STEREOCHEMISTRY OF CIS-CLERODANE DITERPENES

SHUNICHI MANABE and CHIKAO NISHINO*

Mitsubishi-Kasei Institute of Life Sciences 11 Minamiooya, Machida-shi, Tokyo 194, Japan

(Received in Japan 29 November 1985)

Abstract - To piscicidal solidagolactones [IV, V, VII and VIII ($1 \sim 4$, cisclerodane diterpenes)] isolated from <u>Solidago altissima</u>, a non-steroidal conformation was assigned on the basis of chemical and physicochemical evidence. ¹³C NMR chemical shifts of methyl groups proved useful for determining stereochemistry of the A/B ring junction in clerodanes. For clerodanes having an epoxide, ¹H NMR data and the Tori equation were useful for assigning the epoxide configuration. Cremer's puckering parameters were used to express the conformation of the solidagolactones.

Introduction

Some erroneous assignments have been reported for absolute configurations¹, stereochemistry of the A/B ring junction² and epoxide configurations³ in clerodane diterpenes.

We have isolated solidaoglactones IV(1), V(2), VII(3) and VIII(4) (all <u>cis</u>-clerodane diterpenes) from <u>Solidago altissima</u> L. (Compositae) as piscicidal constituents, and determined their absolute configurations, as reported in short communications^{3,4}. In this paper, we wish to describe structure determination of $1 \sim 4$ in detail, and also to demonstrate the usefulness of ¹³C NMR chemical shifts of methyl groups, Cremer's puckering parameters and one of the Tori equations for determining stereochemistry of A/B ring junction, precise molecular conformation and epoxide configuration, respectively. The epoxide configurations of several cis-clerodanes are corrected in this study.

Isolation and Structures of Solidagolactones

By monitoring the piscicidal activity for killifish, we isolated piscicidal compounds $1 \sim 4$ from the methanol (MeOH) extract of <u>S. altissima</u> by column chromatographies and recrystallization $(1 \sim 3)$ (Scheme 1).

Compounds $1 \sim 3$ were the known solidagolactones IV, V and VII², respectively. ¹H NMR spectrum of 4, a new compound named as solidagolactone VIII, quite resembled to that of 3 except for protons on the C6 substituent [δ 1.81 (3H, dm, J=6.8 Hz, 1.89 (3H, m) and 6.90 (1H, qq, J=1.2 and 6.8 Hz)], which was assigned to tygloyloxyl moiety. The C6 protons (H6) showed a triplet in 1 (δ 3.71) or double doublets in 3 (δ 5.44) and 4 (δ 5.40) signals, all of which possessing small J values (2.50~2.80 Hz). This means that the H6 in these compounds is in equatorial position.

With diisobutylaluminum hydride (DIBAL) in tetrahydrofuran (THF) $(-35^{\circ} + -20^{\circ}C, 3.5)$ hr), 3 and 4 converted into furano-compounds 5 and 6, respectively, both of which showed the presence of a β -substituted furan ring in IR (ν_{max} 880 cm⁻¹) and ¹H NMR [δ 6.25 (1H, m), 7.21 (1H, m) and 7.35 (1H, t, J=1.5 Hz)] spectra. Both 5 and 6 gave identical

S. MANABE and C. NISHINO

furano-alcohol (7) [IR: $v_{\text{max}}(\text{film})$ 3480 cm⁻¹; ¹H NMR: 4.13 (1H, t, <u>J</u>=2.6 Hz, H6)] on treatment with lithiumaluminium hydride (LAH) (THF, $0^{O} + 15^{O}$ C, 3 hr). The OH proton of 7 resonated at very low field [δ 5.44 (1H, bs)]. On treatment with <u>m</u>-chloroperbenzoic acid (CH₂Cl₂, room temperature, 1 hr), 1 gave two epoxides 8 and 9 (ratio 1.7:1). According to usual epoxidation mechanism of homoallylic alcohol⁵, the major product 8 was expected to have a β -epoxide ring (Fig. 1-A). Accetate (10) yielded only α -epoxide 11 (identified by acetylation of 9) under the same epoxidation condition as performed for 1 (Fig. 1-B). From these observations, a non-steroidal conformation is assigned to 1.

