Facile Aromatization Reactions of Overcrowded Polycyclic Aromatic Enes Leading to Fullerene Fragments

Sergey Pogodin, P. Ulrich Biedermann, and Israel Agranat*

Department of Organic Chemistry, The Hebrew University of
J erusalem, J erusalem 91904, Israel
Received J anuary 21, 1997
Overcrowded polycyclic aromatic enes (PAEs), ${ }^{1,2}$ e.g., bi-9H-fluoren-9-ylidene (1), 3,4 are potential starting materials for the preparation of bowl-shaped fragments of fullerenes (buckybowls). ${ }^{5-7}$ Recently, the thermal and catalyzed dehydrocyclization of $\mathbf{1}$ to diindeno[1,2,3,4defg; $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-mnop]chrysene (2) via the intermediates benz[e]indeno[1,2,3-hi]acephenanthrylene (3) and benz-[g]indeno[1,2,3,4-mnop]chrysene (4) by flash vacuum pyrolysis (FVP) at temperatures above $700^{\circ} \mathrm{C}$ in the gas phase have been reported by Zimmermann et al. ${ }^{8,9}$ Buckybowl 2 could also be synthesized by a two-fold thermal ($>1000^{\circ} \mathrm{C}$) elimination of CO from 7,14-dioxo-7,14-dihydrophenanthro[1,10,9,8-opqra]perylene ${ }^{9}$ and by FVP of (E)-1,1'-dibromobi-9H-fluoren-9-ylidene at 1050 ${ }^{\circ} \mathrm{C} .{ }^{6}$ Previous claims of the formation of $\mathbf{3}$ by the debromocyclization of 9,9'-di bromo-1, 1^{\prime}-bifluorenyl ${ }^{10}$ and from a fluorene pyrolyzate ${ }^{11}$ have been questioned. ${ }^{7}$ The oxidative photocyclization of $\mathbf{1}$ to give $\mathbf{3}$ has also been daimed. ${ }^{12}$ However, the ${ }^{1} \mathrm{H}$ NMR data of the product was not consistent with those of $\mathbf{3}$ (vide infra). ${ }^{13}$ The synthesis of bridged derivatives of $\mathbf{3}$ by oxidative photocyclization reactions of (Z)-2,2'-tethered bifluorenylidenes have been reported by Luh et al. ${ }^{13}$ The success of the last method was attributed to the bridged (Z)-stereochemistry and to the tether functionality in the starting materials. ${ }^{7,13}$ We report here a facile synthesis of 3, and its 1 -chloro-derivative 5 , by a reductive cyclodechlorination and a cyclodehydrochlorination of (E)- and (Z)-1,1'-dichlorobi-9H-fluoren-9-ylidene (6), using palladium acetate as a homogenous catalyst. ${ }^{14,15}$ We note that 3 and 5 are fullerene fragments which are not buckybowls. ${ }^{5}$

The introduction of two chlorine atoms in the fjord regions (positions 1 and 1^{\prime}) of $\mathbf{1}$ was aimed to serve

[^0]

1

2

3

4

(Z)-6

(E)-6

7
several purposes. Firstly, an intramolecular reductive dechlorination (Ullman reaction) ${ }^{16,17}$ of (Z)-6 to 3 in solution under homogeneous catalysis conditions ${ }^{14,15}$ at reasonable temperatures may be feasible. Secondly, the overcrowding in the fjord regions of (E)-6 and (Z)-6 was predicted to be more pronounced, as compared with 1, ${ }^{18}$ resulting in a further destabilization of the reactants. This spatial alignment could allow the cyclization of 6 to 3 to be carried out at lower temperatures (as compared e.g., with the FVP method ${ }^{6}$). Thirdly, the enhanced overcrowding of $\mathbf{6}$ versus $\mathbf{1}$ results in relatively fast E, Z isomerizations. ${ }^{18}$ Thus, both (E)-6 and (Z)-6 could be used as starting materials for affecting the aromatization of 6 to 3 .

