ORIGINAL PAPER

One-pot synthesis of 2-aminotetrahydrothiopyrano[4,3-*b*]pyran-3-carbonitrile derivatives using mesoporous NH₂-MCM-41

Maryam Mirza-Aghayan · Farhad Saravani · Ali Akbar Tarlani · Mohammad Saeed Abaee · Rabah Boukherroub

Received: 4 December 2012/Accepted: 9 June 2013 © Springer-Verlag Wien 2013

Abstract A facile and general procedure is presented for the one-pot synthesis of 2-aminotetrahydrothiopyrano[4,3*b*]pyran-3-carbonitrile derivatives. It is based on the threecomponent condensation of aliphatic, aromatic, or heterocyclic aldehydes, malononitrile, and thiopyran in the presence of mesoporous amino-functionalized MCM-41 silica in ethanol. This efficient technique has the advantage of giving 2-aminotetrahydrothiopyrano[4,3-*b*]pyran-3-carbonitrile derivatives using a heterogeneous mesoporous reagent in high yields, in short reaction times, and offers a simple product isolation procedure.

Keywords 2-Aminotetrahydrothiopyrano[4,3-*b*]pyran-3-carbonitrile · Thiopyran · Amino-functionalized MCM-41 · One-pot synthesis

Introduction

4*H*-Chromene derivatives are important heterocyclic compounds with a number of biological and pharmacological properties including spasmolytic, diuretic, anticoagulant, anticancer, and antianaphylactic activities [1]. 4*H*-Chromene

M. Mirza-Aghayan $(\boxtimes) \cdot F$. Saravani $\cdot A$. A. Tarlani $\cdot M$. S. Abaee

Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran e-mail: m.mirzaaghayan@ccerci.ac.ir

R. Boukherroub

Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France derivatives are generally synthesized using a three-component reaction of cyclic 1,3-diketones, aryl aldehydes, and malononitrile under various reaction conditions. The conventional reported syntheses of 4H-chromene derivatives employ piperidine and triethylamine as catalytic or stoichiometric reagents in organic solvents [2-5]. In recent years, interest in this reaction has increased rapidly and several modified procedures have been reported [6-8]. Alternative and more efficient strategies for the synthesis of 4H-chromene derivatives involving different catalysts and conditions including alkylammonium salts [9, 10], (NH₄)₂HPO₄ [11], (S)-proline [12], Re(PFO)₃ [13], and KF-Al₂O₃ [14] have been described. Moreover, in view of the diverse therapeutic activity, this reaction was enlarged by the variation of the aldehyde, malononitrile derivatives [15], 1,3-dicarbonyl compound building blocks, including the use of cyclic ketones [16] and cyclic diketones [9, 17], and the use of 1- or 2-naphthol [18, 19] instead of ketones or diketones.

This work reports an efficient protocol for the synthesis of 4H-chromene derivatives using heterocyclic ketones instead of conventional ketones in the presence of mesoporous NH₂-MCM-41 silica. This is mainly motivated by recent reports highlighting the design of sulfur-containing drugs with interesting activities [20–23].

It should be noted that using heterocyclic ketones for the synthesis of 4*H*-chromene derivatives has been reported only in a few examples [24]. Nakib et al. [24] synthesized 2-amino-4-aryl-4*H*,5*H*-[1]benzothiopyrano[4,3-*b*]pyran-3-carbonitriles by the reaction of 3-benzylidenethiochroman-4-one with malononitrile in the presence of piperidine in moderate yields. These derivatives displayed antifungal activity in vitro against the pathogenic fungi *Cryptococcus neoformans*, *Torulopsis glabrata*, *Trichosporon cutaneum*, *Candida albicans*, *C. paropsilosis*, and *C. tropicalis*. In the framework of our studies on multicomponent reactions for the synthesis of 2-amino-5,6-dihydropyrimidin-4(3*H*)one, 2-aminotetrahydro-4*H*-chromene, and 2-amino-4*H*benzo[*h*]chromene derivatives using amino-functionalized MCM-41 as catalyst [25, 26] and in continuation of our interest in the application of mesoporous MCM-41, we report herein an efficient protocol for the synthesis of 2-aminothiopyran derivatives using heterocyclic ketones instead of conventional ketones. One-pot condensation of various aldehydes **1a–1k** with malononitrile (**2**) and thiopyran (**3**) in the presence of mesoporous aminofunctionalized MCM-41 (NH₂-MCM-41) in refluxing ethanol was investigated for the synthesis of novel 2-aminotetrahydrothiopyrano[4,3-*b*]pyran-3-carbonitrile derivatives (Scheme 1).

