Accepted Manuscript

Pd(II) complexes with N-substituted pyrazoles as ligands. The influence of the R group [OMe *versus* NMe₂] of [1-{R-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)] on their cytotoxic activity on breast cancer cell lines

John U. Chukwu , Concepción López , Asensio González , Mercè Font-Bardía , M. Teresa Calvet , Ramon Messeguer , Carme Calvis

PII: S0022-328X(14)00216-2

DOI: 10.1016/j.jorganchem.2014.04.034

Reference: JOM 18569

To appear in: Journal of Organometallic Chemistry

Received Date: 25 November 2013

Revised Date: 15 April 2014

Accepted Date: 24 April 2014

Please cite this article as: J.U. Chukwu, C. López, A. González, M. Font-Bardía, M.T. Calvet, R. Messeguer, C. Calvis, Pd(II) complexes with N-substituted pyrazoles as ligands. The influence of the R group [OMe *versus* NMe₂] of [1-{R-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)] on their cytotoxic activity on breast cancer cell lines, *Journal of Organometallic Chemistry* (2014), doi: 10.1016/j.jorganchem.2014.04.034.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Several types of Pd(II) complexes containing the new pyrazole: [1(OMe-CH₂CH₂)-3,5Ph-(C₃HN₂)] acting as a monodentate (N-donor) or as a [C(phenyl), N(pyrazole)]⁻ bidentate ligand have been prepared and characterized. Their antiproliferative activity in MCF7 and MDA-MB231 breast cell lines has also been evaluated and the results revealed that the cytotoxic activity of some of the cyclopalladated complexes was similar to that of cisplatin in the triple negative MDA-MB231 breast cancer cell line.

Pd(II) complexes with N-substituted pyrazoles as ligands. The influence of the R group [OMe *versus* NMe₂] of [1-{R-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)] on their cytotoxic activity on breast cancer cell lines.

John U. Chukwu,^{*a,b*} Concepción López,^{*a,*} * Asensio González,^{*c*} Mercè Font-Bardía,^{*d*} M. Teresa Calvet,^{*e*} Ramon Messeguer^{*f*} and Carme Calvis^{*f*}

^aDepartament de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11. E-08028-Barcelona, Spain. (C.López: E-mail: conchi.lopez@qi.ub.es).

^b Current address: Department of Pure and Industrial Chemistry, University of Port-Hartcourt,

P. M. B. 5323 Choba, Rivers State, Nigeria.

^c Laboratori de Química Orgànica, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XIII. s/n, E-08028 Barcelona, Spain.
^d Unitat de Difracció de Raigs-X, Centre Científic i Tecnològic de la Universitat de Barcelona, Solé i Sabarís 1-3, E-08028 Barcelona, Spain.

^e Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, E-08028 Barcelona, Spain. ^f Biomed Division, Leitat Tecnological Center, Parc Científic de Barcelona, Edifici Hèlix,

C/ Baldiri Reixach, 15–21, E-08028-Barcelona, Spain.

Keywords: palladium(II) complexes/ cyclopalladation/ *in vitro* studies/ antitumoral activity/ breast cancer

Abstract.

The study of the reactivity of the novel pyrazole derivative [1-{MeO-(CH₂)₂-}-3,5-Ph₂- (C_3HN_2)] (1) with Na₂[PdCl₄] or Pd(OAc)₂ under different experimental conditions has allowed us to isolate and characterize the trans- isomers of [Pd{[1-{MeO-(CH₂)₂-}-3,5- $Ph_2-(C_3HN_2)]_2(X)_2$ [X = Cl (2) or OAc (3)] and the di-µ-ligand bridged cyclopalladated complexes $[Pd{\kappa^2, C, N}[1-{MeO-(CH_2)_2-}-3-(C_6H_4), 5-Ph-(C_3HN_2)]}(\mu-X)]_2$ [X = OAc (4) or Cl (5)]. Further treatment of compounds 4 or 5 with PPh₃ in CH₂Cl₂ produced the bridge $[Pd{\kappa^2, C, N}[1-{MeO-(CH_2)_2-}-3-(C_6H_4), 5-Ph$ splitting and the formation of (C_3HN_2) [X = OAc (6) or Cl (7)]. The cytotoxic assessment of the free ligand (1) and the Pd(II) complexes on the two breast cancer cell lines MCF7 and MDA-MB231 reveals that: a) compound 1 is less active than its analogue $[1-{Me_2N-(CH_2)_2-}-3,5-Ph_2-$ (C₃HN₂)] (Ic) and b) palladacycles 4-7 showed a remarkable cytotoxic activity in the MDA-MB231 cell line (with IC₅₀ values in the range 9.1-14.4 μ M).

1. Introduction

Pyrazoles are widely used as core motifs for a large number of compounds of significant relevancy and they have a variety of applications (i.e. as agrochemicals, dyes, food additives, catalysts and pharmaceuticals) [1-2]. Moreover, N-substituted derivatives are particularly attractive in view of their antiproliferative properties against cancer cells [3,4]. Furthermore, this type of heterocycles have a rich and versatile coordination ability with transition metals that affects their properties [5-6]. This fact, together with the increasing

interest in the design of novel antitumoral drugs with greater efficiency, lower toxicity and less undesirable side effects than the current Pt-based drugs [7], have triggered the development of novel Pd(II) and Pt(II)-pyrazole containing complexes [8-13]. Substituted pyrazoles in which there is a σ (C-H) bond with the proper orientation are valuable substrates to achieve cyclopallada- or platinated complexes [11-13]. This sort of metallacycles are relevant due to their chemical, physical or optical properties and their applications in different areas (i.e. as precursors in organic, organometallic synthesis, homogeneous catalysis and as building blocks in supramolecular chemistry) [14,15].

On the other hand, Bioorganometallic chemistry is a rapid developing area of increasing interest and the idea of using organometallic complexes in drug discovery is becoming more and more popular [16-17]. Antimalarials, antibacterials, neuroprotectors, based on organometallic compounds have been described [16-17]. Moreover, recent contributions suggest that cyclopallada- and cycloplatinated compounds are probably amongst the best candidates for the design of new anticancer drugs [18-20].

Despite the increasing interest in both Pd(II)-pyrazole complexes [21, 22] and cyclometallated compounds [14,15,18-20], only a few articles on cyclopalladated-pyrazole derivatives have been published [11, 13]. We have recently reported three N-substituted pyrazoles of general formulae $1-\{Me_2N-(CH_2)_2-\}-3,5-R_2-(C_3HN_2)$ (I) (Figure 1), their Pd(II) and Pt(II) complexes of general formulae $[M\{1-[Me_2N-(CH_2)_2-]-3,5-R_2-(C_3HN_2)\}Cl_2]$ [(II) and (III), in Fig. 1) and the cyclometallated derivatives (IV and V) [11b]. The comparison of their antitumoral activity in three different cell lines (MDA-MB231, MCF7 and A549) revealed that: a) pyrazoles (I) with R = Ph were more potent than their analogues with R = H or Me, b) the binding of these ligands to Pd(II) or Pt(II)

produced an enhancement of their activity, and c) cyclometallated products (**IV** and **V**) were more potent than complexes **IIc** and **IIIc** in which the pyrazole **Ic** acts as a bidentate (N,N') ligand.

< Figure 1, here >

In view of these findings and in order to elucidate the effect produced by the functional group on the pendant arm of the heterocyclic nitrogen, now we report a parallel study on the novel pyrazole: $[1-\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)]$ (1), that has the OMe group attached at the end of the -(CH₂)₂- chain instead of the -NMe₂ of Ic.

2. Experimental

2.1. Materials and methods

All the reagents were obtained from commercial sources and used as received. Solvents were distilled and dried before use [23]. Elemental analyses were carried out at the *Serveis Científico-Tècnics* (Universitat Barcelona). Mass spectra (ESI⁺) were performed at the *Servei d'Espectrometria de Masses* (Universitat de Barcelona). Infrared (IR) spectra were obtained with a Nicolet 400FTIR instrument using KBr pellets. A selection of the most relevant absorptions observed in the IR spectra are presented in the following sections. Ultraviolet-visible (UV-vis.) spectra of CH₂Cl₂ solutions of the free ligand 1 and the Pd(II) compounds (5-7) were recorded at 298 K with a Cary 100 scan 388 Varian UV spectrometer. The wavelengths (λ , in nm) and the extinction coefficients (ϵ , in M⁻¹ cm⁻¹) of the bands observed in the UV-vis. spectra are specified in the characterization section of the corresponding product. The retention coefficients (R_f) were obtained using SiO₂ (Merck silica gel 60 F254) plates. High resolution ¹H NMR spectra and the two-dimensional [{¹H-

¹H} NOESY and COSY and {¹H-¹³C}-heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond coherence (HMBC)] experiments were registered with a Varian VRX-500 or a Bruker Avance DMX-500 MHz instruments. ¹³C{¹H}-NMR spectra and ³¹P{¹H} spectra of compounds **6** and **7** obtained with a Mercury-400 and a Varian 300 MHz instrument, respectively. NMR studies of **1-3** and **5-7** were carried out at 298 K, using CDCl₃ (99.9 %) as solvent and SiMe₄ [for ¹H and ¹³C{¹H}-NMR] and P(OMe)₃ [δ (³¹P) = 140.17 ppm for ³¹P NMR] as references. Due to the low solubility of complex **5** in CDCl₃ its NMR studies were performed in DMSO-d₆ (99.8%). In all cases, chemical shifts (δ) are given in ppm and the coupling constants (J) in Hz. In the characterization section of each product the assignment of signals detected in their NMR spectra refers to the labelling patterns presented in Scheme 1 (Abreviations for the multiplicities of the signals observed in the NMR spectra: s = singlet, d = doublet, t = triplet, m = multiplet and br = broad).