The starting material for the reductive dechlorination reaction was pure (Z)-6, obtained by recrystallization of a mixture of (E)-6 and (Z)-6 ${ }^{19}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A solution of (Z)-6 (under argon) in dry DMF was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ and $\mathrm{Pd}(\mathrm{OAC})_{2}$ and heated with magnetic stirring at $119-122^{\circ} \mathrm{C}$ for 51 h . The crude products were purified by column chromatography and by fractional recrystallization. Thefollowing compounds were isolated: 6, 3, 1-chlorobenz[e]indeno[1,2,3-hi]acephenanthrylene (5), 1-chloro-9H-fluoren-9-one, and 9 H -fluoren-9-one. The structures of the products were established by mass and by 1D and 2D ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies. PAH 3 was isolated in 5.6% yield (49.7% based on consumed 6) as yellow crystals. In $\mathrm{C}_{2 v}$ 3, as expected, no NOE cross peak between the protons at the overcrowded region $\left(\mathrm{H}_{1}, \mathrm{H}_{14}\right.$ and $\left.\mathrm{H}_{7}, \mathrm{H}_{8}\right)$ was observed. By contrast, in the isomeric $\mathrm{C}_{2 h}$ rubicene (7), ${ }^{20,21}$ an NOE cross peak between the overcrowded

[^1]Scheme 1. Reaction Pathways for the Formation of $\mathbf{3}$ and Its Chloro Derivative 5 by a
Palladium-Catalyzed Cyclization Reaction of 6

(E)-6

$\xrightarrow{\mathrm{PaCl}_{2}}$

8

10

3
protons H_{1} and H_{14} (and between H_{7} and H_{8}) was observed. Compound 5 was obtained as a $4: 1$ mixture with $\mathbf{3}$ (free of 6).

Semiempirical MNDO-PM3 calculations of $\mathrm{C}_{26} \mathrm{H}_{\mathrm{n}}(\mathrm{n}=$ $12,14,16$) species ${ }^{7}$ have recently shown that the aromatization of $\mathbf{1}$ to $\mathbf{3}$ by dehydrogenation is highly exothermic, while the dehydrogenation of $\mathbf{3}$ to the buckybowl 2 and of $\mathbf{1}$ to $\mathbf{2}$ are highly endothermic. ${ }^{7}$ Furthermore, the planar $\mathbf{3}$ is more stable than its isomers, the twisted 4, and the planar rubicene (7). ${ }^{7}$ The overcrowded PAE 1 adopts a twisted conformation with experimental and calculated twist angles of 32.5° and 30.2°, respectively. ${ }^{7}$ MNDO-PM3 calculations of (E)-6 and (Z)-6 show that their global minima are twisted-folded C_{2} conformations, as compared with the twisted D_{2} conformation of $\mathbf{1}$. The pronounced overcrowding of (E)-6 and (Z)-6 vis-á-vis 1 is reflected, inter alia, in the higher twist around $\mathrm{C} 9=\mathrm{C} 9^{\prime}$ (37.2° and 37.0° versus 30.2°) and in the pyramidalization of C9 and C9'. (Z)-6 proved to be less stable than (E)-6 by $2.5 \mathrm{~kJ} / \mathrm{mol}$, indicating an equilibrium mixture of ca. 27:73 (at $25^{\circ} \mathrm{C}$). In CDCl_{3} solution, the corresponding equilibrium ratio is $30: 70$ ($2.1 \mathrm{~kJ} / \mathrm{mol}$). Previous MINDO/3 calculations claimed that (E)-6 (53° twist) is more stable than (Z)-6 (58° twist) by $7 \mathrm{~kJ} / \mathrm{mol}$. 22 The MNDOPM3 calculated barriers for $(E)-6 \rightleftharpoons(Z)-6$ isomerization (assuming an orthogonal diradical transition state) are 80.8 and $78.2 \mathrm{~kJ} / \mathrm{mol}$. These values are in agreement with the results of a DNMR study of the conformational behavior of 6. ${ }^{18}$ The barriers are considerably higher than the reported MINDO/3 calculated values, 43 and $36 \mathrm{~kJ} / \mathrm{mol}$, respectively. ${ }^{22}$ Although PAH 3 is planar, it is still overcrowded, as reflected in its very short $\mathrm{H} \cdots \mathrm{H}$ distance in the fjord region, $166 \mathrm{pm} .^{7}$ On the other hand, the nonbonded $\mathrm{C} \cdots \mathrm{C}$ distance in the fjord region of 3 is not particularly short, $353 \mathrm{pm} .^{7}$ The calculated global minimum C_{1} conformation of 5 is helical, due to the overcrowding introduced by the chlorine. The nonbonded $\mathrm{C} \cdots \mathrm{C}, \mathrm{Cl} \cdots \mathrm{H}$, and $\mathrm{Cl} \cdots \mathrm{C}$ distances in the fjord region of 5 are 379, 241, and 304 pm, respectively. The dihedral angles in the fjord region are $-20.2^{\circ}\left(\mathrm{C}_{1} \mathrm{C}_{14 \mathrm{~d}} \mathrm{C}_{14 \mathrm{c}} \mathrm{C}_{14 \mathrm{~b}}\right)$, $-6.8^{\circ}\left(\mathrm{C}_{14 d} \mathrm{C}_{14 \mathrm{c}} \mathrm{C}_{14 \mathrm{~b}} \mathrm{C}_{14 \mathrm{a}}\right)$, and $-12.0^{\circ}\left(\mathrm{C}_{14 \mathrm{c}} \mathrm{C}_{14 b} \mathrm{C}_{14 \mathrm{a}} \mathrm{C}_{14}\right)$.
(22) Kikuchi, O.; Matsushita, K.-I.; Morihashi, K.; Nakayama, M. Bull. Chem. Soc. J pn. 1986, 59, 3043.