In 8, an intramolecular hydrogen bond exists based on ¹H NMR signal at δ 5.41 and IR (CHCl₃) band at 3470 cm⁻¹ which was unaffected upon dilution. On the other band, 9 showed a strong band at 3600 cm⁻¹ and a weak band at 3475 cm⁻¹ (disappeared upon dilution) in IR (CHCl₃), and a multiplet signal at much higher field (δ 1.8) in ¹H NMR. Therefore, an intramolecular hydrogen bond exists between the β -C6-OH and the β -C3-C4 epoxide oxygen in 8 which afforded 7 on reaction with DIBAL (THF, -35° +-25°C, 3.5 hr). Thus, we assigned β -configuration to the epoxide ring of solidagolactone VII(3) and VIII(4). The former was previously reported as the α -epoxide compound².

McCrindle et al.⁶ added $Eu(dpm)_3$ in the ¹H NMR measurement of 12'b (antipode of 12'a), and gave a normalized ratio of 10 : 9.6 : 1.7 : 4.2 in the induced shifts of protons of C18, C19, C17 and C20 methyls, respectively. They gave a steroid-like conformation to 12'b (see below). We measured ¹H NMR of 12 (C8 epimer of 12'a), which was a DIBAL reduction product of 1, in the presence of $Eu(dpm)_3$. A normalized ratio for the C18, C19, C17 and C20 methyl protons was 3.9 : 5.3 : 2.0 : 3.3, respectively. The value of 5.3 of C19 methyl indicates an <u>anti-trans</u> relation to the axial C6-OH group. Our normalized ratio is consistent only with non-steroidal conformation, which also agrees with the above epoxidation results.

A direct confirmation to the stereochemistry of the solidagolactones was obtained by chemical reactions. 1 was treated with N-bromosuccinimide (NBS) (THF, room temperature, 45 min) to give an oxetane 13 in quantitative yield (attack of β -OH to C4). ¹H NMR spectrum of 13 showed a singlet signal of C18 methyl protons (expressed as H₃C18) at δ 1.66 and two double doublet signals at δ 4.09 (J=3.9 and 5.6 Hz) and 4.46 (J= 2.6 and 3.3 Hz)(H3 and H6 respectively). ¹³C NMR signals of 13 at δ 59.55 (d, C3), 79.81 (d, C6) and 84.62 (s, C4) supported the structure 13.

If a compound having an ether bond between C3 and C6 (14) was isolated, it should

prove the cis-A/B ring junction and nonsteroidal conformation. Indeed, on treatment of 13 with p-toluenesulfonic acid, 14 was obtained as a minor product (21%) together with a major product 15 (36%). ¹H NMR of 14 showed signals at δ1.82 (3H, s, H₃C18), 3.75 (1H, dd, J=2.2 and 3.1 Hz, H6) and 4.02 (1H, dd, J=1.7 and 3.0 Hz, H3). ¹³C NMR signals at 674.66 (s), 76.77(d) and 81.63(d) were assigned to C4, C3 and C6, respectively. If C4-O bond cleaves in preference to the C6-O bond, generating a carbenium ion on C4, the carbenium ion will collapse with the bromine atom at C3, forming a bromonium cation. Then, attack by the oxygen atom at C3 gives 14

(Fig. 2). 15 can be considered as originating from an intermediate 13'.

We conclude the 5α , 10α -<u>cis</u>-clerodane skeleton with β -C6-OH for the solidagolactones. The absolute configurations of the solidagolactones were determined by X-ray analyses³ and the CD benzoate method⁴ using p-bromobenzoate derivative (16). It is noted that there is no essential conformational change in 16 between solution and crystal.

Utilization of 13 C NMR Chemical Shifts of Pendant Methyls to Assign Stereochemistry of A/B Ring Junction of Clerodane Diterpenes

The X-ray analysis of tricyclosolidagolactone⁷ revised the stereochemistry of A/B ring junction of solidagolactones II ~ VII from <u>trans</u> to <u>cis</u>. The ¹³C chemical shifts of some pendant methyl groups of clerodane diterpenes is discussed here in relation to the stereochemistry of ring junction.

As shown in Table 1, 13C chemical shifts of C11 methyl of decalins and C19 methyl of steroids reflect stereochemistry of A/B ring junction. The methyl carbon atoms in <u>cis</u> resonate in a region of about 12 ppm higher field than those in <u>trans</u>. Similarly, C19's of our clerodanes resonate in a region higher than $\delta 20$, in particular around $\delta 25$. The corresponding carbon atoms of other <u>cis</u>-clerodanes also resonate in the same region, whereas C19's in <u>trans</u>-clerodanes appear at $\delta 11 \sim 19$. In <u>cis</u>-clerodanes, C20 resonates also at lower field ($\delta 21 \sim 29$) than that in <u>trans</u>-clerodanes ($\delta 17 \sim 19$).