2.2. Synthesis

2.2.1. Preparation of 1-{MeO-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂) (1).

Potassium hydroxide (0.800 g, 14×10^{-3} mol) was treated with 9.0 mL of DMSO and the resulting mixture was magnetically stirred at room temperature (ca. 298 K) for 30 min. After this period 3,5-diphenylpyrazole (0.788 g, 3.58×10^{-3} mol) was added and the stirring was maintained for 30 min at 298 K. Then, 1-chloro 2-methoxyethane (4.0 mL, 45×10^{-3} mol) was gradually added and the reaction mixture was left overnight under stirring at 298 K. After this period, 50 mL of iced cold water was added to eliminate the unreacted KOH; the organic phase was then extracted with diethylether and washed repeatedly with water,

dried over Na₂SO₄ and filtered. Then, the filtrate was concentrated to dryness on a rotary evaporator. The solid formed was collected and later on dried in vacuum for 3 days. [Yield: 0.880 g, (88 %)]. Characterization data: Anal (%). Calc. for C₁₈H₁₈N₂O (MW = 278.35): C, 77.67; H, 6.52; N, 10.06 %; found: C, 77.8; H, 6.6 and N, 10.1. MS (ESI⁺): m/z = 279.15 {[M] + H}⁺. IR selected data: 3059-3015 [v(C-H)] and 2987-2952 [v(C-H)], 1481(m), 1462(s), 1441(m), 1363(m), 1300(m), 1115(s), 1012(m), 762(s), 691(s) cm⁻¹. UV-vis. data ($c = 5.74 \times 10^{-5}$ M in CH₂Cl₂): λ (ϵ) = 223 (1.5 × 10⁴) and 253 (3.1 × 10⁴). R_f (in CHCl₃) = 0.24. ¹H NMR data: $\delta = 3.32$ (s, 3H, OMe); 3.91 [t, ³J_{H,H} = 7.2, 2H, (-CH₂-^d)]; 4.34 [t, ³J_{H,H} = 7.2, 2H, (-CH₂-^c)]; 6.65 (s, 1H, H⁴); 7.35 (t, ³J_{H,H} = 7.7, 1H, H^{4b}); 7.47-7.60 (m, 5H, H^{3a}, H^{4a}, H^{5a}, H^{3b} and H^{5b}); 7.70 (d, 2H, ³J_{H,H} = 7.6, H^{2b} and H^{6b}), 7.92 (d, 2H, ³J_{H,H} = 7.5, H^{2a} and H^{6a}). ¹³C{¹H} NMR data: 49.1 (C^d); 58.9 (OMe); 71.4 (C^c); 103.4 (C⁴); 125.3 (C^{2b} and C^{6b}); 125.7 (C^{2a} and C^{6a}); 126.0 (C^{4b}); 126.8 (C^{4a}); 128.7 (C^{3a} and C^{5a}); 129.2 (C^{3b} and C^{5b}); 130.7 (C^{1b}); 133.6 (C^{1a}); 145.9 (C⁵) and 150.9 (C³).

2.2.2. Preparation of trans- $[Pd{[1-\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)]_2Cl_2]}(2)$.

To a solution formed by Na₂[PdCl₄] (100 mg, 3.4×10^4 mol) and methanol (10 mL), ligand **1** (189 mg, 6.8×10^4 mol) was added and the reaction mixture was stirred at 298 K for 2 h. The yellow solid formed was filtered and dried overnight. Afterwards, it was dissolved in the minimum amount of CH₂Cl₂ and passed through a SiO₂ (2.0 cm × 8.0 cm) column. Elution with CH₂Cl₂ produced a wide yellow band which was collected and concentrated to dryness on a rotary evaporator and the bright yellow solid formed was collected and finally dried in vacuum for 2 days. [Yield: 196 mg (78 %)]. Characterization data: Anal. (%) Calc for C₃₆H₃₆Cl₂N₄O₂Pd: (MW = 734.0): C, 58.91; H, 4.94; N, 7.63; Found: C, 59.0; H, 5.0; N, 7.5. MS (ESI⁺): $m/z = 697.16 \{ [M] - Cl \}^+$. IR selected data: 3047-3015 [v(C-H)] and 2980-2925 [v(C-H)], 1483(m), 1461(m), 1448(m), 1124(s), 765(s) and 700(s) cm⁻¹. UV-vis. data: ($c = 8.17 \times 10^{-6}$ M in CH₂Cl₂): λ (ϵ) = 238 (3.8 × 10⁵), broad band. R_f (in CHCl₃) = 0.19. ¹H NMR data: $\delta = 3.20$ [s, 6 H, 2 (OMe)]; 3.96 [t, ³J_{H,H} = 6.9, 4H, 2 (-CH₂-^d)]; 4.89 [t, ³J_{H,H} = 6.9, 4H, 2 (-CH₂-^c)]; 6.36 [s, 2H, 2 (H⁴)]; 7.40-7.58 [br. m, 12H, 2(H^{3a}, H^{4a}, H^{5a}, H^{3b}, H^{4a} and H^{5b})]; 7.62 [d. ³J_{H,H} = 7.6, 4H, 2 (H^{2b} and H^{6b})] and 8.20 [d, ³J_{H,H} = 7.6, 4H, 2 (H^{2a} and H^{6a})]. ¹³C{¹H} NMR data: 50.31 (2 C^d); 58.7 (2 OMe); 69.9 (2 C^c); 108.5 (2 C⁴); 125.5 [2 (C^{2b} and C^{6b})]; 125.9 (2 C^{4b}); 126.4 (2 C^{4a}); 128.5 [2 (C^{2a} and C^{6a})]; 129.4 (2 C^{1b}), 129.8 [2 (C^{3b} and C^{5b})]; 130.1 [2 (C^{3a} and C^{5a})]; 132.7 (2 C^{1a}); 149.7 (2 C⁵) and 154.7 (2 C³).

2.2.3. Preparation of trans- $[Pd\{[1-\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)]_2(OAc)_2]$ (3) and $[Pd\{\kappa^2,C,N\}[1-\{MeO-(CH_2)_2\}-3-(C_6H_4),5-Ph-(C_3HN_2)]\}(\mu-OAc)]_2$ (4).

76 mg $(3.4 \times 10^{-4} \text{ mol})$ of Pd(OAc)₂ was dissolved in 15 mL of toluene at 298 K, then ligand **1** (95 mg, 3.4×10^{-4} mol) was added. The reaction flask was protected from the light with aluminium foil and refluxed for 12 h. After this period the black solution was concentrated to dryness on a rotary evaporator and left overnight in a dessicator. The residue was then treated with CH₂Cl₂ (15 mL) and passed through a Celite pad to remove the metallic palladium. This was repeated until colourless mother liquors were obtained. The solution was dried with Na₂SO₄ and the filtrate was concentrated to dryness on a rotary evaporator. The brownish solid formed consisted on a mixture of compounds **3** and **4** in a molar ratio (**3**:**4** = 1:10). These products were isolated by SiO₂ column chromatography. Elution with CHCl₃ produced a pale yellow band that gave after concentration 11 mg of the minor product (3). Afterwards the use of a $CHCl_3$: MeOH (100:0.4) mixture released another band that was collected and concentrated to dryness on a rotary evaporator. The yellowish solid formed (4) was collected, air-dried and dried in vacuum for 2 days (yield: 112 mg). Characterization data for 3: Anal. (%) Calc. for $C_{40}H_{42}N_4O_6Pd$ (MW = 780.21): C, 61.59; H, 5.4; N, 7.17; Found: C, 61.4; H, 5.5; N, 7.0. MS (ESI⁺): m/z = 721.2 {[M]-(OAc)⁺. IR selected data: 3067-3023 [v(C-H)] and 2984-2940 [v(C-H)], 1566 $[v_{as}(COO)]$ and 1386 $[v_{s}(COO)]$ cm⁻¹. UV-vis. data: $(c = 1.43 \times 10^{-5} \text{ M in CH}_{2}\text{Cl}_{2})$: $\lambda(\epsilon) =$ 234 (4.1 × 10⁵) broad band. R_f (in CHCl₃) = 0.21. ¹H NMR data: δ = 1.83 [br.s, 6H, 2 (OAc)]; 3.15 (s, 6H, 2 OMe); 3.95 [t, ${}^{3}J_{H,H} = 7.1$, 4H, 2 (-CH₂-^d)]; 4.75 [t, ${}^{3}J_{H,H} = 7.1$, 4H, 2 (-CH₂-^c)]; 6.40 (s, 2H, 2 H⁴); 7.37-7.58 [m, 16H, 2(H^{3a}, H^{4a}, H^{5a}, H^{2b}, H^{3b}, H^{4b}, H^{5b} and H^{6b} and 8.16 [d, ${}^{3}J_{HH} = 7.6, 4H, 2 (H^{2a} \text{ and } H^{6a})$]. ${}^{13}C{}^{1}H$ NMR data: 23.3 [2 Me(OAc)]: 50.2 (2 C^d); 58.4 (2 OMe); 70.1 (2 C^c); 108.7 (2 C⁴); 125.7 [2 (C^{2b} and C^{6b})]; 126.1 (2 C^{4b}); 126.4 (2 C^{4a}); 128.6 [2 (C^{2a} and C^{6a})]; 129.5 [2 (C^{3b} and C^{5b})]; 130.0 [2 (C^{3a} and C^{5a})]; 130.4 (2 C^{1b}); 132.6 (2 C^{1a}); 149.5 (2 C⁵);154.3 (2 C³) and 180.9 [2 >COO (OAc)]. For **4**: Anal. (%) Calc. for $C_{40}H_{40}N_4O_6Pd_2$ (MW = 886.1): C, 54.25; H, 4.55; N, 6.32; Found: C, 54.1; H, 4.5; N, 6.0. MS (ESI⁺): $m/z = 425.06 \{ [M] - 2(OAc) + 2(CH_3CN) \}^{2+}/2$. IR selected data: 3060-3018 [v(C-H)] and 2984-2940 [v(C-H)], 1560 [v_{as}(COO)] and 1413 [v_s(COO)] cm⁻¹. UV-vis. data: ($c = 1.91 \times 10^{-5}$ M in CH₂Cl₂): λ (ϵ) = 223 (3.2 × 10⁵), 247 (2.5 × 10⁵) and 341(broad, $\approx 1.9 \times 10^3$). R_f (in CHCl₃) = 0.14. ¹H NMR data: $\delta = 2.01$ [br. s, 6H, 2 (OAc)]; 3.17 [s, 6H, 2 (OMe)]; 3.30-3.40 [(br. m, 4H, 2 (-CH₂-^d)]; 3.67 [m, 2 H, 2 (one of the two protons of the $-CH_2^{-c}$ unit)]; 3.93 [m, 2 H, 2 (the other proton of the $-CH_2^{-c}$ unit)]; 6.04 [s, 2H, 2 (H⁴)]; 6.74 [m, 2H, 2 (H^{3a})]; 6.81 [m, 2H, 2 (H^{4a})]; 7.31-7.80 [m, 10H, 2 (H^{5a},