Both diastereomers of 6 may play a role in the aromatization reactions. The formation of 5 may be rationalized by a cyclopalladation reaction ${ }^{23}$ of (E)-6 (bearing a reactive chlorine and a hydrogen at a suitable distance) leading to the intermediate palladacycle 8, ${ }^{23}$ followed by a reductive elimination of Pd to give 5. A second sequence of cyclopalladation-reductive elimination coupling reaction ${ }^{23}$ via the intermediate palladacycle 9 does not occur, presumably because of the long distance between the designated carbon atoms in 9. PAH 3 is probably formed by a palladium-catalyzed intramolecular coupling reaction of (Z)-6, via the palladacycle intermediate 10. PAH 3 could also be formed from $\mathbf{5}$ by dechlorination (Scheme 1).

In conclusion, the palladium-catalyzed aromatizations of the overcrowded (E)-6 and (Z)-6 facilitate the first step in the sequence: twisted bifluorenylidene \rightarrow planar $\mathbf{3} \rightarrow$ buckybowl 2.

Experimental Section

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400.1 MHz using CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent and as internal standard $\left(\delta\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm} ; \delta\left(\mathrm{CHDCl}_{2}\right)=5.36\right.$ ppm). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100.6 MHz using CDCl_{3} as solvent and as internal standard $\left(\delta\left(\mathrm{CHCl}_{3}\right)=77.01\right.$ ppm).
(E)- and (Z)-1,1'-Dichlorobi-9H-fluoren-9-ylidene (6). A mixture of (E)-6 and (Z)-6, mp 259-260 ${ }^{\circ} \mathrm{C}$, was obtained according to the literature. ${ }^{19}$ Pure (Z)-624 was obtained from the mixture of the diastereomers by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as dark red crystals, mp $262-264{ }^{\circ} \mathrm{C}$.
(Z)-6: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 182 \mathrm{~K}\right): \delta=8.34\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{H}_{8}\right.$, $\left.\mathrm{H}_{8^{\prime}}\right), 7.77\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, \mathrm{H}_{5}, \mathrm{H}_{5^{\prime}}\right), 7.73\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{H}_{4}, \mathrm{H}_{4^{\prime}}\right)$, $7.42\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}_{3}, \mathrm{H}_{3^{\prime}}\right), 7.36\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}_{6}, \mathrm{H}_{6^{\prime}}\right), 7.28(\mathrm{~d}$, $\left.\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{2^{\prime}}\right), 7.23\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}_{7}, \mathrm{H}_{7^{\prime}}\right)$.
(E)- and (Z)-6: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 298 \mathrm{~K}\right):(\mathrm{E}):(Z)=2.2: 1 ; \delta=$ $8.39\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{8}\right), 7.71\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{5}\right), 7.70(\mathrm{~d}, \mathrm{~J}$ $\left.=7.3 \mathrm{~Hz}, \mathrm{E}-\mathrm{H}_{4}\right), 7.69\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{E}-\mathrm{H}_{5}\right), 7.66(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, Z-H4), 7.38 (dd, J $\left.=8.0 \mathrm{~Hz}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{E}-\mathrm{H}_{3}\right), 7.36(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, \mathrm{E}-\mathrm{H}_{8}$), $7.34\left(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{3}\right), 7.33(\mathrm{~d}, \mathrm{~J}=$ 8.0 Hz, E-H2), $7.31\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{6}\right), 7.28(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$,