¹³C chemical shift of a carbon atom is influenced by the shielding effect from carbon atoms with γ -gauche relationship^{15,16}. In <u>trans</u>-clerodanes, the number of carbon atoms having γ -gauche interaction with C19 is larger than that in <u>cis</u>-clerodanes. The chemical shifts of C20 indicate axial orientation in <u>trans</u>-clerodanes and equatorial in <u>cis</u>clerodanes. C17 carbon atoms are generally possess constant chemical shifts (around δ 15) because this methyl is equatorial in both cis- and trans-clerodanes.

 13 C chemical shifts of methyls, especially C19, are thus useful to distinguish between <u>cis</u> and <u>trans</u> ring junction in clerodane diterpenes.

Cremer's Ring Puckering Parameters for <u>cis</u>-Clerodane Diterpenes

For a quantitative conformational analysis for cyclopentanes, cyclohexanes and heterocyclic rings, Cremer and Pople¹⁷ have proposed a generalized set of packering coordinate, which is composed of three parameters, Q[total puckering amplitude: length (Å)], θ [magnitude of distortion from complete chair conformation: angle (degree)] and ϕ [magnitude in change of conformation: angle (degree)]. Calculation of Cremer's parameters needs Cartesian coordinate of the skeletal atoms¹⁷, which is derived from cell

	Compound		Reference		
	<u>cis</u> -10-Methyldecalin <u>trans</u> -10-Methyldecalin		24.1 ^a 12.1 ^a		8 8
			C19		
	58-Androstane 5g-Androstane Coprostane Chorestane		24.1 ^b 12.0 ^b 24.1 ^c 12.5 ^c		8 8 8 8
		C17	C19	C20	
<u>cts</u>	Tricyclosolidagolactone ^d 1 2 3 4 5 5 7 8 9 9 10 11 12 14 15 H 12 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0	_e 15.40 15.17 15.75 15.75 15.75 15.81 15.52 15.28 15.28 15.05 15.46 15.17 14.58 14.29	21.2 24.18 21.55 26.64 26.53 26.47 25.24 22.37 24.13 26.29 27.46 21.73 28.46	23.8 28.34 27.46 27.46 28.05 28.05 28.58 28.34 28.87 28.58 24.54 28.58 24.54 28.58 24.54 28.58 24.54 28.28 29.28	7
trans	2-Oxokolavenic acid Deacetylajugarin-II Teumassilin 6,19-Diacetylteumassilin Ajugarin-I Ajugarin-IV Eremone	15.8 15.5 15.6 15.5 15.3 15.4 7.8	19.5 *f * 10.6 (18.5 ⁹ 18.8 18.9	17.8 17.6 17.6 17.3 17.3 17.8 (18.5 ⁹ 18.8 18.9	10 11 11 12 13 14

Table 1 ¹³C Chemical Shifts of Pendant Methyl Groups in ¹³C MMR (& ppm in CDCl₃, unless otherwise stated)

a: Taken with neat liquid with TMS. b: Taken in a $CDCl_3$ solution and originally shown in shift values upfield from CS_2 . Values converted to the TMS scale are shown here. c: Taken in a CH_2Cl_2 , $CH_2Cl-CDCl_3$ or CH_2Cl_2 -dioxane solution. The chemical shifts were originally referenced to CH_2Cl_2 as internal standard and converted to the CS_2 scale. Values in this table are reconverted from the CS_2 scale to the TMS scale. d: The reported shift values were assigned by us. e: This carbon is included in the cyclic structure. f: Substituents are not methyl group. g: These assignments may be reversed.

Table 2. Cartesian Coordinates (Å) for Decalin Skeleton of 16

			X	Y	2				x	Y	. Z
A-ring	origin at Cl	C1 C2 C3 C4 C5 C10	0 1.2759 1.264 5 0.0359 -1.3550 -1.2216	1.3988 0.7734 -0.7149 -1.4641 -0.7648 0.7714	-0.3792 0.2159 0.0383 -0.1296 -0.0337 0.2879	8-ring	origin at C9	C5 C6 C7 C8 C9 C10	1.0366 -0.0697 -1.0720 -0.9941 0 1.0990	-0.7478 -1.2160 -0.5923 0.7025 1.2536 0.5996	0.1287 -0.1680 0.2179 -0.2288 0.1895 -0.1895

coordinates induced from X-ray data.

In clerodane diterpenes, Eguren et al.¹⁸ have reported Cremer's puckering parameters for <u>neo-</u> and <u>norneo-</u>clerodanes having <u>trans</u> A/B ring junction. For <u>cis-</u>clerodanes, however, none of the parameters has been reported yet.