 H^{6a} , H^{3b} , H^{4b} and H^{5b}] and 8.51 [br., 4H, 2 (H^{2b} and H^{6b})]. ${}^{13}C{}^{1}H$ } NMR data: 23.9 [2 Me(OAc)]; 49.7 (2 C^d); 58.2 (2 OMe); 70.6 (2 C^c); 109.3 (2 C⁴); 125.5 [2 (C^{2b} and C^{6b})]; 125.9 (2 C^{4b}); 126.3 (2 C^{4a}); 127.6 (2 C^{5a}); 128.3 (2 C^{6a}); 129.0 [2 (C^{3b} and C^{5b})]; 129.7 (2 C^{3a}); 130.2 (2 C^{1b}); 132.3 (2 C^{1a}); 148.9 (2 C^{2a}), 150.6 (2 C^{5}); 153.9 (2 C^{3}) and 178.9 [2 >COO (OAc)].

2.2.4. Preparation of $[Pd\{\kappa^2, C, N)[1-\{MeO-(CH_2)_2\}-3-(C_6H_4), 5-Ph-(C_3HN_2)]\}(\mu-Cl)]_2(5)$.

Compound $[Pd{\kappa^2, C, N}[1-{MeO-(CH_2)_2}-3-(C_6H_4), 5-Ph-(C_3HN_2)]}(\mu-OAc)]_2$ (4) (40 mg, 4.37×10^{-5} mol) was suspended in acetone (20 mL), then LiCl (5 mg, 1.1×10^{-4} mol) was added. The resulting mixture was stirred overnight at 298 K. The solid formed was collected by filtration and dried in vacuum for 2 days. [Yield: 32 mg, (81%)]. Characterization data: Anal. (%) Calc. for $C_{36}H_{34}Cl_2N_4O_2Pd_2$ (MW = 838.43): C, 51.7; H, 4.09; N, 6.68; Found: C, 51.6; H, 4.2; N, 6.8. MS (ESI⁺): $m/z = 383.761 \{ [M] - 2CI \}^{2+}/2$. IR selected data: 3055-3022 [v(C-H)] and 2988-2924 [v(C-H)]. UV-vis. data: $(c = 1.91 \times 10^{-5}$ M in CH₂Cl₂): λ (ϵ) = 240 (br. 2.5 × 10⁵) and 338 (\approx 3.6 × 10³). ¹H-NMR data (in DMSO d_6 : $\delta = 3.22$ [s, 6H, 2 (OMe)]; 3.30 [br. m, 2H, {one of the protons of the (-CH₂-^d) unit}], 4.03 [m, 2 H, 2 {one of the protons of the $(-CH_2-^c)$ moiety]; the signals due the remaining protons the $(-CH_2-)^{c \text{ and } d}$ moieties were masked by the broad signal (at $\delta = 3.50$ ppm) of the residual water present in the DMSO-d₆, their chemical shifts [ca. 3.45 ($-CH_2-^d$) and 3.85 for that of the $-CH_2^{-c}$ unit] were obtained from the HSQC experiment; 6.07 [s, 2H, 2 (H⁴)]; 6.74 [m, 2H, 2 (H^{3a})]; 6.81 [m, 2H, 2 (H^{4a})] and 7.18-8.10 [br.m, 14H, 2 (H^{5a}, H^{6a}, H^{2b} , H^{3b} , H^{4b} , H^{5b} and H^{6b}]. ¹³C{¹H} NMR data (in DMSO-d₆): 50.1 (2 C^d); 58.0 (2 OMe); 70.3 (2 C^c); 109.1 (2 C⁴); 125.0 [2 (C^{2b} and C^{6b})]; 125.7 (2 C^{4b}); 126.0 (2 C^{4a}); 127.9 (2 C^{5a}); 128.4 (2 C^{6a}); 128.9 [2 (C^{3b} and C^{5b})]; 129.6 (2 C^{3a}); 130.4 (2 C^{1b}); 131.8 (2 C^{1a}); 151.2 (2 C⁵); 152.0 (2 C^{2a}) and 153.7 (2 C³)].

2.2.5. Preparation of $[Pd\{\kappa^2, C, N)[1-\{MeO-(CH_2)_2-\}-3-(C_6H_4), 5-Ph-(C_3HN_2)]\}(X)(PPh_3)]$ $\{X = OAc \ (6) \ or \ Cl \ (7)\}.$

To a mixture containing 3.8×10^{-5} mol of the corresponding dimeric complex 4 (35 mg) {or 5 (34 mg)} and 20 mL of CH₂Cl₂, PPh₃ (20 mg, 7.6×10^{-5} mol) was added. The resulting mixture was kept under stirring for 20 min and then filtered. The pale yellowish filtrate was concentrated to dryness on a rotary evaporator and the solid formed was collected, air-dried and recrystallized in a CH₂Cl₂:n-hexane (1:1) mixture. [Yields: 38 mg (70 %) and 40 mg (77%) for 6 and 7, respectively]. Characterization data for 6: Anal. Calc for C₃₈H₃₅N₂O₃PPd (MW= 705.9): C, 64.73; H, 5.00; N, 3.97%; Found: C, 64.6; H, 5.1 and N, 4.0; MS (ESI⁺): $m/z = 645.14\{[M] - (OAc)\}^+$. IR selected data: 3050-3018 [v(C-H)] and 2985-2925 [v(C-H)]; 1590 [v_{as}(COO)] and 1381 [v_s(COO)] and 1094 (PPh₃, X-sensitive), cm⁻¹. UV-vis. ($c = 1.42 \times 10^{-5}$ M in CH₂Cl₂): λ (ϵ) = 229 (4.0 × 10⁻⁵), 246 (3.0 × 10⁻⁴) and 348 (3.5 ×10⁻³). R_f (in CHCl₃) = 0.20. ¹H NMR data: δ =1.85 (s, 3H, OAc); 3.12 (s, 3H, OMe); 3.67 (t, ${}^{3}J_{H,H} = 7.3$, 2H, $-CH_{2}-{}^{d}$); 4.37 (t, 2H, ${}^{3}J_{H,H} = 7.0$, $-CH_{2}-{}^{c}$); 6.07 (s, 1H, H⁴); 6.44 (br. 1H, H^{3a}); 6.96 (m, 1H, H^{4a}); 7.28-7.96 [br.m, 22H, (H^{5a} H^{6a}, H^{2b}-H^{6b}, and aromatic protons of the PPh₃ ligand)]. ${}^{13}C{}^{1}H$ NMR data: 23.3 [Me(OAc)], 51.4 (C^d); 58.5 (OMe); 70.2 (C^c); 110.2 (C⁴); 125.3 (C^{4b}); 126.5 (C^{4a}); 127.4 (C^{2b} and C^{6b}); 128.0 (C^{6a}); 128.4 (C^{5a}); 129.1 (C^{3b} and C^{5b}); 129.5 (C^{3a}); 129.8 (C^{1b}); 132.5 (C^{1a}); 150.2 (C⁵); 151.2 (C^{2a}); 154.7 (C³), 180.4 [>COO (OAc)] and four additional doublets due to four types of carbon-13 nuclei (ipso, ortho, meta and para) of the PPh₃ ligand. ${}^{31}P{}^{1}H$ NMR data: $\delta = 40.3$. For 7: Anal. Calc. for $C_{36}H_{32}CIN_2OPPd$ (MW = 680.1): C, 63.45; H, 4.73; N, 4.11%; Found: C, 63.2; H, 4.8; N, 4.1; MS (ESI⁺): m/z = 645.14 {[M] - C1}⁺. IR selected data: 3049-3018 [v(C–H)] and 2982-2925 [v(C–H)] and 1094 (X-sensitive of the phosphine ligand) cm⁻¹. UV-vis. data: ($c = 1.8 \times 10^{-5}$ M in CH₂Cl₂): λ (ε) = 242(2.0 × 10⁻⁵); and 341(3.9 × 10⁻³). ¹H NMR data: $\delta = 3.11$ (s, 3H, OMe); 3.82 (br., 2H, -CH₂-^d); 4.50 (br., 2H, -CH₂-^c); 6.35 (s, 1H, H⁴); 6.58 (m, 1H, H^{4a}); 6.84 (m, 1H, H^{3a}) and 7.30-8.10 [br.m, 22H, (H^{5a}, H^{6a}, H^{2b}-H^{6b} and aromatic protons of the PPh₃ ligand)]. ¹³C{¹H} NMR data: 51.2 (C^d); 58.4 (OMe); 70.1 (C^c); 110.1 (C⁴); 125.4 (C^{4b}); 126.3 (C^{4a}); 127.3 (C^{2b} and C^{6b}); 127.8 (C^{6a}); 128.6 (C^{5a}); 129.0 [(C^{3b} and C^{5b}); the {¹H-¹³C}-HSQC spectra showed that the signal due to C^{3a} was overlapped by this one)]; 129.6 (C^{1b}); 132.8 (C^{1a}); 149.9 (C⁵); 152.6 (C^{2a}); 153.8 (C³), and four additional doublets due to the aromatic ¹³C nuclei of the PPh₃. ³¹P{¹H} NMR data: $\delta = 40.1$.