[^2]$\left.\mathrm{E}-\mathrm{H}_{6}\right), 7.27\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{2}\right), 7.21(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.4$ $\mathrm{Hz}, \mathrm{E}-\mathrm{H}_{7}$), 7.20 (dd, J $=7.9 \mathrm{~Hz}$, J $=7.3 \mathrm{~Hz}, \mathrm{Z}-\mathrm{H}_{7}$). The assignments were based on a DQF-COSY 2D NMR experiment. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right):(\mathrm{E})-6: \delta=144.42\left(2 \mathrm{C}_{\mathrm{q}}\right), 140.37\left(2 \mathrm{C}_{\mathrm{q}}\right)$, $138.67\left(2 \mathrm{C}_{\mathrm{q}}\right), 138.65\left(2 \mathrm{C}_{\mathrm{q}}\right), 135.41\left(2 \mathrm{C}_{\mathrm{q}}\right), 133.10\left(2 \mathrm{C}_{\mathrm{q}}\right), 130.34$ $\left(2 \mathrm{C}_{\mathrm{t}}\right), 129.64\left(2 \mathrm{C}_{\mathrm{t}}\right), 128.23\left(2 \mathrm{C}_{\mathrm{t}}\right), 127.74\left(2 \mathrm{C}_{\mathrm{t}}\right), 127.55\left(2 \mathrm{C}_{\mathrm{t}}\right), 119.80$ $\left(2 \mathrm{C}_{\mathrm{t}}\right), 118.48\left(2 \mathrm{C}_{\mathrm{t}}\right) ;(\mathrm{Z})-6: \delta=142.58\left(2 \mathrm{C}_{\mathrm{q}}\right), 140.15\left(2 \mathrm{C}_{\mathrm{q}}\right), 139.66$ $\left(2 \times 2 \mathrm{C}_{\mathrm{q}}\right), 137.52\left(2 \mathrm{C}_{\mathrm{q}}\right), 133.35\left(2 \mathrm{C}_{\mathrm{q}}\right), 130.07\left(2 \mathrm{C}_{\mathrm{t}}\right), 129.44\left(2 \mathrm{C}_{\mathrm{t}}\right)$, $128.98\left(2 \mathrm{C}_{\mathrm{t}}\right), 127.38\left(2 \mathrm{C}_{\mathrm{t}}\right), 126.81\left(2 \mathrm{C}_{\mathrm{t}}\right), 120.20\left(2 \mathrm{C}_{\mathrm{t}}\right), 118.02\left(2 \mathrm{C}_{\mathrm{t}}\right)$. MS, m/z (\%): 398.04 (62) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}^{+}\right], 396.05$ (91) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{35} \mathrm{Cl}_{2}{ }^{+}\right], 363.08$ (2) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}^{+}-{ }^{35} \mathrm{C} \mathrm{C}\right], 362.07$ (4) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}^{+}-\mathrm{H}^{35} \mathrm{Cl}\right], 361.08$ (7) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{35} \mathrm{Cl}_{2}{ }^{+}-{ }^{35} \mathrm{Cl}\right], 360.07$ (11) $\left[\mathrm{C}_{26} \mathrm{H}_{14}{ }^{35} \mathrm{Cl}_{2}{ }^{+}-\mathrm{H}^{35} \mathrm{Cl}\right], 326.11$ (100) [M $\left.{ }^{+}-2 \mathrm{Cl}\right], 163.05$ (24) $\left[\mathrm{M}^{2+}-2 \mathrm{Cl}\right]$.