The cell coordinates in the X-ray data for the skeletal carbons of p-bromobenzoate (16) were transformed to Cartesian coordinates (Table 2). In this case, C1 and C9 were

chosen as origins of the A- and B-ring, respectively¹⁸. Q, θ and ϕ values were evaluated to be $Q_A = 0.541$ Å and $Q_B = 0.447$ Å, $\theta_A = 124.4^{\circ}$ and $\theta_B = 11.8^{\circ}$, and, $\phi_A = 170.7^{\circ}$ and $\phi_B = -281.9^{\circ}$. These values imply that the A-ring takes an envelope conformation flapping at C1, and the B-ring a slightly deformed chair conformation flattening at C5 (Fig. 3-A). The tortion around the C5-C10 axis is shown by dihedral angles of C4-C5-C10-C1 (35.60°) and C8-C5-C10-C9 (43.02°)(Fig. 3-B).

Utilization of the Tori Equation to Assign Epoxide Configuration on Clerodane Skeleton Table 3 compiles ¹H NMR data of the epoxide proton (H3) and C19 methyl protons (H3C19) of clerodane diterpenes possessing a C3-C4 epoxide.

In our compounds, coupling patterns and/or coupling constants of H3 signals showed clear differences between α - and β -epoxides, despite no significant difference in their chemical shifts. Singlet or doublet signals having small <u>J</u> values (1.5 ~ 2.4 Hz) were observed in the β -epoxides, while doublet signals have a large value (<u>J</u>=5.1 Hz) in the α epoxides. C19 methyl protons resonated at a lower field (δ 1.19 ~ 1.27) in the β -epoxides than in the α -epoxides (δ 1.16). According to these observations, the previous epoxide configurations should be revised as indicated in Table 3.

Tori et al.¹⁹ have proposed an equation, J=5.1 \cos^{20} , to correlate coupling constants of epoxide protons with dihedral angles in the C-CH-CH-CC system of steroidal epoxides (episulfides). We wish to show here that the equation is useful for the confiurational assignment of epoxides in clerodane diterpenes.

From the X-ray data of 16, the dihedral angles of H3-C3-C2-H_a2 and H3-C3-C2-H_B2 are 47.80° and 71.80°, respectively (Fig. 4-B), which respectively corresponds to $J_{3,2a} = 0.50$ and $J_{3,2B} = 2.30$ Hz by the Tori equation. These J values agree with the observed values, $J_{3,2a} = -0$ and $J_{3,2a} = 1.5$ Hz in 16; $J_{3,2a} = -0$ and $J_{3,2B} = 2.40$ Hz in 7 and 8.

The A-ring of 1 is expected to have dihedral angles of ca. 30° and ca. 90° at H3-C3-C2-Hq2 and H3-C3-C3-Hg2, respectively (Fig. 4-A). This means that the change of ca. 18° occurs in these dihedral angles between 1 and the β -epoxide 8. In α -epoxide (9), the change of also ca. 18° is expected for these dihedral angles, namely, ca. 12° for H3-C3-C2-H_q2 and ca. 108° for H3-C3-C2-H_g2 (Fig. 4-C). The values, $J_{3,2\alpha} = 4.88$ (12°) and $J_{3,2\beta} = 0.49$ Hz (108°), calculated from the Tori equation agreed with the observed values ($J_{2,3\alpha} = 5.1$ and $J_{3,2\beta} = -0$ Hz).

EXPERIMENTAL.

Melting points were uncorrected. Specific rotations were measured in ethanol (EtOH), unless otherwise stated, at 25° C with a Union automatic polarimeter PM-201. UV spectra were recorded in RtOH on a Cary 17 UV spectrometer. CD curves were run in EtOH

S. MANABE and C. NISHINO

Table 3. ¹H NMR Data of H3 and H₂19 of α - and β -Epoxide in Clerodane Diterpenes (Taken in CDC1₃ and TMS. unless otherwise stated)