Mesoporous MCM-41 silica utilized in this work was synthesized according to a previously reported procedure and functionalized with 3-aminopropyltriethoxysilane (APTES) [27–29]. Elemental analyses supported that the amine was immobilized on the surface. Brunauer–Emmett– Teller (BET) surface area measurement revealed that the MCM-41 surface area (1,018 m²/g) decreased to 638 m²/g after grafting APTES molecules. The amount of grafted amine on MCM-41 is estimated to be 3.24 mmol of amine per gram of silica [30].

The model reaction was carried out simply by mixing an equimolar quantity of p-nitrobenzaldehyde (**1e**), malononitrile, and thiopyran in ethanol. The resulting mixture was heated to reflux for the time indicated in Table 1. The progress of the reaction was monitored by TLC. Then the mixture was poured into hot ethanol and filtered through a sintered funnel. The filtrate was evaporated in vacuo. The crude product was purified by recrystallization in ethanol. When the reaction was carried out in refluxing ethanol as solvent in catalyst-free conditions, the reaction was relatively slow and no product was formed after 24 h (Table 1, entry 1). Increasing the reaction time did not show a significant effect on the yield.

We then examined the influence of $AlPW_{12}O_{40}\cdot XH_2O$ heteropolyacid (3 mol%) catalyst on this reaction (Table 1, entry 2). The catalyst was found to be inefficient for this reaction and no product was formed after 24 h in refluxing ethanol even with 6 mol% of catalyst (Table 1, entry 3).

 Table 1
 Different conditions for the synthesis of 2-amino-4-(4-nitrophenyl)-7,8-dihydro-4H,5H-thiopyrano[4,3-b]pyran-3-carboni-trile (4e)

Entry	Catalyst/mol%	Time/h	Yield/% ^a	
1	0	24	0	
2	$AIPW_{12}O_{40} \cdot XH_2O$ (3)	24	0	
3	AlPW ₁₂ O ₄₀ ·XH ₂ O (6)	24	0	
4	NH ₂ -MCM-41 (10)	8	53	
5	NH ₂ -MCM-41 (20)	5	60	
6	NH ₂ -MCM-41 (40)	2.5	85	
7	NH ₂ -MCM-41 (100)	2.5	87	

Reaction conditions: 4-nitrobenzaldehyde (1 mmol), malononitrile (1 mmol), and thiopyran (1 mmol) in refluxing ethanol

^a Isolated yield

Table 2Synthesis of 2-amino-4-aryl-7,8-dihydro-4H,5H-thiopyr-ano[4,3-b]pyran-3-carbonitrile building blocks4a-4k

Entry	R	Product	Time/h	Yield/% ^a	M.p./°C
1	C ₆ H ₅	4 a	8	70	254.3
2	p-CH ₃ -C ₆ H ₄	4 b	5	75	231.3
3	p-OH-C ₆ H ₄	4 c	5.45	79	235.2
4	m-OH-C ₆ H ₄	4d	8	65	237
5	p-NO ₂ -C ₆ H ₄	4 e	2.30	85	229.2
6	m-NO ₂ -C ₆ H ₄	4 f	4.30	97	237.2
7	o-NO2-C6H4	4 g	8	55	220.5
8	p-Cl-C ₆ H ₄	4h	7	90	254.4
9	p-Br-C ₆ H ₄	4i	3.30	90	257.2
10	p-CH ₃ O-C ₆ H ₄	4j	2	80	245
11	2-Furanyl	4k	8	60	223.4

Reaction conditions: aldehyde (1 mmol), malononitrile (1.1 mmol), thiopyran (1 mmol), NH₂-MCM-41 (40 mol%) in refluxing ethanol ^a Isolated vield

When the reaction was carried out in the presence of mesoporous NH_2 -MCM-41 (10 mol%), the product **4e** was isolated in 53 % yield after 8 h in refluxing ethanol (Table 1, entry 4). The results suggest that amino-functionalized MCM-41 in ethanol can be used as an efficient and alternative reagent for this reaction. The results are summarized in Table 1.