2.3. Crystallography

A plaque-like specimen of compound **2** (dimensions in Table 1), was used for the X-ray crystallographic analysis. The X-ray intensity data were measured and integration of the data using a triclinic unit cell yielded a total of 11383 reflections to a maximum θ angle of 28.34° (0.75 Å resolution), of which 4182 were independent (average redundancy 2.722, completeness = 99.7%, R_{int} = 2.43 %, R_{sig} = 2.81 %) and 3912 (93.54 %) were greater than $2\sigma(F^2)$. The final cell constants (Table 1) are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I).

< Table 1, here >

The structure was solved and refined using the Bruker SHELXTL Software Package, [24] using the space group P-1, with Z = 1 for the formula unit, $C_{36}H_{36}Cl_2N_4O_2Pd$. The final anisotropic full-matrix least-squares refinement on F^2 with 205 variables converged at $R_I =$ 3.10%, for the observed data and $wR_2 = 8.03\%$ for all data. The goodness-of-fit was 1.055. The largest peak in the final difference electron density synthesis was 0.562 e⁷/Å³ and the largest hole was -0.269 e⁷/Å³ with an RMS deviation of 0.065 e⁷/Å³. Final details concerning the resolution and refinement of the crystal structure are presented in Table 1.

CCDC 951054 contains the crystallographic information file for compound 2.

2.4. Biological studies.

2.4.1. Cell culture.

Breast cancer MCF7 and MDA-MB231 cells (from *European Collection of Cell Cultures, ECACC*) were grown as a monolayer culture in minimum essential medium (DMEM with L-glutamine, without glucose and without sodium pyruvate) in the presence of 10 % heat-inactivated fetal calf serum, 10 mM of D-glucose and 0.1% streptomycin/penicillin in standard culture conditions.

2.4.2. Cell viability assays.

For these studies, compounds were dissolved in 100% DMSO at 50 mM as stock solution; then, serial dilutions have been done in DMSO (1:1) (in this way DMSO concentration in cell media was always the same); finally, 1:500 dilutions of the serial dilutions of compounds on cell media were done. The assay was performed as described by

Givens et al. [25]. In brief, MDA-MB231 and MCF7 cells were plated at 5000 cells/well or 10000 cells/well respectively, in 100 μ L media in tissue culture 96 well plates (Cultek). After 24 h, media was replaced by 100 μ L/well of serial dilution of drugs. Each point concentration was run in triplicate. Reagent blanks, containing media plus colorimetric reagent without cells were run on each plate. Blank values were subtracted from test values and were routinely 5-10 % of uninhibited control values. Plates were incubated for 72 h. Hexosamidase activity was measured according to the following protocol: the media containing the cells was removed and cells were washed once with PBS 60 μ L of substrate solution (p-nitrophenol-N-acetyl- β -D-glucosamide 7.5 mM [Sigma N-9376], sodium citrate 0.1 M, pH = 5.0, 0.25 % Triton X-100) was added to each well and incubated at 37 °C for 1-2 hours; after this incubation time, a bright yellow color appeared; then, plates could be developed by adding 90 μ L of developer solution (Glycine 50 mM, pH = 10.4; EDTA 5 mM), and absorbance was recorded at 410 nm.

3. Results and discussion

3.1. Synthesis.

Compound 1-{MeO-(CH_2)₂-}-3,5-Ph₂-(C_3HN_2) (1) was obtained in a fairly good yield (88%) by alkylation of 3,5-diphenylpyrazole with a three-fold excess of 1-chloro 2-methoxyethane [Scheme 1, step i)] [26].

< Scheme 1, here >

Treatment of $1-\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)$ (1) with Na₂[PdCl₄] (in a 1:1 or 2:1 molar ratio) in methanol at 298 K produced a yellow solid that was identified as [Pd{[1- $\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)\}_2Cl_2$] (2) [Scheme 2, step ii)]. Its X- ray crystal structure (see below) confirmed that it was the *trans* isomer.

When ligand **1** was reacted with $Pd(OAc)_2$ in toluene under reflux for 12 h a black solution was obtained. The subsequent chromatography on silica gel gave two products **3** and **4** [Scheme 1, step iii)] in a molar ratio **4**:**3** =10:1. The minor component (**3**) was identified as *trans*-[Pd{[1-{MeO-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)]}₂(OAc)₂] and characterization data of the major product (**4**) were consistent with those expected for the di- μ -acetatobridged cyclopalladated complex [Pd{ κ^2 ,*C*,*N*)[1-{MeO-(CH₂)₂-}-3-(C₆H₄),5-Ph-(C₃HN₂)]}(μ -OAc)]₂ that arises form the activation of the σ (C-H) bond of the phenyl ring in position 3 of the pyrazole.

The reaction of **4** with an excess of LiCl in acetone at 298 K gave the dinuclear compound $[Pd{\kappa^2, C, N}[1-{MeO-(CH_2)_2-}-3-(C_6H_4), 5-Ph-(C_3HN_2)]}(\mu-Cl)]_2$ (**5**) as a pale brownish solid [Scheme 1, step iv)]. Further treatment of di- μ -ligand bridged cyclopalladated products (**4** or **5**) with PPh₃ (in a 1:2 molar ratio) in CH₂Cl₂ produced the splitting of the "Pd(μ -X)₂Pd" units and the formation of the monomeric derivatives $[Pd{\kappa^2, C, N}[1-{MeO-(CH_2)_2-}-3-(C_6H_4), 5-Ph-(C_3HN_2)]}(X)(PPh_3)]$ with X = OAc (**6**) or Cl (**7**) [Scheme 1, step v)] respectively.

3.2. Characterization.

The new ligand (1) and its palladium(II) derivatives (2-7) were characterized by elemental analyses, mass spectra and infrared spectroscopy. In all cases the elemental analyses were consistent with the proposed formulae.

The IR spectra of the complexes **3**, **4** and **6** showed the typical bands due to the symmetric and asymmetric stretchings of the $-COO^{-}$ unit [27] and the separation between them was consistent with the values reported for related Pd(II)-compounds containing OAc⁻ ligands acting as monodentate group (in **3** and **6**) or as a bridging ligand (in **4**) [27]. For compounds **6** and **7**, with the PPh₃ ligand, X-sensitive bands were also detected in their IR spectra.

Compound **2** was also characterized by X-ray diffraction. Its molecular structure and the atom labelling scheme is presented in Figure 2. The crystal contains molecules of $[Pd{[1-{MeO-(CH_2)_2-}-3,5-Ph_2-(C_3HN_2)]_2Cl_2]}$ in which, the Pd(II) atom is bound to two nitrogen atoms of two units of **2** and two chlorido ligands. Bond lengths and angles around the palladium(II) are similar to those reported for related *trans*-[Pd(L)_2Cl_2] complexes (with L = N-substituted pyrazoles) [28-30].

