conversion is simpler than the literature procedures [6, 12] but proceeds less cleanly. On the other hand, 2-ethylbutanal (4b) afforded 6b (17%) and only 19% of the rearrangement product 7. The formation of 7 indicates some carbonium character of the reaction, as noticed before [5], and was not supressed when the reaction was run in the presence of tetraethylammonium bromide (0.3 equiv.) in chloroform.

The starting aldehydes **4a** (ca. 5 %) and **4b** (ca. 19 %) were found in the crude products even though the conversions had been complete (by in-situ ¹H-NMR), as observed before [5] with ketones. However, α -bromination [5] did not occur with these aldehydes, and the application of reagent **3** was therefore unnecessary. The purification of **6b** was achieved by selective destruction of **7** with potassium tert-butoxide, whereas several other methods failed, like treatment of **6b/7** with triethylamine, sodium iodide in hot acetone, ZnCl₂/cons. HCl, zinc dust, or hot aqueous methanol [13] or ethanol.

The sterically shielded pivalaldehyde (4c) produced a mixture of 6c (39%), 8 (32%) and 2,4,6-tri-tert-butyl-1,3,5-trioxane (26% yield, predominantly the isomer with C₃ symmetry by NMR). The latter was certainly formed [14] under the action of traces of HBr which contaminate the reagent 2 if prepared in situ [5]; since it did not change upon further heating with 2, the present procedure is not very productive for 6c. Nevertheless, the rearrangement product 8 could be destroyed with potassium tert-butoxide to leave the highly volatile 1,1-dibromide 6c (14%). Pure 6c has been obtained only twice [7, 15], and our preparation is presently surpassed solely by the simple one-step reaction of 4c with triphenyl phosphite and bromine [7].

The suitability of acetals [2] in place of their aldehydes or ketones was examined in two cases. Cyclopentanone diethylacetal [16] (without ZnCl₂ [2]) was indeed transformed into 1-bromocyclopentene [5] (46 %) and bromoethane; initial cooling was necessary, and 1,1dibromocyclopentane was not formed, in contrast to the reaction of cyclopentanone [5] with **2**. Therefore, the mechanistic details must be somewhat different for conversion of the acetal as compared to cyclopentanone. However, the dimethyl acetal of phenylacetaldehyde yielded a mixture of (Z)- β -methoxystyrene (¹H NMR [17]), and unidentified olefinic compounds without any trace of the β -bromostyrenes. Butyl-vinylether as an acetal equivalent decomposed with **2** but formed no trace of bromoethylene.

Saturated ethers were cleaved very quickly by reagent 2, and indeed much easier than by dibromo-triphenylphosphorane [18, 19] or by gaseous hydrogen bromide [20]. Diethyl ether afforded two equivalents of bromoethane, and 1,4-dibromobutane (9) was formed from THF [19, 20] in high yield with only one equivalent of 2. In a brief search for the stereochemical features of this brominative deoxygenation, we were somewhat surprised to discover that trans-2,3-dimethyloxirane (racemic 10) was transformed with extreme facility by 2 into meso-2,3dibromobutane [21] (11, identified by ¹³C-NMR [22]) in the presence or absence of 0.6 equivalents of tetraethylammonium bromide. Hence this transformation is stereoselective and involves an odd number of configurational inversions, perhaps via a bromonium intermediate as one possibility. Reagent 3 required 3 d at room temperature for consumption of the oxirane **10**, forming initially the racemic diastereoisomer of 11 and later also the meso compound 11 together with methyl bromide and other products.

This rather cursory investigation suggests that the tribromide 2 and its successor reagent 3 may be useful in many further applications [1–3]. Compared to known alternative preparations, the one-step method described here is convenient and somewhat less prone to rearrangement but inferior to the literatur method [7] for 6c.

We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Experimental

Equipment, solvents and the improved preparation of the monobromide **1** have been described [5].

Brominative Deoxygenation Reaction of Some Aldehydes and Ethers

General Procedure

A dried 2-necked flask (25 ml), bearing a two-way (Y) adapter with a gas inlet, was fitted with a thermometer and a pressureequalizing dropping funnel carrying a CaCl₂ tube. A magnetic stirring bar, the monobromide 1 (2.30 ml, 18.2 mmol) and anhydrous, ethanol-free CH₂Cl₂ or CHCl₃ (4.0 mol) were introduced under N₂. The solution was stirred in an ice-bath, elemental bromine (0.87 ml, 17.0 mmol) was added dropwise, and stirring continued at room temperature for 15 min. With external cooling the substrate (15 mmol in 4 ml of solvent) was added slowly, and the mixture was stirred for 2 h at room temperature. The workup procedure [5] was slightly modified for the products 6a-c from aldehydes by adding pentane (30 ml) rather than CH₂Cl₂ to the flask. The cooled contents were poured onto ice-cold 2N Na₂CO₃ solution (40 ml) and stirred for 15 min. After phase separation the aqueous layer was extracted with more pentane (2 \times 20 ml). The combined pentane layers were washed with 2N NaOH (3 \times 20 ml) and distilled water (20 ml), then dried with CaCl₂ and concentrated at a cautiously controlled pressure.