Synthesis of Benz[e]indeno[1,2,3-hi]acephenanthrylene (3) and 1-Chlorobenz[e]indeno[1,2,3-hi]acephenanthrylene (5) by Palladium-Catalyzed Reductive Cyclodechlorination Reaction of 6 . The reaction was carried out under an argon atmosphere in a $25-\mathrm{mL}$ round-bottomed flask equipped with a Y adaptor, a reflux condenser (protected from moisture), and a magnetic stirrer. A solution of (Z)- $\mathbf{6}(50.0 \mathrm{mg}, 0.126 \mathrm{mmol})$ in 3.7 mL of dry DMF was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($134.0 \mathrm{mg}, 0.970$ mmol), $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(82.0 \mathrm{mg}, 0.240 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(5.4$ $\mathrm{mg}, 0.025 \mathrm{mmol}$) and stirred at $119-122{ }^{\circ} \mathrm{C}$ for 51 h . The reaction mixture was diluted with water, the precipitate was filtered off, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated in vacuum to give the crude products as a red solid. The crude products were purified by column chromatography on silica gel 60 , using a gradient of petroleum ether (bp $65-75{ }^{\circ} \mathrm{C}$) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent (starting with 3% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The following fractions were collected:
(1) A mixture of 3,5, and 6 (see below).
(2) 1-Chloro-9H-fluoren-9-one: $7.3 \mathrm{mg}, 12.2 \%$ yield; dark greenish-yellow crystals; mp 138-141 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; lit. ${ }^{19} \mathrm{mp} 132-$ $134{ }^{\circ} \mathrm{C}$).
(3) 9 H -Fluorene-9-one: $1.0 \mathrm{mg}, 1.6 \%$ yield; yellow crystals; mp $80-82^{\circ} \mathrm{C}$.

Repeated fractional crystallization of the mixture of $\mathbf{3}, 5$, and 6 from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded pure $(\mathrm{Z})-6$, pure 3, and a $4: 1$ mixture of 5 and $\mathbf{3}$ (free of 6).
(Z)-6: $41.7 \mathrm{mg}, 69.9 \%$ recovery; dark red crystals; mp 262$264{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; lit. $\left.{ }^{19} \mathrm{mp} 252-254{ }^{\circ} \mathrm{C}\right)$;

3: $3.4 \mathrm{mg}, 5.6 \%$ yield (49.7% based on consumed $\mathbf{6}$); yellow needles; $\mathrm{mp} 270-276{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; lit. $\left.{ }^{8} \mathrm{mp} 277-278{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=8.59\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{H}_{1}, \mathrm{H}_{14}\right), 8.46(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, \mathrm{H}_{7}, \mathrm{H}_{8}$), $8.04\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{H}_{5}, \mathrm{H}_{10}\right), 8.03(\mathrm{~d}, \mathrm{~J}=7.8$ $\left.\mathrm{Hz}, \mathrm{H}_{4}, \mathrm{H}_{11}\right), 7.80\left(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{H}_{6}, \mathrm{H}_{9}\right), 7.56(\mathrm{t}$, $\left.\mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{13}\right), 7.52\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3}, \mathrm{H}_{12}\right) ;{ }^{33} \mathrm{C} \mathrm{NMR}$ $\left.\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)=77.01 \mathrm{ppm}\right): \delta=141.88\left(2 \mathrm{C}_{\mathrm{q}}\right), 137.81\left(2 \mathrm{C}_{\mathrm{q}}\right)$, $137.71\left(2 \mathrm{C}_{\mathrm{q}}\right), 134.68\left(2 \mathrm{C}_{\mathrm{q}}\right), 133.13\left(2 \mathrm{C}_{\mathrm{q}}\right), 128.69\left(\mathrm{C}_{3}, \mathrm{C}_{12}\right), 128.39$ $\left(\mathrm{C}_{6}, \mathrm{C}_{9}\right), 127.80\left(2 \mathrm{C}_{\mathrm{q}}\right), 127.74\left(\mathrm{C}_{2}, \mathrm{C}_{13}\right), 126.01\left(\mathrm{C}_{1}, \mathrm{C}_{14}\right), 122.04$ $\left(\mathrm{C}_{7}, \mathrm{C}_{8}\right), 121.35\left(\mathrm{C}_{4}, \mathrm{C}_{11}\right)$, $119.57\left(\mathrm{C}_{5}, \mathrm{C}_{10}\right)$. The assignments were based on the following 2D NMR experiments: DQF-COSY and 1-bond HSQC correlation (see NMR of 7^{25} for comparision). MS, $\mathrm{m} / \mathrm{z}(\%): 326.11$ (100) $\left[\mathrm{M}^{+}\right], 324.09$ (26) [$\left.\mathrm{M}^{+}-2 \mathrm{H}\right], 163.05$ (22) [M^{2+}], $162.05(25)\left[\mathrm{M}^{2+}-2 \mathrm{H}\right]$.