P	Original assignment to α-epoxide					P	Original assignment to β-epoxide				
unodi	НЗ		H ₂ C19		Revision of	inodu	НЗ		н _з с19		Revision of
00	δppm	J(Hz)	δρρα	Reference	epoxide configuration	ů	óppan	<u>J</u> (Hz)	óppm	Reference	configuration
2	3,11	5.1	1.16	this work	-	ъ	2.75	bs	1.22	this work	-
11	3.04	5.1	1.16	н	-	4	2.75	bs	1.22	• •	-
174	-	-	1.22	2,20	+ β	5	2,75	bs	1,27	••	-
18	2.72	s	1.22	2	+8(3) ^b	5	2.75	bs	1,27	11	-
18	2.74	br	1.22	9	+B(3)	2	3.01	2.4	1.19	"	-
19	2.70	s	1.26	2	+B(5)	16	2.75	1.5	1.26		-
20	2.75	br	1.22	9	+B(£)	23	3.04	4	1.14	9	+a
21	2.99	2	1.20	6	+ β	24	3.04	4	1.16	9	+a
220	2.77	₩115	1.27	6	+ β	25	2.99	5.0	1.08	6	+a
						26 ^d	2.89	5.0	1.17	6	+a
	XorY	17 R=0•A	Ac, X (11)) ^b 20 R=0•Tig	., х н ү			X or Y	23 R=0•	Ang., X (3)	
\sim		~ 18 R-0•A	~ Ang., X	~ 21 R=H, Y	\sim	and and	\sim		~ 24 R=0•	Tig., X (4)	
	\mathbf{Y}	~ 19 R=0•A	Ang., Y	~				\mathbf{k}	~ 25 R=H,	Y	Y-
0.1	l R	~			0~	22	0*1		~ 26 R=H,	x	¢07

a, No ¹H NMR data in reference 2, but only H₂C19 in reference 20. b, Compounds in parentheses indicate our compounds. c, Taken in CCl₄. d, The ¹H NMR data was presented by Anthonsen <u>et al</u>. (<u>Acta Chem Scand</u>, 1971, <u>25</u>, 1924).

on a JASCO J-40A spectropolarimeter. IR spectra were recorded on a Hitachi Model 260-50 IR spectrometer. ^{1}H NMR and ^{13}C NMR spectra were taken in CDCl₃ and TMS with a JEOL FX90Q spectrometer at 89.55 MHz and 22.50 MHz, respectively. Mass spectra (MS) were measured with a Shimadzu GCMS-7000 mass spectrometer using a direct inlet system. Exact MS were obtained with a JEOL JMS-01SC mass spectrometer. E. Merck silica gel (60, particle size 0.063-0.2 mm) and Wako alumina activated (200 mesh) were used for column chromatographies. The above silica gel impregnated with 10% (w/w) $AgNO_3$ was also used for column chromatography. Preparative thin layer chromatography (TLC) was performed on 2mm x 20cm x 20cm E. Merck precoated silica gel plates (60F-254) or E. Merck precoated aluminum oxide plates (150F-254, type T).

Isolation of piscicidal solidagolactones.

Isolation procedure is shown in Scheme 1.

¹³<u>C NMR</u> data of solidagolactones

Physical data other than ¹³C NMR are reported in a previous paper³ for solidagolactones $(1 \sim 4)$ isolated.

Solidagolactone IV [(5R, 6R, 8R, 9R, 10S)-6-Hydroxy-cis-cleroda-3,13-diene-15,16-olide (1)], ¹³C NMR, δppm : 15.40 (q, C17), 18.33 (q, C18), 22.55 (t, C2), 23.25 (t, C11), 24.18 (q, C19), 26.35 (t, C1), 28.34 (q, C20), 30.63 (d, C8), 32.91 (t, C7), 33.67 (t, C12), 38.65 (s, C9), 44.21 (s, C5), 44.21 (d, C10), 71.27 (d, C6), 73.02 (t, C16), 115.13 (d, C14), 128.77 (d, C3), 137.03 (s, C4), 171.10 (s, C13), 173.86 (s, C15). $\frac{\text{Solidagolactone V}}{\text{: 15.17 (q, C17), 19.56 (t, C2), 20.26 (q, C18), 21.55 (q, C19), 22.78 (t, C1), 23.54 (t, C1), 24.24 (t, C20), 34.84 (t, C12), 38.00 (d, C8), 38.82 (s, C9), 44.15 (t, C7), 46.32}$ (d, C10), 52.29 (s, C5), 72.96 (t, C16), 115.30 (d, C14), 124.96 (d, C3), 134.27 (s, C4), 170.52 (s, C13), 173.68 (s, C15), 215.08 (s, C6). <u>Solidagolactone VII</u> [<u>(38, 4R, 5R, 6R, 8R, 9R, 10S)-3,4-Epoxy-6-angeloyloxy-cis-cleroda-13-ene-15,16-olide)</u> (3)] ¹³C NMR, δ ppm : 15.75 (q, C17 and, C4' or C5'), 19.03 (t, C2), 20.73 (q, C4' or C5'), 21.73 (q, C18), 23.42 (t, C11), 26.64 (q, C19), 27.64 (q, C20), 27.76 (t, C1), 32.56 (t, C7), 32.91 (d, C8), 34.49 (t, C12), 38.30 (s, C9), 40.41 (s, C5), 45.21 (d, C10), 57,27 (d, C3), 61.66 (s, C4), 75.50 (d, C6), 72.96 (t, C16), 115.30 (d, C14), 128.65 (s, C2'), 137.73 (d, (38, <u>4R</u>, δppm : 12.18 (q, C4' or C5'), 14.41 (q, C4' or C5'), 15.75 (q, C17), 19.15 (t, C2), 21.61 (q, C18), 23.42 (t, C11), 26.53 (q, C19), 27.46 (q, C20), 27.70 (t, C1), 32.38 (t, C7),