The influence of the NH₂-MCM-41 concentration on the reaction yield was investigated. 2-Amino-4-(4-nitrophenyl)-7,8-dihydro-4H,5H-thiopyrano[4,3-b]pyran-3-carbonitrile (**4e**) was obtained in 60, 85, and 87 % yield by increasing NH₂-MCM-41 concentration to 20, 40, and 100 mol%, respectively (Table 1, entries 5–7). Increasing the NH₂-MCM-41 concentration over 40 mol% shows no significant effect on the yield, suggesting that 40 mol% of NH₂-MCM-41 is sufficient for this reaction.

We tested a variety of aldehydes **1a-1k** under the optimized reaction conditions. It should be noted that for an easy purification (facile elimination of the unreacted aldehyde), we used 1.1 equivalents of malononitrile for 1 equivalent of aldehyde. The results in Table 2 show that NH₂-MCM-41 can be used in the synthesis of 2-amino-4-aryl-7,8-dihydro-4*H*,5*H*-thiopyrano[4,3-*b*]pyran-3-carbonitrile building blocks **4a–4k** with various aromatic and heterocyclic aldehydes in high yields and short reaction times. The presence of electron-donating, electron-withdrawing, and heterocyclic groups on the aldehyde afforded the corresponding products in good to excellent yields. All compounds were characterized on the basis of their spectroscopic data such as ¹H and ¹³C NMR, mass spectroscopy, infrared spectra, and elemental analysis.

We also investigated the reusability of the NH₂-MCM-41. After completion of the reaction, hot ethanol was added to the reaction mixture while stirring and the mixture was filtered through a sintered funnel to separate the insoluble catalyst. Then the mesoporous NH₂-MCM-41 was dried and re-used in another reaction. The recycled NH₂-MCM-41 was used for three consecutive reactions without any significant loss in its activity and the product **4e** was obtained in 85, 84, and 82 % yield, respectively.

A reasonable mechanism for this reaction is outlined in Scheme 2 [9]. The reaction may proceed through the arylidenemalononitrile intermediate (formed in situ by the reaction of an aldehyde with malononitrile), and the subsequent addition of enolate of thiopyran to the arylidenemalononitrile to generate the intermediate I. The cyclization of the intermediate I followed by tautomerization affords the corresponding 2-amino-4-aryl-7,8-dihydro-4H,5H-thiopyrano[4,3-b]pyran-3-carbonitrile building blocks 4a-4k (Scheme 2). It should be noted that the presence of arylidenemalononitrile intermediate is made based on GCMS analysis. Furthermore, we obtained the same final product by performing the reaction in two steps: the first step consists in the synthesis of arylidenemalononitrile by the reaction of an aldehyde with malononitrile, and the second step is the reaction of the arylidenemalononitrile with thiopyran.

In conclusion, we have developed an efficient procedure for the synthesis of 2-amino-4-aryl-7,8-dihydro-4*H*,5*H*thiopyrano[4,3-*b*]pyran-3-carbonitrile building blocks,

which are often encountered in biologically active compounds. Formation of products using amino-functionalized MCM-41 as a highly promising environmentally friendly base reagent, in good to high yields within relatively short time periods, and ease of operation and purification make this protocol attractive. Reusability of amino-functionalized MCM-41 is an additional advantage. The reaction system can be successfully applied to a variety of aryl and heterocyclic aldehydes to synthesize a wide variety of novel heterocycles in good to high yields. Further investigations are needed to estimate the biological activity of these novel 2-aminothiopyran derivatives.