< Figure 2, here >

The Pd(II) atom is located on a inversion centre and as a consequence of this: a) the two Cl⁻ ligands are in a *trans*- arrangement and b) the "(CH₂)₂OMe" pendant arms are on opposite sides of the coordination plane. In addition, "PdCl₂" moiety is nearly orthogonal to the heterocycle and the phenyl rings are not coplanar with the pyrazolyl ring (angles between their main planes = 64.4 and. 36.0°). As a consequence of these arrangements the distance between the Cl⁻ ligands and one of the protons of the –CH₂-O" unit [2.787 Å] is

smaller than the sum or the van der Waals radii of these atoms [31]; thus suggesting an intramolecular C-H…Cl interaction [32].

In the crystal the molecules are assembled by C-H $\cdots \pi$ interactions (Figure 3) involving: the centroids of the phenyl rings (Cg₁ and Cg₂) {defined by the sets of atoms [C1-C6] and [C10-C15], respectively} and one of the hydrogen atoms of the OMe unit (H18C) and the H5 atom, [distances Cg₁.... H18C = 3.440 Å and Cg₂... H5 = 3.477 Å].

< Figure 3, here >

The new products were also characterized in solution by UV-vis. spectroscopy and NMR. The absorption spectra of the new compounds were registered in CH₂Cl₂ at 298K. The UV-vis spectra of the Pd(II) complexes showed a band in the range 320 nm $< \lambda_3 < 360$ nm {not present in the spectrum of the free ligand (1)} with extinction coefficients between 2.0×10^3 and 4.0×10^3 M⁻¹ cm⁻¹. This band that has also been observed for related Pd(II) complexes with pyrazole ligands [11] is assigned to a metal-to-ligand charge transfer (MLCT) transition from the *4d* orbitals of the Pd(II), to a π orbital of the ligand. The remaining bands detected at lower wavelengths (220 nm $< \lambda < 370$ nm) are attributed to metal perturbed intraligand transitions (MPILT).

In the ¹H NMR spectra of the Pd(II) complexes (2-7), the chemical shifts of the OMe protons were very similar to that of the free ligand, thus suggesting that the oxygen of the methoxy group was not bound to the Pd(II) centre. NMR spectra of **3**, **4** and **7** showed the typical resonances due to the OAc⁻ ligand bound to the Pd(II) atom. The low-field region of these ¹H NMR spectra was complex and the assignment of the signals detected was

achieved with the aid of 2D NMR experiments [NOESY, COSY, {¹H-¹³C}-HSQC and HMBC].

For the palladacycles (4-7): a) the signal due to H^{2a} proton was not observed in their ¹H-NMR spectra and b) the resonances of the H^{3a} and H^{4a} nuclei, appeared at higher fields than for the free ligand (1). Carbon-13 NMR and the 2D {¹H-¹³C}-HMBC spectra showed a downfield shift of the signal due to the metallated carbon (C^{2a}). All these findings are consistent with previous NMR studies of cyclopalladated complexes [11a,14b,19b].

The ${}^{31}P{}^{1}H$ -NMR spectra of **6** and **7** showed a singlet at around 40 ppm. According to the bibliography [11], this is indicative of a *cis*-arrangement of the PPh₃ ligand and the metallated carbon, in good agreement with the *transphobia effect* [33].

3.3. Study of the antitumor activity of the free ligand and the complexes.

The cytotoxic activity of the new ligand (1) and the palladium(II) complexes (2, 4-7) against two human breast cancer cell lines (MCF7 and MDA-MB231) was tested using *cisplatin* as positive control. The effects of these products on the growth of two cell lines were assessed after 72 h and the results are displayed in Figure 4. The IC₅₀ values corresponding to the inhibition of cancer cell growth at 50% level are listed in Table 2. For comparison purposes the IC₅₀ parameters for the free ligand **Ic** and the palladacycle [Pd{ κ^3 , *C*,*N*,*N*')[1-{Me₂N-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)]₂Cl] (**V** in Figure 1) are also included [11b].

< Figure 4, here >

< Table 2, here >

< Figure 5, here >

The comparison of the in vitro cytotoxic activities of the free ligands (**Ic** and **1**) against the MCF7 and MDA-MB231 cell lines shows (Table 2 and Figure 4) that the presence of the NMe₂ group on the pendant arm of the two 3,5-diphenyl pyrazole: $[1-{R'-(CH_2)_2-}-3,5-$ Ph₂-(C₃HN₂)] produces a greater cytotoxic effect than the OMe. This could be related to several factors such as their different lipophilicity and their proclivity to protonate in biological media [18,20].

Complex 2 did not show any significant effect on the MCF7 cell line. This result is similar to those obtained for compound: $[Pd{\kappa^2, N,N'[1-{Me_2N-(CH_2)_2-}-3,5-Ph_2-(C_3HN_2)]Cl_2}]$ (IIc shown in Fig. 1). Except for 6, the remaining cyclopalladated complexes were more active in the MCF7 cell line than the free ligand (1) and compound 2. Among all these palladacycles, the di- μ -acetato-bridged complex 4 was the most potent. Its effect was ca. 1.4 times greater than the palladacycle V (shown in Figure 1) with a (C,N,N')⁻ pincer ligand [11b]. Unfortunately, none of these products exhibited IC₅₀ values smaller than cisplatin.

More encouraging were the results obtained for MDA-MB231 cell line. Compound 2 exhibited a moderate activity and for the remaining products, the IC₅₀ values [in the range: 9.1 μ M (for 6) - 14.4 μ M (for 5)] were a bit smaller, if significant, than that of V [IC₅₀ = 16.2 ± 4.6 μ M] [11b] and closer to that of cisplatin [IC₅₀= 6.5 ± 2.4 μ M]. Thus, suggesting that the new Pd(II) compounds were more effective in the triple negative MDA-MB231 cancer cell line than in the MCF7 line.

4. Conclusions.

The study of the reactivity of the novel N-substituted pyrazole derivative: $[1-\{MeO-(CH_2)_2-\}-3,5-Ph_2-(C_3HN_2)]$ (1) with Na₂[PdCl₄] or Pd(OAc)₂ has allowed us to isolate and characterize a family of palladium(II) complexes (2-7). In two of them (2 and 3) the Pd(II) atom is bound to the heterocyclic nitrogen. The remaining four complexes (4-7) contain one (in 6 and 7) ot two (in 4 and 5) five-membered palladacycles formed by the binding of the same nitrogen and the metallation of the phenyl ring on position 3 of the pyrazole. These findings indicate that ligand 1 may adopt two binding modes [(N) or (C,N)⁻] in front of the Pd(II) atom. However, no evidences of the formation of complexes containing 1 as a (C,N,O)⁻ ligand were detected.

The comparison of the results obtained from *in vitro* studies of their cytotoxic activity against the MCF7 cell line and the MDA-MB231 {triple negative (ER, PR and no HER2 over expression)} breast cancer cell line showed that the free ligand (1) was less active than its analogue Ic (Figure 1) with the NMe₂ unit at the end of the pendant arm. We have also proved that compounds (4-7) exhibit greater cytotoxic activity than the free ligand (1) and complex 2 (with two units of 1 acting as a monodentate N-donor ligand). The new cyclopalladated complexes (4-7) have an outstanding antiproliferative effect in the MDA-MB231 cell line. For all of them the IC₅₀ values (Table 2) are a bit smaller than that reported for palladacycle V previously reported [11b]; but closer to that of cisplatin (under identical conditions). These results are especially outstanding because they open up new possibilities in the design of Pd(II)-pyrazole based complexes as promising alternatives to cisplatin and related Pt(II) drugs.

Acknowledgements.

This work was supported by the *Ministerio de Ciencia e Innovación*, (*MICINN*) (Grants: CTQ2009-11501 and TEC2011-29140-C03-02) and the Generalitat de Catalunya (Grant 2009-SGR-1111). Dr. J.U.C is also grateful to the financial support given by the "*Coimbra Group*".

Appendix A. Supplementary material

CCDC 951054 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the *Cambridge Crystallographic Data Centre* via: www.ccdc.cam.ac.uk/data_request/cif.

References

- [1] a) J. Elguero, *Pyrazoles*, in A.R. Katritzy, W. Rees, E.F.V. Scrivens (Eds.), Comprehensive Heterocyclic Chemistry-II, Pergamon Press, Oxford, 1996, pp. 1-75 (Chapter 3.01); b) S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev. 111 (2011) 6984.
- [2] For recent contributions see: a) S.A. Hudson, K.J. McLean, S. Surade, Y.-Q. Yang, D. Leys, A. Ciulli, A.W. Munro, C. Abell, Angew. Chem. Int. Ed. Engl. 51 (2012), 9311; b) F.K. Keter, J. Darkwa, BioMetals 25 (2012) 9; c) A. Schmidt, A. Dreger, Curr. Org. Chem. 15 (2011) 1423; d) P.H. Carter, J. Hynes, Expert Opinion on Therapeutic Patents 20 (2010) 1609; e) R.L. Hudkins, K.A. Josef, Expert Opinion on Therapeutic Patents 17 (2007) 351; f) E. Arbaciauskiene, K. Kazlauskas, A. Miasojedovas, S. Jursenas, V. Jankauskas, W. Holzer, V. Getautis, A. Sackus, Synth. Metals 160 (2010) 490.
- [3] a) B.A. Thaher, M. Arnsmann, F. Totzke, J.E. Ehlert, M.H.G. Kubbutat, C. Schächtele, M.O. Zimmermann, P. Koch, F.M. Boeckler, S.A. Laufer, J. Med. Chem. 55 (2012) 961; b) E. Strocchi, F. Fornari, M. Minguzzi, L. Gramantieri, M. Milazzo, V. Rebuttini, S. Breviglieri, C.M. Camaggi, E. Locatelli, L. Bolondi, M. Comes-Franchini, Eur. J. Med. Chem. 48 (2012) 391; c) A. Balbi, M. Anzaldi, C. Maccio, C. Aiello, M. Mazzei, R. Gangemi, P. Castagnola, M. Miele, C. Rosano, M. Viale, Eur. J. Med. Chem. 46 (2011) 5293; d) B. Insuasty, A. Tigreros, F. Orozco, J. Quiroga, R. Abonia, M. Nogueras, A. Sánchez, J. Cobo, Biorg. Med. Chem. 18 (2010) 4965; e) M.D. Joksovic, G. Bogdanovic, V. Kojic, K.M. Szecsenyi, V.M. Leovac, D. Jakimov, S. Trifunovic, V. Markovic, L. Joskovic, J. Heterocyclic Chem. 47 (2010) 850.

