Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide

Kiyoharu Nakagawa,^{a,b} Masato Okamura,^a Naoki Ikenaga,^a Toshimitsu Suzuki^{*a,b}⁺ and Tetsuhiko Kobayashi^c

^a Department of Chemical Engineering, Faculty of Engineering, and

^b High Technology Research Center, Kansai University, Suita, Osaka, 564-8680, Japan

^c Osaka National Research Institute, AIST, MITI, Ikeda, Osaka 563-8577, Japan

Gallium oxide is found to be an effective catalyst for the dehydrogenation of ethane to ethene in the presence of carbon dioxide at 650 °C, giving 18.6% ethene yield with a selectivity of 94.5%.

Ethene is predominantly produced by steam cracking of naphtha, ethane or liquid petroleum gas at high temperatures at short residence time.

In order to reduce energy consumption of ethene production, oxidative dehydrogenation of ethane is proposed [eqn. (1)].

$$C_2H_6 + 1/2O_2 \rightarrow C_2H_4 + H_2O$$
 (1)

The reaction becomes exothermic and thermodynamically could be possible at relatively low temperatures. However, it is necessary to remove heat from the reaction and to avoid over oxidation to CO_2 to give high selectivity towards ethene. Recently, a great variety of catalysts have been developed and tested for this reaction.^{1–3} In the oxidative dehydrogenation of propane, Burch and Crabb⁴ pointed out that thermal non-catalytic oxidative cracking of propane proceeded to give propene in the same yield as compared to catalyzed runs which were operated about 50 °C lower than that of non-catalyzed runs. This suggests that catalyzed oxidative dehydrogenation of lower alkanes is not highly superior to thermal oxidative pyrolysis.

Recently, several attempts have been made to use carbon dioxide as an oxidant for coupling of methane,⁵ dehydrogenation of ethylbenzene⁶ or propane.⁷ However, the role of CO_2 in these reactions is still not clear. In addition, the effects of CO_2 on the conversion and yield of the product are not significant.

Here, we study the dehydrogenation of ethane to ethene over several metal oxide catalysts, and we have found that CO_2 markedly promoted dehydrogenation of ethane over Ga_2O_3 catalyst.

The catalysts used were commercially available MgO, Al₂O₃, SiO₂, CaO, TiO₂, V₂O₅, Cr₂O₃, Mn₃O₄, Fe₃O₄, ZnO, Ga₂O₃, Y₂O₃, ZrO₂, Nb₂O₅, MoO₃, In₂O₃, SnO₂, La₂O₃, CeO₂, Ta₂O₅ and Tl₂O₃. The reaction was carried out with a fixed-bed flow type quartz reactor (i.d. 10×350 mm) at atmospheric pressure. Using 200 mg of a catalyst, 5 ml min⁻¹ of C₂H₆ and 25 ml min⁻¹ of CO₂ were introduced. The runs were conducted for 30 min and products were analyzed by gas chromatography.

Fig. 1 shows ethene yields on the various metal oxide catalysts. Thermal dehydrogenation occurred to give only 2.3% of ethene yield. Equilibrium conversion of ethane to ethene is *ca*. 50% at 650 °C at a C₂H₆–Ar (or CO₂) ratio of 1:5. MgO, CaO, SiO₂, Ta₂O₅, Al₂O₃, SnO₂, MoO₃, and Tl₂O₃ did not show any catalytic activity while CeO₂, Nb₂O₅, Fe₃O₄, and ZrO₂ exhibited only slight catalytic activity. The order of the activity of oxides at the reaction temperature of 650 °C was as follows: Ga₂O₃ > Cr₂O₃ > V₂O₅ > TiO₂ > Mn₃O₄ > In₂O₃ > ZnO > La₂O₃. The C₂H₄ selectivities in all the metal oxide catalysts were >85% in the dehydrogenation of ethane in the presence of CO₂. As expected, Cr₂O₃ and V₂O₅ exhibited high activities. These catalysts are known to be active catalysts for dehydrogenation of alkanes. Ga₂O₃ afforded the highest yield of ethene

Fig. 1 Dehydrogenation of C_2H_6 in the presence of CO₂. Catalyst 200 mg; temperature: 650 °C; C_2H_6 : CO₂ = 5:25 ml min⁻¹; SV = 9000 h⁻¹ ml (g cat)⁻¹.