Experimental

Melting points were determined in evacuated capillaries with a Büchi B-545 apparatus. ¹H NMR spectra were recorded on Bruker spectrometer at 80 or 500 MHz in DMSO- d_6 using tetramethylsilane as internal standard. ¹³C NMR spectra were recorded at 100 or 125 MHz in DMSO- d_6 . Mass spectra were obtained on a Fisons GC 8000/TRIO 1000 at 70 eV. Infrared (IR) spectra were recorded from KBr disks with a Bruker Vector 22 Fourier transform infrared (FTIR) spectrophotometer. Elemental analyses were performed on a ThermoFinigan Flash EA 1112 series elemental analyzer.

Synthesis of amino-functionalized MCM-41 (NH₂-MCM-41)

In a typical reaction, 1 g of MCM-41 was suspended in 50 cm^3 of toluene and the mixture was stirred for 1 h. To this mixture, 1.5 g of APTES was added and refluxed overnight. The white solid was filtered through a sintered funnel and was extracted using a Soxhlet extractor with toluene and dried overnight under reduced pressure at 70 °C [30].

Typical procedure for the synthesis of 2-aminothiopyran derivatives

A solution of aldehyde 1a-1k (1 mmol), malononitrile (2, 1.1 mmol), and thiopyran (3, 1 mmol) in 2 cm³ of ethanol was stirred mechanically in the presence of 40 mol% of mesoporous amino-functionalized MCM-41. The reaction mixture was refluxed for the time indicated in Table 2 and the progress of the reaction was monitored by TLC. Then the mixture was poured into hot ethanol and stirred for 30 min. The mixture was filtered through a sintered funnel and the solvent was evaporated in vacuo. For further purification the crude product was recrystallized from ethanol.

2-Amino-4-phenyl-7,8-dihydro-4H,5H-thiopyrano[4,3-b]pyran-3-carbonitrile (4a, $C_{15}H_{14}N_2OS$)

M.p.: 254.3 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.21-2.31$ (m, 2H, CH₂), 2.85–3.52 (m, 3H, CH₂), 3.65 (d, J = 14.4 Hz, 1H, CH₂), 5.80–6.05 (m, 1H, CH), 7.48 (br s, 7H, NH₂ and CH arom) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.45$, 28.15, 35.57, 43.30, 49.92, 81.95, 112.46, 112.73, 116.46, 118.03, 129.37, 129.73, 130.07, 134.30, 144.61 ppm; MS (EI, 70 eV): m/z (%) = 270 (5, M⁺), 228 (5), 193 (6), 77 (7); IR (KBr): $\bar{v} = 3.424$, 3.343, 3.254, 2.923, 2.210, 1.646, 1.600, 1.455, 1.421, 1.391, 1.283 cm⁻¹; Anal. Calcd. for C₁₅H₁₄N₂OS: C, 66.64; H, 5.22; N, 10.36 %. Found: C, 67.80; H, 5.30; N, 10.11 %.

2-Amino-4-(4-methylphenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile

 $(4b, C_{16}H_{16}N_2OS)$

M.p.: 231.1 °C; ¹H NMR (DMSO-*d*₆, 80 MHz): $\delta = 2.15-2.30$ (m, 2H, CH₂), 2.32 (s, 3H, CH₃), 2.80–3.45 (m, 3H, CH₂), 3.58 (d, J = 12.0 Hz, 1H, CH₂), 5.80–6.00 (m, 1H, CH), 7.20–7.40 (m, 4H, CH arom), 7.45 (br s, 2H, NH₂) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 21.18, 25.43, 28.14, 35.62, 43.41, 49.66, 81.92, 112.51, 112.81, 116.45, 117.94, 127.45, 129.95, 131.24, 139.18, 144.61 ppm; MS (EI, 70 eV):$ *m/z* $(%) = 285 (1, [M + 1]⁺), 242 (2), 115 (13), 91 (20), 75 (5), 45 (100); IR (KBr): <math>\bar{\nu} = 3,555, 3,426, 3,332, 3,222, 2,969, 2,874, 2,210, 1,644, 1,600, 1,515, 1,418, 1,388, 1,315, 1,281, 1,046 cm⁻¹; Anal. Calcd. for C₁₆H₁₆N₂OS: C, 67.58; H, 5.67; N, 9.85 %. Found: C, 67.99; H, 5.64; N, 9.81 %.$