32.73 (d, C8), 34.43 (t, C12), 38.30 (s, C9), 40.41 (s, C5), 45.15 (d, C10), 57.33 (d, C3), 61.66 (s, C4), 72.96 (t, C16), 73.20 (d, C6), 115.24 (d, C14), 129.42 (s, C2'), 136.68 (d, C3'), 167.41 (s, C1'), 170.69 (s, C13), 173.68 (s, C15).

DIBAL reduction of 3 and 4. To a THP (15 ml) solution of 3 (245 mg), 1M THF solution of DIBAL (0.66 ml) was added dropwise at -35°C in argon atmosphere. After stirring for 3.5 hr (-35⁰⁺ -20^oC) 10% H₂SO₄ (aq. soln.) (0.5 ml) was added to the reaction mixture, and the mixture was further stirred for 20 min. at $-20^{\circ} + -25^{\circ}$ C. After addition of water (5.0 ml), the reaction mixture was extracted with BtOAc. The BtOAc layer was evaporated to give a residue. Silica gel preparative TLC (benzene - EtOAc, 4 : 1) of the residue gave 5 (106.3 mg : conversion yield, 63%) and unchanged 3 (70.0 mg). Similarly, 6 (58.0 mg, conversion yield 57%) was given from 4 (138 mg). 5, $[a]_D -23.6^{\circ}$ (c 1.10). $v_{max}^{\pm 1}$, cm⁺¹: 1712, 1650, 1238, 878. ¹H NMR, δ ppm : 0.86 (3H, d, J = 6.4 Hz, H_3C17), 1.03 (3H, s, H_3C20), 1.27 (3H, s, H_3C19), 1.31 (3H, s, H_3C18), 1.99 (3H, m, H_3C5'), 2.04 (3H, dm, J = 6.8 Hz, H_3C4'), 2.75 (1H, bs, H3'), 5.44 (1H, dd, J = 2.2 and 3.5 Hz, H6), 6.06 (1H, qq, J = 1.1 and 6.8 Hz, H3'), 6.25 (1H, m, H of furan), 7.21 (1H, m, H of furan), 7.35 (1H, t, J = 1.6 Hz, H of furan). ¹³C NMR, δ ppm : 15.75 (q, C17 and C4' or C5'), 19.09 (t, C2), 19.32 (t, C11), 20 79 (q, C4' or C5'), 21.67 (q, C18), 26.53 (q, C19), 27.82, (t, C1), 28.05 (q, C20), 32.62 (t, C7), 32.85 (d, C8), 37.36 (t, C12), 38.30 (s, C9), 40.35 (s, C5), 44.74 (d, C10), 57.39 (d, C3), 61.90 (s, C4), 72.73 (d, C6), 110.91 (d, C14), 125.56 (s, C13), 128.83 (s, C2), 137.44 (d, C3), 138.43 (d, C16), 142.77 (d, C15), 167.07 (s, C1). MS, $\underline{m/z}$: 400 (M⁺, C25H3604), 382 (M⁺-H20), 317 (M⁺-CH3(H)C=C(CH3)CO), 301 (M⁺-CH3(H)C=C(CH3)CO_2), 300 (M⁺-CH3(H)C=C(CH3)CO_2H). **6**, mp. 84.50-86°C (bexane-EtOAc). [α]_D -31.9°(c 0.345). ν $\frac{f1}{Mk}$, cm⁻¹ : 1710, 1655, 1270, 880. ¹H NMR, δ ppm : 0.85 (3H, d, J = 6.6 Hz, H3C17), 1.04 (3H, s, H3C20), 1.27 (3H, s, H3C19), 1.29 (3H, s, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C19), 1.29 (3H, s, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C19), 1.29 (3H, s, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, dm, J = 6.8 Hz, H3C4'), 1.90 (3H, m, H3C5'), 2.75 (1H, bs, H3C18), 1.80 (3H, J = 6.8 Hz, H3C4'), 1.90 H3), 5.41 (1H, dd, J = 2.4 and 3.5 Hz, H6), 6.26 (1H, m, H of furan), 6.91 (1H, qq, J 1.2 and 6.8 Hz, H3¹), 7.21 (1H, m, H of furan), 7.35 (1H, t, J = 1.5 Hz, H of furan). 13 C NMR, δ ppm : 12.24 (q, C4' or C5'), 14.41 (q, C41 or C51), 15.81 (q, C17), 19.27 (t, C2), 19.38 (t, C11), 21.55 (q, C18), 26.47 (q, C19), 27.82 (t, C1), 28.05 (q, C20), 32.50 (d, C8), 32.73 (t, C7), 37.36 (t, C12), 38.30 (s, C9), 40.41 (s, C5), 44.80 (d, C10), 57.45 (d, C3), 61.96 (s, C4), 73.49 (d, C6), 110.91 (d, C14), 125.55 (s, C13), 129.59 (s, C2'), 136.50 (d, C4'), 138.43 (d, C16), 142.77 (d, C15), 167.53 (s, C1'). MS, m/z : 400 $(M^+, C_{25}H_{36}O_4)$, 385 (M^+-CH_3) , 382 (M^+-H_2O) , 317 $(M^+-CH_3(H)C=C(CH_3)C)$,301 $(M^+-CH_3(H)C=C(CH_3)C)$ $CH_3(H)C=C(CH_3)CO_2$, 300 ($M^+-CH_3(H)C=C(CH_3)CO_2H$). Anal. Calcd. for $C_{25}H_{36}O_4$: C, 74.96;