(18.6%) amongst the various metal oxide catalysts. However, little work has dealt with Ga_2O_3 catalyst in the dehydrogenation of propane.⁸

Table 1 lists ethene yields on Ga_2O_3 , Cr_2O_3 , and V_2O_5 catalysts in the presence and absence of CO_2 . The activity of the Ga_2O_3 catalyst in the presence of CO_2 was twice that in the absence of CO_2 . Dehydrogenation of C_2H_6 in the presence of CO_2 over Ga_2O_3 catalyst produced mainly C_2H_4 , CO, H_2 and H_2O . The yield of ethene with the Cr_2O_3 catalyst in the presence of CO_2 was slightly higher as compared to the run in Ar. The promoting effect of CO_2 in the dehydrogenation of C_3H_8 on Cr_2O_3/SiO_2 has been reported,⁵ but the increase in the propene yield was only 2.6% at 550 °C. On the other hand, the effect of

Table 1 Dehydrogenation of ethane in the presence of carbon dioxide^a

Catalyst	Surface area/ m ² g ⁻¹	Conv. (%) C ₂ H ₆	Yield (%) C ₂ H ₄	Selectivity (%)		
				C_2H_4	CH ₄	C ₃ H ₈
$Ga_2O_3(CO_2)$	9.8	19.6	18.6	95.0	3.8	1.0
Ga ₂ O ₃ (Ar)	9.8	9.6	9.0	94.0	5.0	0.7
$Cr_2O_3(CO_2)$	2.8	12.1	11.4	93.8	5.8	0.4
$Cr_2O_3(Ar)$	2.8	10.4	10.2	97.6	1.8	0.6
$V_2O_5(CO_2)$	3.5	9.8	9.5	97.1	2.9	_
$V_2O_5(Ar)$	3.5	12.5	11.5	91.7	7.4	0.9

^{*a*} Reaction conditions: 650 °C, SV = 9000 h⁻¹ ml (g cat)⁻¹. Composition of the feed gas; $C_2H_6:CO_2(Ar) = 5:25$ ml min⁻¹.

 CO_2 on the yield of ethane with V_2O_5 in the presence of CO_2 was slightly detrimental. CO2 promoted dehydrogenation of ethane exclusively over Ga₂O₃ catalyst. To our knowledge, such a marked promotion effect of CO2 in a hydrocarbon conversion process has never been previously observed. The role of CO_2 in dehydrogenation of C_2H_6 over Ga_2O_3 catalyst is, as yet, unclear. With CO2 considerable amounts of CO and H2O were formed during the reaction, indicating reaction of $\ensuremath{\text{CO}}_2$ with H₂. The amount of H₂O was 1.09 mmol and that of CO was 1.07 mmol at 650 °C after 0.5 h. Dehydrogenation of C_2H_6 was strongly inhibited when Ga₂O₃ was impregnated onto a basic oxide such as MgO or La₂O₃. Another characteristic feature in the reaction in CO_2 is the increase in the yield of CH_4 . From these findings the role of CO₂ may be as follows: slightly acidic CO2 may strongly adsorb onto basic sites of gallium oxide, and as a result, the acidity of Ga₂O₃ would be enhanced. This possibility is reinforced by the fact that after dehydrogenation a certain amount of carbon was formed on the catalyst (Ga₂O₃, Cr_2O_3 , and V_2O_5). Dehydrogenation of ethane would be catalyzed by acid sites on Ga_2O_3 .

This work was supported by the Grant-in Aid for Scientific Research (C) No.09650864 from the Ministry of Education, Science and Culture Japan. K. N. is grateful for his research assistantship from the High Technology Research Center, Kansai University.

Notes and References

† E-mail: tsuzuki@ipcku.kansai-u.ac.jp

- 1 F. Cavani and F. Trifirò, Catal. Today, 1995, 24, 307.
- 2 H. H. Kung, Adv. Catal., 1994, 40, 1.
- 3 W. Ueda, S. W. Lin and I. Tohmoto, Catal. Lett., 1997, 44, 241
- 4 R. Burch and E. M. Crabb, Appl. Catal. A, 1993, 100, 111.
- 5 T. Nishiyama and K. Aika, J. Catal, 1990, 122, 346.
- 6 M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga and T. Suzuki, *Appl. Catal. A*, 1995, **121**, 125.
- 7 I. Takahara and M. Saito, Chem. Lett., 1996, 973.
- 8 T. Hattori, M. Komai, A. Satsuma and Y. Murakami, *Nippon Kagaku Kaishi*, 1991, **5**, 648.

Received in Cambridge, UK, 6th January 1998; 8/00184G