- a) R. Kalirajan, V. Muralidharan, S. Jubie, B. Gowramma, S. Gomalthy, S. Sankar, [4] K. Elango, J. Heterocyclic Chem. 49 (2012) 748; b) M.F. Mohamed, M.S. Mohamed, S.A. Shouman, M.M. Fathi, I.A. Abdelhamid, Appl. Biochem. Biotechn. 168 (2012) 1153; c) S. Xu, S. Li, Y. Tang, J. Zhang, S. Wang, C. Zhou, X. Li, Med. Chem. Res., 22(2013) 5610; d) Y-R. Liu, J-Z. Luo, P-P. Duan, J. Shao, B-X. Zhao, J-Y. Miao, Bioorg. Med. Chem 22 (2012) 6882; e) Y. Zheng, M. Zheng, X. Ling, Y. Liu, Y. Xue, L. An, N. Gu, M. Jin, Bioorg. Med. Chem. 23 (2013) 4471; f) E. Tzanetou, S. Liekens, K. M. Kasiotis, N. Fokialakis, S.A. Haroutounian, Archiv. Pharm. 345 (2012) 804; g) L.-W. Zheng, J. Zhu, B.-X. Zhao, Y.-H. Huang, J. Ding, J.-Y. Miao, Eur. J. Med. Chem. 45 (2010) 5887; h) H. A. Abdel-Aziz, H.S.A. El-Zahabi, K. M. Dawood, Eur. J. Med. Chem. 45 (2010) 2427; i) M. Comes, B. Bonini, C. Camaggi, D. Gentili, A. Pession, M. Rani, E. Strocchi, Eur. J. Med. Chem. 45 (2010), 2024; j) B.P. Bandgar, J.V. Totre, S.S. Gawande, C.N. Khobragade, S. C. Warangkar, P.D. Kadam, BioMedChem. 18 (2010) 6149; k) Z. Ratkovic, Z.D. Juranic, T. Stanojkovic, D. Manojlovic, R.D. Vukicevic, N. Radulovic, M.D. Joksovic, Bioorg. Chem. 38 (2010) 26.
- [5] a) J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Elsevier, Amsterdam, (2003); b) C. Pettinari, A. Tabacaru, I. Boldog, K.V. Domasevith, S. Galli, N. Masciocchi, Inorg. Chem. 51 (2012) 5235; c) S. Konar, A. Jana, K. Das, S. Ray, S. Chatterjee, S. K. Kar, Polyhedron 47 (2012) 143; d) Y.G. Vlasov, S.S. Levichev, A.A. Kruchinin, Russ. J. Appl. Chem. 85 (2012) 940; e) C.J. Adams, M.A. Kurawa, A.G. Orpen, Dalton 39 (2010) 6974.

- [6] a) J. Garcia-Anton, R. Bofill, L. Escriche, A. Llobet, X. Sala, Eur. J. Inorg. Chem. (2012) 4775; b) I. F. Santos, G.P. Guedes, L.A. Mercante, A.M.R. Bernardino, J. Mol. Struct. 1011 (2012) 99; c) N.V. Kulkarni, A. Kamath, S. Budagumpi, V.K. Revankar, J. Mol. Struct. 1006 (2011) 580; c) C.-D. Fan, H. Su, J. Zhao, B.-X. Zhao, S.-L. Zhang, J.-Y. Miao, Eur. J. Med. Chem. 45 (2010) 1438; d) S. Tardito, I. Bassanetti, C. Biggnardi, L. Elviri, M. Tegoni, C. Mucchino, O. Bussolati, R. Franchi-Gazzola, L. Marchiò, J. Am. Chem. Soc. 133 (2011) 6235.
- [7] a) C.M. Anderson, I.R. Taylor, M.F. Tibbets, J. Philpot, Y. Hu, J.M. Tanski, Inorg. Chem. 51 (2012) 12917; b) C. Francisco, S. Garna, F. Mendes, F. Marques, I. Cordeiro dos Santos, A. Paulo, I. Santos, J. Coimbra, E. Gabano, M. Ravera, Dalton 40 (2011) 5781; c) N.J. Wheate, S. Walker, G.E. Craig, R. Oun, Dalton Trans. 39 (2010) 8113; d) M.J. Sullivan, Cancer 115 (2009) 5623; e) B. Köberle, M.T. Tomicic, S. Usanova, B. Kaina, Biochim. Biophys Acta, Rev. Cancer 1806 (2010) 172.
- [8] a) D. Das, B.G. Vats, S. Kannan, D.K. Maity, M.G.B. Drew, Polyhedron 54 (2013) 104; b) S. Muñoz, J. Pons, M. Font-Bardía, C.A. Kilner, M.A. Halcrow, Inorg. Chim. Acta 373 (2011) 211; c) C. Luque, J. Pons, T. Calvet, M. Font-Bardía, J. García-Antón, J. Ros, Inorg. Chim. Acta 367 (2011) 35; d) J. Chakraborty, M.K. Saha, P. Benerjee, Inorg. Chem. Commun. 10 (2007) 671; e) K. Li, M.S. Mohlala, T.V. Segapelo, P.M. Shumbula, I. A. Guzei, J. Darkwa, Polyhedron 27 (2008) 1017; f) R. Y. Mawo, D.M. Johnson, J.L. Wood, I.P. Smoliakova, J. Organomet. Chem. 693 (2008) 33; g) I. Ara, L.R. Falvello, J. Forniés, R. Lasheras, A. Martin, O. Oliva, V. Sicilia, Inorg. Chim. Acta 359 (2006) 4574.

- [9] a) Y. Han, H.V. Huynh, G.K. Tan, Organometallics 26 (2007) 6581; b) I. Ara, J. Forniés, R. Lasheras, A. Martin, V. Sicilia, Eur. J. Inorg. Chem. (2006) 948; c) F. Churruca, R. SanMartin, I. Tellitu, E. Domínguez, Synlett. (2005) 3116; d) F. López-Linares, O. Colmenares, E. Catari, A. Karam, React. Kinet. Catal. Lett. 85 (2005) 139; e) E. Budzisz, U. Krajewska, M. Rozalski, A. Szulawska, M. Czyz, B. Nawrot, Eur. J. Pharmacol. 502 (2004) 59.
- [10] a) J.A. Perez, V. Montoya, J.A. Ayllon, M. Font-Bardía, T. Calvet, J. Pons, Inorg. Chim. Acta 394 (2013) 21; b) S.Y. Chang, J-L. Chen, Y. Chi, Y-M. Cheng, G-H. Lee, C-M. Jiang, P. T. Chou, Inorg. Chem. 46 (2007) 11202; c) A. Eisenwiener, M. Neuburger, T. A. Kaden, Dalton Trans. 36 (2007) 218; d) A.V. Khripun, M. Haukka, V.Y. Kukushkin, Russ. Chem. Bull. 55 (2006) 247; e) A.V. Khripun, S.I. Selivanov, V.Y. Kukushkin, M. Haukka, Inorg. Chim. Acta 359 (2006) 320; f) E. Ciesielska, A. Szulawska, K. Studzian, J. Ochocki, K. Malinowska, K. Kik, L. Szmigiero, J. Inorg. Biochem. 100 (2006) 1579.
- [11] a) C. López, A. González, R. Bosque, P.K. Basu, M. Font-Bardía, T. Calvet, RSC Adv. 2 (2012) 1986; b) J. Quirante, D. Ruíz, A. González, C. López, M. Cascante, R. Cortés, R. Messeguer, C. Calvis, L. Baldomà, A. Pascual, Y Guérardel, B. Pradines, M. Font-Bardía, T. Calvet, C. Biot, J. Inorg. Biochem. 105 (2011) 1720.
- [12] a) A.S. Abu-Surrah, K.A. Abu-Safieh, I.-M. Ahmad, M.Y. Abdalla, M.T. Ayoub,
 A.K. Qaroush, A.M. Abu-Mahtheieh, Eur. J. Med. Chem. 45 (2010) 471; b) E.
 Budzisz, M. Malecka, B.K. Keppler, V.B. Arion, G. Andrijewski, U. Krajewska, M.
 Rozalski, Eur. J. Inorg. Chem. (2007) 3728.