5: $1.9 \mathrm{mg}, 3.2 \%$ yield (25.6% based on consumed 6); ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=8.47\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, \mathrm{H}_{8}\right), 8.43(\mathrm{~d}, \mathrm{~J}=8.1$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 8.19-8.14\left(\mathrm{~m}, \mathrm{H}_{14}\right), 8.05\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{H}_{5}\right), 8.04(\mathrm{~d}, \mathrm{~J}$ $\left.=7.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 7.99-7.94\left(\mathrm{~m}, \mathrm{H}_{4}, \mathrm{H}_{11}\right), 7.81(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}$, J $\left.=7.2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.80\left(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{H}_{9}\right), 7.52-7.46$ ($\mathrm{m}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{12}, \mathrm{H}_{13}$). The assignments were based on a DQFCOSY 2D NMR experiment. MS, m/z (\%): 362.07 (24) [$\mathrm{C}_{26} \mathrm{H}_{13}{ }^{37} \mathrm{Cl}^{+}$], 360.07 (71) [$\mathrm{C}_{26} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}^{+}$], 325.10 (8) [M $\left.{ }^{+}-\mathrm{Cl}\right]$, 324.09 (25) [M $\left.{ }^{+}-\mathrm{HCl}\right], 181.03$ (6) $\left[\mathrm{C}_{26} \mathrm{H}_{13}{ }^{37} \mathrm{Cl}^{2+}\right], 180.03$ (16) [$\mathrm{C}_{26} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}^{2+}$], $162.55(8)\left[\mathrm{M}^{2+}-\mathrm{Cl}\right], 162.05(27)\left[\mathrm{M}^{2+}-\mathrm{HCl}\right]$.
J 09700991

[^3]
[^0]: (1) Shoham, G.; Cohen, S.; Suissa, R. M.; Agranat, I. In M olecular Structure: Chemical Reactivity and Biological Activity; Stezowski, J. J.; Huang J.-L.; Shao, M.-C., Eds.; IUC Crystallographic Symposia 2, Oxford University Press: Oxford, 1988; pp 290-312.
 (2) Biedermann, P. U.; Levy, A.; Stezowski, J. J.; Agranat, I. Chirality 1995, 7, 199.
 (3) de la Harpe, C.; van Dorp, W. A. Ber. Dtsch. Chem. Ges. 1875, 8, 1048.
 (4) Biedermann, P. U.; Levy, A.; Suissa, M. R.; Stezowski, J. J.; Agranat, I. Enantiomer 1996, 1, 75.
 (5) Rabideau P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235.
 (6) Scott, L. T. Pure Appl. Chem. 1996, 68, 291.
 (7) Biedermann, P. U.; Luh, T.-Y.; Weng, D. T.-C.; Kuo, C.-H.; Stezowski, J. J.; Agranat, I. Polycycl. Aromat. Compd. 1996, 8, 167.
 (8) Hagen, S.; Nuechter, U.; Nuechter, M.; Zimmermann, G. Tetrahedron Lett. 1994, 35, 7013.
 (9) Hagen, S.; Nuechter, U.; Nuechter, M.; Zimmermann, G. Polycyclic Aromat. Compd. 1995, 4, 209.
 (10) Yukhno, G. F.; Bikkulov, A. Z. Dokl. Neftekhim. Sekts. Bashk. Resp. Vses. Khim. O-va. 1971, 7, 5; Chem. Abstr. 1975, 83, 9606y.
 (11) Lang, K. F.; Buffleb, H.; Kalowy, J . Chem. Ber. 1961, 94, 523.
 (12) De Gunst, G. P. Recl. Trav. Chim. Pay-Bas 1969, 88, 801.
 (13) Kuo, C.-H.; Tsau, M.-H.; Weng, D. T.-C; Lee, G. H.; Peng, S.M.; Luh, T.-Y.; Biedermann, P. U.; Agranat, I. J . Org. Chem. 1995, 60, 7380.
 (14) Dyker, G. J. Org. Chem. 1993, 58, 234.
 (15) Grigg, R.; Teasdale A.; Sridharan, V. Tetrahedron Lett. 1991, 32, 3859.