2-Amino-4-(4-hydroxyphenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile

$(4c, C_{15}H_{14}N_2O_2S)$

M.p.: 235.2 °C; ¹H NMR (DMSO-*d*₆, 80 MHz): $\delta = 2.10-2.40$ (m, 2H, CH₂), 2.60–3.35 (m, 3H, CH₂), 3.49 (d, J = 14.4 Hz, 1H, CH₂), 5.85–6.10 (m, 1H, CH), 6.79 (d, J = 8.8 Hz, 2H, CH arom), 7.27 (d, J = 7.8 Hz, 2H, CH arom), 7.42 (br s, 2H, NH₂), 9.64 (s, 1H, OH) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 25.48, 28.22, 35.80, 43.69, 49.61, 81.96, 112.64, 112.84, 116.10, 116.50, 117.85, 124.21, 130.26, 144.67, 158.50 ppm; MS (EI, 70 eV): <math>m/z$ (%) = 287 (1, [M + 1]⁺), 261 (4), 244 (1), 115 (1), 75 (2), 29 (100); IR (KBr): $\bar{\nu} = 3.514, 3.419, 3.336, 3.231, 2.874, 2.209, 1.654, 1.613, 1.598, 1.516, 1.446, 1.417, 1.387, 1.342, 1.263, 1.213, 1.198, 1.177 cm⁻¹; Anal. Calcd. for C₁₅H₁₄N₂O₂S: C, 62.92; H, 4.93; N, 9.78 %. Found: C, 63.37; H, 4.96; N, 9.63 %.$

2-Amino-4-(3-hydroxyphenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile (4d, C₁₅H₁₄N₂O₂S)

M.p.: 237.0 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.20-2.40$ (m, 2H, CH₂), 2.90–3.70 (m, 4H, CH₂), 5.80–6.00 (m, 1H, CH), 6.70–7.40 (m, 5H, CH arom), 7.45 (br s, 2H, NH₂), 9.62 (s, 1H, OH) ppm; ¹³C NMR (DMSO- d_6 ,

100 MHz): $\delta = 25.47$, 28.01, 35.98, 43.14, 49.77, 81.89, 112.43, 112.83, 116.45, 117.86, 130.07, 130.43, 135.72, 144.78, 158.08 ppm; MS (EI, 70 eV): m/z (%) = 287 (3, $[M + 1]^+$), 261 (5), 244 (1), 195 (6), 75 (45), 45 (46), 31 (100); IR (KBr): $\bar{\nu} = 4,313$, 3,330, 3,225, 2,872, 2,212, 1,649, 1,588, 1,492, 1,456, 1,418, 1,386, 1,341, 1,315, 1,283, 1,219, 1,165, 1,102 cm⁻¹; Anal. Calcd. for C₁₅H₁₄N₂O₂S: C, 62.92; H, 4.93; N, 9.78 %. Found: C, 63.21; H, 4.95; N, 9.75 %.

2-Amino-4-(4-nitrophenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile

 $(4e, C_{15}H_{13}N_3O_3S)$

M.p.: 229.2 °C; ¹H NMR (DMSO-*d*₆, 80 MHz): $\delta = 2.15-2.40$ (m, 2H, CH₂), 2.88–3.70 (m, 3H, CH₂), 3.95 (d, J = 14.4 Hz, 1H, CH₂), 5.90–6.05 (m, 1H, CH), 7.53 (br s, 2H, NH₂), 7.82 (d, J = 8.4 Hz, 2H, CH arom), 8.33 (d, J = 8.9 Hz, 2H, CH arom) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 25.44$, 27.96, 35.29, 42.65, 49.16, 82.05, 112.15, 112.36, 116.34, 118.47, 124.21, 129.60, 141.56, 144.14, 148.50 ppm; MS (EI, 70 eV): *m/z* (%) = 316 (3, [M + 1]⁺), 269 (3), 227 (3), 199 (70), 141 (100), 115 (78), 75 (80), 45 (83); IR (KBr): $\bar{\nu} = 3,451, 3,358, 2,881, 2,208, 1,635, 1,593, 1,530, 1,390, 1,348, 1,284, 1,110 cm⁻¹; Anal. Calcd. for C₁₅H₁₃N₃O₃S: C, 57.13; H, 4.16; N, 13.33 %. Found: C, 58.26; H, 4.15; N, 13.30 %.$