H, 9.06. Found : C, 75.17; H, 9.21.

LiAlH₄ reduction of 5 and 6. To a mixture of LiAlH₄ (20 mg) and THF (2 ml), a THF (1 ml) solution of 5 or 6 (30 mg) was added dropwise in argon atmosphere under icecooling, and the reaction mixture was stirred for 3 hr at 15°C. After a small amount of an aqueous solution of potassium sodium tartrate was added to the mixture under icecooling, and then the mixture was filtered. The filtrate was concentrated to give a residue which was chromatographed on silica gel (benzene-EtOAc, 4 : 1). The obtained 7 (18.4 mg, 77%) was a colorless oil. 7, $[a]_D = 28.0^{\circ}$ (\underline{c} 0.900). $v_{\text{mfg}}^{\text{fg}}$ m, cm⁻¹ : 3480, 875. ¹H NMR, 6ppm : 0.85 (3H, d, $\underline{J} = 7.0$ Hz, H₃Cl7), 1.02 (3H, s, H₃C20)1.19 (3H, s, H₃Cl9), 1.37 (3H, s, H₃Cl8), 3.01 (1H, d, $\underline{J} = 2.4$ Hz, H3), 4.13 (1H, t, $\underline{J} = 2.6$ Hz, H6), 5.44 (1H, bs, OH), 6.25 (1H, m, H of furan), 7.20 (1H, m, H of furan), 7.35 (1H, t, $\underline{J} = 1.5$ Hz, H of furan). ¹³C NMR, 6ppm : 15.58 (q, C17), 19.38 (t, C11), 19.91 (t, C2), 21.78 (q, C18), 25.24 (q, C19), 27.46 (t, C1), 28.58 (q, C20), 30.98 (d, C8), 33.85 (t, C7), 37.42 (t, C12), 38.47 (s, C9), 39.70 (s, C5), 43.57 (d, C10), 59.91 (d, C3), 65.70 (s, C4), 74.43 (d, C6), 110.91 (d, C14), 125.61 (s, C13), 138.43 (d, C16), 142.76 (d, C15). MS, $\underline{m/z}$: 318 (M⁺, C₂₀H₃₀O₃), 300 (M⁺-H₂O), 285 (M⁺-H₂O-CH₃). Exact MS, $\underline{m/z}$: 318.2192 (Calcd. for C₂₀H₃₀O₃, 318.2195).