- [13] a) E. Budzisz, M. Miernicka, I.-P. Lorenz, P. Mayer, E. Balcerczak, U. Krajewska,
 M. Rozalski, Eur. J. Med. Chem. 45 (2010) 2613; b) F.K. Keter, S. Kanyanda, S.L.
 Lyantagaye, J. Darkwa, D. Jasper, G. Rees, M. Meyer, Cancer Chemother.
 Pharmacol. 63 (2008) 127.
- [14] a) J. Dupont, M. Pfeffer (Eds.) Palladacycles: Synthesis, Characterization and Applications, Wiley-VCH, (2008) Weinheim (Germany), Chapter. 13, pages 307-340;
 b) K. Godula, D. Sames, Science 312 (2006) 67; c) M. Ghedini, I. Aiello, A. Crispini, A. Golemme, M. La Deda, D. Pucci, Coord. Chem. Rev. 250 (2006) 1373; d) D.A. Alonso, C. Najera, Chem. Soc. Rev. 39 (2010) 2891; e) I. Omae, J. Organomet. Chem. 692 (2007) 2608; f) J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527.
- [15] For recent advances in pallada- and platinacycles, see: a) J. Albert, R. Bosque, M. Crespo, J. Granell, J. Rodríguez J. Zafrilla, Organometallics 29 (2010) 4619; b) M. Crespo, T. Calvet, M. Font-Bardia, Dalton Trans. 39 (2010), 6936; c) M-Y. Yuen, S.C.F. Kui, K-H. Low, C.-C. Kwok, S.S.-Y. Chui, C.-W. Ma, N. Zhu, C.-M. Che, Chemistry-A Eur. J. 16 (2010) 14131; d) C. López, S. Pérez, X. Solans, M. Font-Bardía, A. Roig, E. Molins, P.W.N.M. van Leeuwen G.P.F. van Strijdonck, Organometallics 26 (2007) 571; e) T-K. Zhang, K. Yuan, X-L. Hou, J. Organomet. Chem. 692 (2007) 1912; f) P.G. Evans, N.A. Brown, G.J. Clarkson, C.P. Newman, J.P. Rourke, J. Organomet. Chem. 691 (2006) 1251.
- [16] For reviews on Bioorganometallic chemistry: a) R.S. Herrick, C.J. Ziegler, T.C.;Leeper, J. Organomet. Chem. 751 (2014) 90; b) A. Vessieres, J. Organomet. Chem.

734 (2013) 3; c) A. Monney, M. Albrecht, Coord. Chem. Rev. 257 (2013) 2420; d)
A.L. Noffke, A. Habtemariam, A.M. Pizarro, P.J. Sadler, Chem. Commun. 48 (2012)
5219; e) C. Biot, D. Dive, Topics in Organomet. Chem. 32 (2010) 155; f) N. Chavain,
C. Biot, Curr. Med. Chem. 17 (2010) 2729; g) R.H. Fish, Richard H. Aust. J. Chem.
63 (2010) 1505; h) S. El Kazzouli, N. El Brahmi, S. Mignani M. Bousmina M.
Zablocka J-P. Majoral Curr. Med. Chem. 19 (2012) 4995; i) E.A. Hillard, G. Jaouen,
Organometallics 30 (2011) 20; j) G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem.
54 (2011) 3.

- [17] Recent and relevant contributions: a) F. Dubar, C. Slomianny, J. Khalife, D. Dive, H. Kalamou, Y. Guerardel, P. Grellier, C. Biot, Angew. Chem. Int. Ed. 52 (2013) 7690;
 b) R. Arancibia, C. Biot, G. Delaney, P. Roussel, A. Pascual, B. Pradines, A.H. Klahn, A. Hugo, J. Organomet. Chem. 723 (2013) 143; c) M.A.L. Blackie, Mini Rev. Med. Chem. 13 (2013) 597; d) M. Patra, K. Ingram, A. Leonidova, V. Pierroz, S. Ferrari, M. Robertson, M.H. Todd, K. Keiser, G. Gasser, J. Med. Chem. 56 (2013) 9192.
- [18] For review purposes see: A.C.F. Caires, Anti-Cancer Agents in Medicinal Chemistry 7 (2007) 484 and references therein.
- [19] For recent contributions on palladacycles with antitumoral activity: a) S. Aliwaini,
 A.J. Swarts, A. Blankenberg, S. Mapolie, S. Prince, Biochem. Pharmacol. 86 (2013),
 1650; b) J. Albert, S. García, J. Granell, A. Llorca, M.V. Lovelle, V. Moreno, A.
 Presa, L. Rodríguez, J. Quirante, C. Calvis, R. Messeguer, J. Badía, L. Baldomà, J.
 Organomet. Chem. 724 (2013) 289; c) K. Karami, M.H. Kharat, H. Sadeghi-Aliabadi,

J. Lipkowski, M. Mirian, Polyhedron 50 (2013) 187; d) M. Carreira, R. Calvo-Sanjuan, M. Sanau, I. Marzo, M.Contel, Organometallics 31 (2012) 5772; e) J. Spencer, R.P. Rathnam, M. Motukuri, A.K. Kotha, S.C.W. Richardson, A. Hazrati, J.A. Hartley, L. Male, M.B. Hursthouse, Dalton Trans. (2009) 4299; f) F.A. Serrano, A.L. Matsuo, P.T. Montforte, A. Bechara, S.S. Saili, D.P. Santana, T. Rodrigues, F.V. Pereira, L.S. Silva, J. Machado, E.L. Santos, J.B. Pesquero, R.M. Martins, L.R. Travassos, A.C.F. Caires, E.G. Rodrigues, BMC Cancer. 11 (2011) 296.

- [20] For recent advances on platinacycles with antitumoral activity: a) D. Talancón, C. López, M. Font-Bardia, T. Calvet, J. Quirante, C. Calvis, R. Messeguer, R. Cortes, M. Cascante, L. Baldoma, J. Badía, J. Inorg. Biochem. 118 (2013) 1; b) R. Cortés, M. Crespo, L. Davin, R. Martín, J. Quirante, D. Ruiz, R. Messeguer, C. Calvis, L. Baldomà, J. Badia, M. Font-Bardía, T. Calvet, M. Cascante, Eur. J. Med. Chem. 54 (2012) 557; c) J. Albert, R. Bosque, M. Crespo, J. Granell, C. López, R. Cortés, A. González, J. Quirante, C. Calvis, R. Messeguer, L. Baldomà, J. Badia, M. Cascante, Bioorg. Med. Chem. 21 (2013) 4210; d) R.Cortés, M. Tarrado-Castellarnau, D. Talancón, C. López, W. Link, D. Ruiz, J.J. Centelles, J. Quirante M. Cascante, Metallomics 6 (2014) 622.
- [21] a) G. Xu, Z. Yan, N. Wang, Z. Liu, Eur. J. Med. Chem. 46 (2011) 356; b) L. Ronconi,
 P. J. Sadler, Dalton Trans. 40 (2011) 262; c) J. Alemán, V. del Solar, L. Cubo, A.G.
 Quiroga C, Navarro-Ranninger, Dalton Trans. 39 (2010) 10601; d) A.P. Neves, G.B.
 da Silva, M.D. Vargas, C.B. Pinheiro, L.C. Visentin, J.B.D.M. Filho, A.J. Araujo, L.
 V. Costa-Lotufo, C. Pessoa, M.O. de Moraes, Dalton Trans. 39 (2010) 10203; e) G.
 Wagner, A. Marchant, J. Sayer, Dalton Trans. 39 (2010) 7747; f) N. Margiotta, N.

Denora, R. Ostuni, V. Laquintana, A. Anderson, S.W. Johnson, G. Trapani, G. Natile,
J. Med. Chem. 53 (2010) 5144; g) J.S. Saad, M. Benedetti, G. Natile, L.G. Marzilli,
Inorg. Chem. 49 (2010) 5573; h) K.L. Ciesienski, L.M. Hyman, D.T. Yang, K.L.
Haas, M. G. Dickens, R. J. Holbrook, K.J. Franz, Eur. J. Inorg. Chem. (2010), 2224;
i) Y.Y. Scaffidi-Domianello, K. Meelich, M.A. Jakupec, V.B. Arion, V.Y.
Kukushkin, M. Galanski, B.K. Keppler, Inorg. Chem. 49 (2010) 5669; j) F.J. RamosLima, V. Moneo, A.G. Quiroga, A. Carnero, C. Navarro-Ranninger, Eur. J. Med.
Chem. 45 (2010) 134.