$\label{eq:2-Amino-4-(3-nitrophenyl)-7,8-dihydro-4H,5H-thiopyrano[4,3-b]pyran-3-carbonitrile $$(4f, C_{15}H_{13}N_3O_3S)$$$

M.p.: 237.2 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.10-2.40$ (m, 2H, CH₂), 2.90–3.70 (m, 3H, CH₂), 4.03 (d, J = 13.6 Hz, 1H, CH₂), 5.85–6.10 (m, 1H, CH), 7.55 (br s, 2H, NH₂), 7.65–8.50 (m, 4H, CH arom) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.43$, 28.01, 35.25, 42.90, 49.10, 82.10, 112.23, 112.41, 116.36, 118.51, 124.76, 129.56, 131.02, 136.92, 144.09 ppm; MS (EI, 70 eV): m/z (%) = 316 (1, [M + 1]⁺), 244 (3), 115 (2), 75 (3), 45 (85), 30 (100); IR (KBr): $\bar{\nu} = 3,331, 3,152, 2,201, 1,651, 1,536, 1,602, 1,417, 1,353, 1,047$ cm⁻¹; Anal. Calcd. for C₁₅H₁₃N₃O₃S: C, 57.13; H, 4.16; N, 13.33 %. Found: C, 58.62; H, 4.26; N, 13.04 %.

2-Amino-4-(2-nitrophenyl)-7,8-dihydro-4H,5H-

thiopyrano [4, 3-b] pyran-3-carbonitrile

 $(4g, C_{15}H_{13}N_3O_3S)$

M.p.: 220.5 °C; ¹H NMR (DMSO-*d*₆, 500 MHz): $\delta = 2.30-2.50$ (m, 2H, CH₂), 3.12–3.25 (m, 2H, CH₂), 3.50 (d, J = 12.0 Hz, 1H, CH₂), 4.16 (d, J = 12.0 Hz, 1H, CH₂), 5.99 (br s, 1H, CH), 7.58 (br s, 2H, NH₂), 7.76 (t, J = 8.0 Hz, 1H, CH arom), 7.92 (t, J = 8.0 Hz, 1H, CH arom), 8.05–8.11 (m, 2H, CH arom) ppm; ¹³C NMR (DMSO-*d*₆, 125 MHz): $\delta = 25.44$, 28.01, 35.27, 42.90, 49.10, 82.09, 112.26, 112.43, 116.40, 117.61, 125.77,

129.40, 131.00, 136.95, 144.05 ppm; MS (EI, 70 eV): m/z(%) = 316 (8, [M + 1]⁺), 244 (5), 115 (2), 76 (8), 45 (85), 30 (98); IR (KBr): $\bar{v} = 3,447, 3,320, 3,218, 2,967, 2,212,$ 1,642, 1,599, 1,525, 1,344 cm⁻¹; Anal. Calcd. for C₁₅H₁₃N₃O₃S: C, 57.13; H, 4.16; N, 13.33 %. Found: C, 58.43; H, 4.09; N, 13.12 %.

2-Amino-4-(4-chlorophenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile (**4h**, C₁₅H₁₃ClN₂OS)