[^1]: (16) Bacon, R. G. R.; Hill, H. A. O. Quart. Rev. 1965, 19, 95.
 (17) Sainsbury, M. Tetrahedron 1980, 36, 3327.
 (18) Agranat, I.; Rabinovitz, M.; Weitzen-Dagan, A.; Gosnay, I. J . Chem. Soc., Chem. Commun. 1972, 732.
 (19) Gosnay, I.; Bergmann, E. D.; Rabinovitz, M.; Agranat, I I Isr. J . Chem. 1972, 10, 423.
 (20) Sachweh, V.; Langhals, H. Chem. Ber. 1990, 123, 1981.
 (21) Clar, E. Polycyclic Hydrocarbons; Academic Press: London, 1964; Vol. 2, p 345.

[^2]: (23) Dyker, G.; Körning, J.; Nerenz, F.; Siemsen, P.; Sostmann, S.; Wiegand, A.; J ones, P. G.; Bubenitschek, P. Pure Appl. Chem. 1996, 68, 323.
 (24) The molecular and crystal structure of (Z)-6 will be published elsewhere.

[^3]: (25) 7: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}\right): \delta=8.64$ (d, $\left.\mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{1}, \mathrm{H}_{8}\right), 8.36\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{H}_{7}, \mathrm{H}_{14}\right), 8.05(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $\mathrm{H}_{3}, \mathrm{H}_{10}$), $7.99\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{H}_{4}, \mathrm{H}_{11}\right), 7.81(\mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=6.7$ $\left.\mathrm{Hz}, \mathrm{H}_{2}, \mathrm{H}_{9}\right), 7.48\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{6}, \mathrm{H}_{13}\right), 7.41\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}_{5}, \mathrm{H}_{12}\right)$; an NOE cross peak between H_{1} and H_{14} (and between H_{7} and H_{8}) was observed. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\left(\mathrm{CHCl}_{3}\right)=77.01 \mathrm{ppm}\right): \delta=139.91$ $\left(2 \mathrm{C}_{\mathrm{q}}\right), 139.42\left(2 \mathrm{C}_{\mathrm{q}}\right), 138.23\left(2 \mathrm{C}_{\mathrm{q}}\right), 133.53\left(2 \mathrm{C}_{\mathrm{q}}\right), 133.08\left(2 \mathrm{C}_{\mathrm{q}}\right), 129.01$ $\left(2 \mathrm{C}_{\mathrm{t}}\right), 128.12\left(2 \mathrm{C}_{\mathrm{t}}\right), 126.97\left(2 \mathrm{C}_{\mathrm{t}}\right), 125.53\left(2 \mathrm{C}_{\mathrm{q}}\right), 124.56\left(2 \mathrm{C}_{\mathrm{t}}\right), 123.72\left(2 \mathrm{C}_{\mathrm{t}}\right)$, $121.64\left(2 \mathrm{C}_{\mathrm{t}}\right), 120.31\left(2 \mathrm{C}_{\mathrm{t}}\right)$.