- [22] J.J. Li and G.W. Gribble, Palladium in Heterocyclic Chemistry, Pergamon, (2000), New York (USA).
- [23] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 4th ed., Butterworth-Heinemann, (1996), Oxford, (UK).
- [24] G. M.Sheldrick, SHELXTL A program for automatic solution of crystal structure refinement, University of Göttingen, Göttingen, Germany. Acta Crystallogr. A64 (2008) 112
- [25] K.T. Givens, S. Kitada, A.K. Chen, J. Rothschiller, D.A. Lee, Invest. Ophthalmol. Vis. Sci. 31 (1990) 1856.
- [26] A.S. Potapov, A.I. Klebnikov, Polyhedron 25 (2006) 819.
- [27] a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; Wiley, (1997) New York; b) Y.Fuchita, H. Tsuchiya, A. Miyafuji, Inorg. Chim. Acta 233 (1995) 91. c) M. López-Torres, P. Juanatey, J. J. Fernández, A. Fernández, A. Suárez, R. Mosteiro, J.M. Ortigueira, J.M. Vila, Organometallics 21 (2002) 3628; d) A. González, C. López, X. Solans, M. Font-

Bardía, E. Molins, J. Organomet. Chem. 693 (2008), 2119; e) D.J. Cárdenas, A.M. Echavarren, M.C. Ramírez de Arellano, Organometallics 18 (1999) 3337.

- [28] F.H. Allen, Acta Crystallogr., Sect. B 58 (2002) 380.
- [29] a) A. Boixassa, J. Pons, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 357, (2004) 733; b) A. Boixassa, J. Pons, A. Virgili, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 340 (2002) 49; c) A. Boixassa, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 346 (2003) 151; d) V. Montoya, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 346 (2003) 151; d) V. Montoya, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 346 (2003) 151; d) V. Montoya, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 358 (2005) 2312; e) S. Kingsley, V. Chandrasekhar, C.D. Incarvito, M.K. Lam, A. L. Rheingold, Inorg. Chem. 40 (2001) 5890.
- [30] a) S. Kannan, M.G.B. Drew, Inorg. Chim. Acta 360 (2007) 3647; b) S.O. Ojwach, M. G. Tshivhase, I.A. Guzei, J. Darkwa, S.F. Mapolie, Can. J. Chem. 83 (2005) 843; c)
 A.V. Godoy Netto, A.E. Mauro, R.C.G. Frem, A.M. Santana, R.H.A. Santos, J.R. Zoia, J. Coord. Chem. 54 (2001) 129; d) A.John, M.M. Shaikh, P. Ghosh, Inorg. Chim. Acta 363 (2010) 3113; e) K. Xu, X-Q. Hao, J-F. Gong, M-P. Song, Y-J. Wu, Aust. J. Chem. 63 (2010) 315; f) A-T. Hou, Y-J. Liu, X-Q Hao, J-F. Gong, M-P. Song, J. Organomet. Chem. 696 (2011) 2857; g) C.K. Seubert, Y. Sun, Y. Lan, A.K. Powell, W.R. Thiel, Eur. J. Inorg. Chem. (2011) 1768.
- [31] a) A. Bondi, J. Phys. Chem. 70 (1966) 3006; b) A.I. Kitaigorodskii, Molecular Crystals and Molecules Academic Press, (1973) London (UK).
- [32] a) S. Tsuzuki, Annual Reports on the Progress of Chemistry, Sect. C: Phys. Chem. 108 (2012) 69; b) S. Tsuzuki, A. Fujii, Phys. Chem. Chem. Phys. 10 (2008) 2584.

[33] J. Vicente, J.A. Abad, A.D. Frankland, M.C. Ramírez de Arellano, Chem. Eur. J. 5 (1999) 3066.

Captions for Scheme 1 and Figures 1-5

Scheme 1. Key reagents and conditions: i) KOH, in DMSO, followed by treatment with 1chloro 2-methoxyethane, 298 K; ii) Na₂[PdCl₄] in MeOH at 298 K; iii) Pd(OAc)₂ in refluxing toluene, (12h), followed by SiO₂ column chromatography; iv) LiCl in acetone, at 298 K; v) PPh₃ in CH₂Cl₂ at 298 K

Figure 1. General formulae of three N-substituted pyrazoles (I) and their Pd(II) and Pt(II) complexes recently reported [11b]. {In compounds I-III, the R group represents H (a), Me (b) or Ph (c)}.

Figure 2. ORTEP plot of the molecular structure of *trans*-[Pd{[1-{MeO-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)]₂Cl₂] (**2**). Selected bond lengths (in Å) and angles (in deg.): Pd1-N1, 2.020(19); Pd1-Cl1, 2.3044(5), N1-C9, 1.339(2); N1-N2, 1.362(2); N2-C7, 1.535(4); N2-C16, 1.460(3); C9-C10, 1.472(3); C16-C17, 1.500(3); C17-O1, 1.404(3); O1-C18, 1.387(4); N1-Pd-Cl, 87.17(5); N1-N2-C16, 120.98(16); N1-N2-C7,110.24(16); N2-C7-C6,124.11(19); N2-C7-C8, 107.02(17); C7-C8-C9, 106.76(18) and N1-C9-C10, 124.11(17).

Figure 3. Schematic view of assembly of vicinal molecules of *trans*-[Pd{[1-{MeO-(CH₂)₂-}}-3,5-Ph₂-(C₃HN₂)]₂Cl₂] (**2**) by C-H··· π interactions. Red balls represent the centroids of the rings defined by the sets of atoms [C1-C6] and [C10-C15] (Cg₁ and Cg₂, respectively).

Figure 4. Inhibition of cell growth proliferation in MCF7 and MDA-MB231 human breast cancer cell lines, after 72 h of exposure to the free ligand **1** and compounds **2**, **4**-7.

Figure 5. Comparative plot of the IC₅₀ values (in μ M) of the free ligands [1-{R'-(CH₂)₂-]-3,5-Ph₂-(C₃HN₂)] {R' = NMe₂ (**Ic**) or MeO (**1**)}, the Pd(II) complex *trans*-[Pd{[1-{MeO-(CH₂)₂-}-3,5-Ph₂-(C₃HN₂)]₂Cl₂] (**2**), the cyclopalladated compounds (**4-7** and **V**) and *cisplatin* in front of the MCF7 and MDA-MB231 cancer cell lines.

32

Table 1. Crystal data and structure refinement for *trans*- $[Pd{[1-{MeO-(CH_2)_2-]-3,5-Ph_2-(C_3HN_2)}_2Cl_2]$ (2).

Crystal dimmensions / $mm \times mm \times mm$	$0.2 \times 0.08 \times 0.08$
Empirical formula	C ₃₆ H ₃₆ Cl ₂ N ₄ O ₂ Pd
Formula weight	733.99
T / K	293(2)
λ / Å	0.71073
Crystal system	Triclinic
Space group	Pī
<i>a</i> / Å	9.1567(5)
<i>b</i> / Å	9.5825(5)
<i>c</i> / Å	10.6315(5)
α/°	108.171(2)
β/°	104.895(2)
γ/°	95.986(2)
Volume / Å ³	839.09(7)
Z	1
Calculated density / Mg×m ⁻³	1.453
μ / mm^{-1}	0.750
F(000)	376
Θ range for data collection / °	2.12 to 28.34
Limiting indices	$-12 \le h \le 8, -12 \le k \le 12, -13 \le l \le 14$

ACCEPTED MANUSCRIPT

Reflections collected / unique	11383 / 4182 [R(int) = 0.0243]
Completeness to $\Theta = 28.34^{\circ}$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. Transmission	0.7457 and 0.6541
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4182 / 0 / 205
Goodness-of-fit on F ²	1.055
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0310, wR_2 = 0.0763$
R indices (all data)	$R_1 = 0.0349, wR_2 = 0.0803$
Largest diff. peak and hole/ e $Å^{-3}$	0.562 and -0.269

 Table 2. Cytotoxic activities (IC₅₀ values) on MCF7 and MDA-MB231 cancer cell lines for ligands $1-[R'-(CH_2)_2-]-3,5-Ph_2-(C_3HN_2)$ with R' = NMe₂ (**Ic**) or OMe (**1**), the palladium(II) complex (**2**), the cyclometallated products (**4-7** and **V**) and *cisplatin* under identical experimental conditions are also included.

Compound	R'	Mode of binding	MCF7	MDA-MB231	Reference		
Free ligands				6			
Ic	NMe ₂		52 ± 10	64 ± 24	[11b]		
1	OMe		100	100	This work		
Palladium(II) complexes							
2	OMe	(N)	>100	$75 \pm nd$	This work		
4	OMe	(C,N) ⁻	28 ± 5	9.5 ± 2.1	This work		
5	OMe	(C,N) ⁻	$44 \pm nd$	14.4 ± 4	This work		
6	OMe	(C,N) ⁻	> 100	$9.1 \pm nd$	This work		
7	OMe	(C,N) ⁻	$67 \pm nd$	$13 \pm nd$	This work		
V	NMe ₂	(C,N,N') ⁻	38.4 ± 16.5	16.2 ± 4.6	[11b]		
Cisplatin		(N)	19 ± 4.5	6.5 ± 2.4	This work		

 $IC_{50}(\mu M)$ for the cell lines^{*a*}

^oData are shown as the mean values obtained of two or more experiments performed in triplicate with the corresponding standard deviation.

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

Highlights

- Mono and di Pd(II) complexes with N-{(CH₂)₂-R}-3,5-diphenylpyrazole (R = OMe) as ligands.
- ♦ The influence of the R groups (OMe vs NMe₂) on the reactivity, properties and activities.
- Pd(II) complexes are more potent than the free pyrazolyl ligand in MCF7 and MDA-MB231 breast cell lines
- Palladacycles with cytotoxic activity similar to cisplatin in the triple negative MDA-MB231 breast cancer cell lines.

CER MAN