1,1-Dibromo-2-phenylethane (6a)

Phenylacetaldehyde (**4a**, 1.755 ml, 15.0 mmol) was treated with reagent **2** in CH₂Cl₂ according to the general procedure. The crude product (3.047 g) was purified by short chromatography on silica gel (10 g) with light petroleum ether (150 ml) to give 2.463 g of a 78:22 mixture of **6a** and the β -bromostyrenes (E and Z); total yield 62 %. – ¹H NMR (CCl₄): as in Lit. [6, 12]

1,1-Dibromo-2-ethylbutane (6b)

2-Ethylbutanal (**4b**, 1.50 g, 15 mmol) was added dropwise to reagent **2** in chloroform according to the general procedure such that the internal temperature remained below 25 °C. The raw material (2.54 g) contained 17 % of **6b** together with 19 % of 3-bromo-3-(bromomethyl)-pentane (**7**), 19 % of regenerated **4b**, and unidentified side-products. ¹H NMR (CCl₄) of **7**: as in Lit. [6].

Since separation of 6b from 7 could not be achieved by distillation or chromatography, the mixture was heated to 80°C with potassium tert-butoxide (2.25 g) in tert-butylalcohol (10 ml) at a reflux condenser for 2 h. This cooled solution was poured into distilled water (50 ml) and extracted with ether (3 \times 15 ml). The combined ether layers were washed, dried with CaCl₂, and evaporated at a controlled pressure. After chromatography of a sample on silica gel with light petroleum ether the colourless liquid 6b was too volatile to give a suitable combustion analysis which, however, showed the correct C/H ratio for $C_6H_{12}Br_2$. IR (film): $v = 2965, 2935, 2877, 1465, 1165, 677 \text{ cm}^{-1}$; ¹H NMR (CDCl_3) : $\delta = 0.97$ (t, ³J = 7.5 Hz, 2 CH₃), 1.48 (m, 2 H), 1.66 (mc, 3 H), 5.96 (d, ³J = 2.7 Hz, CHBr₂); ¹H NMR (CCl₄): $\delta =$ 5.85 (d, ${}^{3}J$ = ca. 2 Hz, CHBr₂); ${}^{13}C$ NMR (CDCl₃): δ = 11.7 (2 CH₃), 24.4 (2 CH₂), 53.0 and 53.8 (2 CH); MS (35 eV, room temp.): As published [6] for the isomer 7. $C_6H_{12}Br_2$ (244.0): Calcd. C 29.54, H 4.96; found C 32.09, H 5.17.

1,1-Dibromo-2,2-dimethylpropane (6c)

As described for **6b**, 2,2-dimethylpropanal (**4c**, 1.64 ml, 15.0 mmol) was added to reagent **2** in chloroform solution. The pen-

tane extracts were evaporated at 40 °C/160 Torr to leave 2.345 g of crude product containing **6c** (39 %), **8** (32 %) and the trioxane (26 %). ¹H NMR (CCl₄) of 2,3-dibromo-2-methylbutane (**8**): as in Lit. [10].

2,4,6-Tri-tert-butyl-1,3,5-trioxane, ¹H NMR (CCl₄): $\delta = 1.08$ (s, 9 H), 5.80 (s, 1 H); ¹³C NMR (CDCl₃): $\delta = 26.0$ (3 CH₃), 38.1 (3 q-C), 101.1 (3 CH).

Pure **6c** (492 mg, 14 %) was obtained by treatment with potassium tert-butyloxide (see **6b**), chromatography on silica gel with light petroleum ether, and final distillation as a colourless liquid at 90–100 °C (bath temp.)/50 Torr (Lit. [6] 81–82 °C/50 Torr; Lit. [7] 50–52 °C/15 Torr). ¹H NMR (CCl₄): as in Lit. [6, 10, 11]; MS (70 eV): as in Lit. [11] but (M⁺–1) much weaker.