(H), C₁₅H₁₃Cliv₂O3) M.p.: 231.1 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.15-2.40$ (m, 2H, CH₂), 2.91–3.60 (m, 3H, CH₂), 3.73 (d, J = 13.6 Hz, 1H, CH₂), 5.85–6.05 (m, 1H, CH), 7.30–7.70 (m, 6H, NH₂ and CH arom) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.43$, 28.09, 35.43, 43.13, 49.18, 82.05, 112.37, 112.58, 116.39, 118.22, 129.45, 129.90, 133.29, 134.57, 144.38 ppm; MS (EI, 70 eV): m/z (%) = 305 (3, [M + 1]⁺), 278 (1), 244 (5), 115 (30), 75 (45), 45 (100); IR (KBr): $\bar{\nu} = 3,432, 3,345, 3,212, 2,210, 1,640, 1,598, 1,494, 1,413, 1,387, 1,342, 1,278, 1,227, 1,094, 1,047, 1,016 cm⁻¹; Anal. Calcd. for C₁₅H₁₃ClN₂OS: C, 59.11;$ H, 4.30; N, 11.63 %. Found: C, 60.75; H, 4.36; N, 11.32 %.

2-Amino-4-(4-bromophenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile

 $(\mathbf{4i}, \, C_{15}H_{13}BrN_2OS)$

M.p.: 257.2 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.10-2.35$ (m, 2H, CH₂), 2.90–3.55 (m, 3H, CH₂), 3.76 (d, J = 14.4 Hz, 1H, CH₂), 5.85–6.00 (m, 1H, CH), 7.35–7.80 (m, 6H, NH₂ and CH arom) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.48$, 28.12, 35.35, 43.05, 49.30, 82.05, 112.37, 112.55, 116.42, 118.23, 123.29, 129.87, 132.37, 133.65, 144.33 ppm; MS (EI, 70 eV): m/z (%) = 351 (2, [M + 2]⁺), 349 (2) (M)⁺, 227 (13), 125 (15), 75 (6), 45 (100); IR (KBr): $\bar{\nu} = 3,434$, 3,345, 3,212, 2,209, 1,640, 1,597, 1,489, 1,411, 1,389, 1,278, 1,227, 1,076, 1,011 cm⁻¹; Anal. Calcd. for C₁₅H₁₃BrN₂OS: C, 51.59; H, 3.75; N, 8.02 %. Found: C, 52.34; H, 3.73; N, 8.35 %.

2-Amino-4-(4-methoxyphenyl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile

 $(4j, C_{16}H_{16}N_2O_2S)$

M.p.: 245.0 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.10-2.42$ (m, 2H, CH₂), 2.72–3.47 (m, 3H, CH₂), 3.60 (d, J = 14.4 Hz, 1H, CH₂), 3.76 (s, 3H, OCH₃), 5.83–6.10 (m, 1H, CH), 7.00–7.45 (m, 4H, CH arom and 2H, NH₂) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.45$, 28.19, 35.74, 43.58, 49.37, 55.60, 81.91, 112.60, 112.82, 114.18, 116.49, 117.89, 125.99, 130.19, 144.65, 160.18 ppm; MS (EI, 70 eV): m/z (%) = 301 (1, [M + 1]⁺), 244 (1), 227 (4), 115 (5), 45 (100); IR (KBr): $\bar{v} = 3,429$, 3,344, 3,244, 2,213, 1,641, 1,612, 1,596, 1,516, 1,420, 1,388, 1,289, 1,183, 1,027 cm⁻¹; Anal. Calcd. for C₁₆H₁₆N₂O₂S: C, 63.98; H, 5.37; N, 9.33 %. Found: C, 65.01; H, 5.37; N, 9.56 %.

2-Amino-4-(furan-2-yl)-7,8-dihydro-4H,5Hthiopyrano[4,3-b]pyran-3-carbonitrile $(4k, C_{13}H_{12}N_2O_2S)$

M.p.: 231.1 °C; ¹H NMR (DMSO- d_6 , 80 MHz): $\delta = 2.00-2.40$ (m, 2H, CH₂), 2.60–3.65 (m, 3H, CH₂), 3.97 (d, J = 12.0 Hz, 1H, CH₂), 5.80–6.00 (m, 1H, CH), 6.50–6.70 (m, 2H, CH arom), 7.50 (br s, 2H, NH₂), 7.83 (br s, 1H, CH arom) ppm; ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 25.38$, 27.58, 35.86, 41.59, 44.86, 81.82, 111.32, 112.51, 112.58, 117.82, 129.49, 145.16, 147.94 ppm; MS (EI, 70 eV): m/z (%) = 235 (1), 193 (2), 115 (2), 45 (100); IR (KBr): $\bar{\nu} = 3,424, 3,340, 3,222, 2,211, 1,644, 1,602, 1,497, 1,424, 1,391, 1,148, 1,016 cm⁻¹; Anal. Calcd. for C₁₃H₁₂N₂O₂S: C, 59.98; H, 4.65; N, 10.76 %. Found: C, 58.78; H, 4.67; N, 10.65 %.$

References

- 1. Bonsignore L, Loy G, Secci D, Calignano A (1993) Eur J Med Chem 28:517
- Abdel-Latif FF, Mashaly MM, El-Gawish EH (1995) J Chem Res 5:1220
- 3. Shestopalov AM, Emelianova YM, Nesterov VN (2003) Russ Chem Bull 52:1164
- El-Saghier AMM, Naili MB, Rammash BK, Nabil AS, Kreddan KM (2007) Arkivoc xvi:83
- 5. Bloxham J, Dell CP, Smith CW (1994) Heterocycles 38:399
- 6. Ballini R, Bosica G, Conforti ML, Maggi R, Mazzacani A, Righi P, Sartori G (2001) Tetrahedron 57:1395
- 7. Maggi R, Ballini R, Sartori G, Sartorio R (2004) Tetrahedron Lett 45:2297
- Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN, Varma RS (2007) Tetrahedron 63:3093
- Jin T-S, Wang A-Q, Wang X, Zhang J-S, Li T-S (2004) Synlett 5:871
- 10. Shi D, Mou J, Zhuang Q, Wang X (2004) J Chem Res 2004:821
- 11. Balalaie S, Bararjanian M, Sheikh-Ahmadi M (2007) Synth Commun 37:1097
- 12. Balalaie S, Bararjanian M, Amani AM, Movassagh B (2006) Synlett 2:263
- Wang L-M, Shao J-H, Tian H, Wang Y-H, Liu B (2006) J Fluorine Chem 127:97
- 14. Wang X-S, Shi D-Q, Tu S-J, Yao C-S (2003) Synth Commun 33:119
- Ghorbani-Vaghei R, Toghraei-Semiromi Z, Karimi-Nami R (2011) J Braz Chem Soc 22:905
- 16. Jin TS, Zhao R-Q, Li T-S (2006) Arkivoc xi:176
- 17. Jin TS, Liu LB, Tu SJ, Zhao Y, Li TS (2005) J Chem Res 3:162
- Maggi R, Ballini R, Sartori G, Sartorio R (2004) Tetrahedron Lett 45:2297
- 19. Jin T-S, Xiao J-C, Wang S-J, Li T-S (2004) Ultrason Sonochem 11:393
- Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) Proc Natl Acad Sci U S A 82:7096
- Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H (1986) Proc Natl Acad Sci U S A 83:8333
- Kelder J, Funke C, De Boer T, Delbressine L, Leysen D, Nickolson V (1997) J Pharm Pharmacol 49:403

- 23. Baker GB, Prior TI (2002) Ann Med 34:537
- 24. Nakib TA, Bezjak V, Rashid S, Fullam B, Meegan MJ (1991) Eur J Med Chem 26:221
- 25. Mirza-Aghayan M, Baie Lashaki T, Rahimifard M, Boukherroub R, Tarlani AA (2011) J Iran Chem Soc 8:280
- Mirza-Aghayan M, Nazmdeh S, Boukherroub R, Rahimifard M, Tarlani AA, Abolghasemi-Malakshah M (2013) Synth Commun 43:1499
- Nunes CD, Valente AA, Pillinger M, Fernandes AC, Romão CC, Rocha J, Gonçalves IS (2002) J Mater Chem 12:1735
- De Hann JW, Van Den Bogaert HM, Ponjee JJ, Van De Ven LJM (1986) J Colloid Interf Sci 110:519
- 29. Yokoi T, Yoshitake H, Tatsumi T (2004) J Mater Chem 14:951
- Tarlani A, Abedini M, Nemati A, Khabaz M, Amini MM (2006) J Colloid Interf Sci 303:32