1,4-Dibromobutane (9)

Tetrahydrofuran (3.24 ml, 42.2 mmol) was added dropwise to a solution of reagent **2** (40 mmol) in anhydrous chloroform (20 ml) under Ar at -78 °C. The exothermic reaction was controlled by cautious warming and re-cooling as necessary. After stirring at room temperature overnight and workup [5], pure **9** (7.42 g, 86 %) was isolated by distillation: Bp. 73–77 °C/10 Torr (Lit. [20] 198 °C/760 Torr); ¹H NMR (CDCl₃): $\delta = 2.01$ (m, 4 H), 3.39 (m, 4 H).

2,3-Dibromobutane (11)

trans-2,3-Butenoxide (10, 3.50 ml, 39 mmol) was added to a precooled solution of reagent 2 (40 mmol) in anhydrous chloroform (30 ml). The exothermic reaction was started by warming up with intermittent cooling and was finished in 2 h at room temperature. The workup [5] yielded pure meso-11 (at least 3.59 g, 42 %) by distillation: Bp. 41–42 °C/12 Torr; m.p. ca. –26 °C(Lit. [21] –24 °C); ¹H NMR (CCl₄): $\delta = 1.85$ (m, 6 H), 4.10 (m, 2 H); ¹³C NMR (CDCl₃): $\delta = 25.3$ (q, CH₃), 54.1 (d, CHBr), compare Lit. [22].

References

- [1] H. Gross, U. Karsch, J. Prakt. Chem. 301 (1965) 315
- [2] I. Farkas, M. Menyhárt, R. Bognár, H. Gross, Chem. Ber. 98 (1985) 1419
- [3] J. Gloede, H. Groß, Chem. Ber. 100 (1967) 1770

- [4] U. von Roman, Doctoral Dissertation (1988), and J. Ruhdorfer, Diploma Thesis (1988), University of Munich
- [5] U. von Roman, J. Ruhdorfer, R. Knorr, Synthesis **1993**, 985
- [6] A. G. Martinez, A. H. Fernandez, R. M. Alvarez, A. G. Fraile, J. B. Calderon, J. O. Barcina, M. Hanack, L. R. Subramanian, Synthesis 1986, 1076, and cited Lit.
- [7] R. W. Hoffmann, P. Bovicelli, Synthesis 1990, 657
- [8] V. F. Mironov, T. N. Sinyashina, E. N. Ofitserov, P. P. Chernov, I. V. Konovalova, A. N. Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim. **1989**, 2819; Chem. Abstr. **113** (1990) 40820a
- [9] V. F. Mironov, I. V. Konovalova, A. N. Pudovik, Zh. Obshch. Khim. 61 (1991) 256; Chem. Abstr. 115 (1991) 92395b
- [10] A. Pross, S. Sternhell, Aust. J. Chem. 24 (1971) 1437
- [11] Z. Huan, J. A. Landgrebe, K. Peterson, J. Org. Chem. 48 (1983) 4519
- [12] J. Villieras, C. Bacquet, J. F. Normant, Bull. Soc. Chim. Fr. 1975, 1797
- [13] J. F. Bunnett, D. L. Eck, J. Am. Chem. Soc. 95 (1973) 1900
- [14] S. Daniloff, E. Venus-Danilova, Chem. Ber. **59** (1926) 377, and cited Lit.
- [15] M. J. Goldstein, W. R. Dolbier, J. Am. Chem. Soc. 87 (1965) 2293
- [16] U. Schmidt, P. Grafen, Liebigs Ann. Chem. 656 (1962) 97
- [17] E. Taskinen, P. Ylivainio, Acta Chem. Scand., Ser. B 29 (1975) 1
- [18] A. G. Anderson, F. J. Freenor, J. Org. Chem. 37 (1972)626 and cited Lit.
- [19] R. Michels, W. Heitz, Macromol. Chem. 176 (1975) 245;
 Chem. Abstr. 82 (1975) 112516x
- [20] S. Fried, R. D. Kleene, J. Am. Chem. Soc. 62 (1940) 3258
- [21] K. Ziegler, F. Häffner, H. Grimm, Liebigs Ann. Chem. 528 (1937) 101, on p. 107
- [22] H.-J. Schneider, G. Becker, W. Freitag, V. Hoppen, J. Chem. Res. 1979, M 421; H.-J. Schneider, M. Lonsdorfer, Org. Magn. Reson. 16 (1981) 133

Address for correspondence:

Prof. Dr. R. Knorr

University of Munich, Institute of Organic Chemistry

Karlstr. 23

D-80333 München, Germany