Epoxidation of 1. To a CH₂Cl₂ solution of 1 (400 mg), solid NaHCO₃ (330 mg) and m-chloroperbenzoic acid (326 mg) were successively added and stirred for 1 hr at room temperature. To consume exess peracid, dimethylsulfide (0.2 ml) was added to the reaction mixture and followed by the addition of water (10 ml). After extraction of reaction mixture with CH₂Cl₂ (30 ml x 4), the CH₂Cl₂ extract was chromatographed on silica gel (hexane-EtOAc, 2 : 1) to give 8 (237 mg, 56.4%) and 9 (137 mg, 32.6%) (8 : 9 = 1.7 : 1) as colorless oils. 8, $[\alpha]_D - 27.2^{\circ}$ (c 1.14). $v \frac{max}{m}$, cm⁻¹ : 3475, 1780, 1745, 1638; $v \frac{max}{m}$ (31, cm⁻¹ : 3470, 1785, 1750, 1640. ¹H NMR, δ ppm : 0.87 (3H, d, \underline{J} = 6.8 Hz, H₃Cl7), 1.00 (3H, s, H₃C20), 1.14 (3H, s, H₃Cl9), 1.37 (3H, s, H₃C18), 3.02 (1H, d, \underline{J} = 2.4 Hz, H3), 4.13 (1H, bt, \underline{J} = 2.7 Hz, H6), 4.75 (2H, d, \underline{J} = 1.8 Hz, H16), 5.41 (1H, bs, 0H), 5.83 (1H, tt, \underline{J} = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 15.52 (q, C17), 19.91 (t, C2), 21.73 (q, C18), 23.42 (t, C11), 25.24 (q, C19), 27.29 (t, C1), 28.34 (q, C20), 30.86 (d, C8), 33.73 (t, C7), 34.43 (t, C12), 38.41 (s, C9), 39.64 (s, C5) 43.86 (d, C10), 59.73 (d, C3), 65.53 (s. C4), 72.96 (t, C16), 74.14 (d, C6), 115.18 (d, C14), 170.76 (s, C13), 173.68 (s, C15). MS, m/z : 334 (M⁺, C₂₀H₃₀₀O₄), 316 (M⁺-H₂O). Exact MS, m/z : 334.2145 (Calcd. for C₂₀H₃₀₀O₄, 334.2144). 9, $[\alpha]_D - 17.1^{\circ}$ (c 1.29). $v \frac{max}{max}$ (m⁻¹ : 3460, 1780, 1745, 1638; $v \frac{max}{mx}$), cm⁻¹ : 3600, 3475, 1785, 1750, 1640. ¹H NMR, δ ppm : 0.87 (3H, d, \underline{J} = 1.8 Hz, H16), 5.82 (1H, tt, \underline{J} = 1.5 and 1.8 Hz, H3), 3.82 (1H, bt, \underline{J} = 2.6 Hz, H6), 4.73 (2H, d, \underline{J} = 1.8 Hz, H16), 5.82 (1H, tt, \underline{J} = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 0.87 (3H, d, \underline{J} = 6.4 Hz, H₃Cl7), 0.97 (3H, s, H₃C20), 1.16 (3H, s, H₃C19), 1.40 (3H, s, H₃C18), around 1.8 (1H, OH), 3.11 (1H, s, \underline{J} = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 15.28 (q, C17), 19.32 (q, C18), 20.55 (

<u>Acetylation of 1.</u> To a solution of 1 (92.6 mg) in CH₂Cl₂ (1.5 ml), N,N-dimethyl-4-aminopyridine (214 mg) and acetic anhydride (0.13 ml) were added at room temperature, and stirred for 3 hr at room temperature. After the addition of 1N-HCl (aq. soln.) (12.8 ml), the reaction mixture was extracted with ether (40 ml + 15 ml). Removal of the solvent from the ether layer gave a residue which was subjected to preparative silica gel TLC (henzene-EtOAc, 2 : 1) to afford 10 (99.4 mg, 94.8%), $[a]_D + 22.5^{\circ}$ (<u>c</u> 1.04). λ_{max} , nm : 203.5 (c 18400). \vee_{max}^{flm} , cm⁻¹ : 1778, 1740, 1720, (sh.), 1638, 1245. ¹H NMR, δ ppm : 0.87 (3H, d, <u>J</u> = 6.4 Hz, H₃Cl7), 1.06 (3H, s, H₃C20), 1.19 (3H, s, H₃C19), 1.56 (3H, bs, H₃C18), 1.99 (3H, s, CH₃C0), 4.76 (2H, d, <u>J</u> = 1.8 Hz, H16), 4.96 (1H, dd, <u>J</u> = 2.2 and 3.1 Hz, H6), 5.52 (1H, m, H3), 5.84 (1H, tt, <u>J</u> = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 15.28 (q, C17), 18.39 (q, C18), 21.26 (q, C0CH₃), 21.78 (t, C2), 23.19 (t, C11), 24.54 (q, C19), 26.47 (t, C1), 28.11 (q, C20), 31.62 (t, C7), 31.91 (d, C8), 33.79 (t, C12), 38.53 (s, C9), 42.81 (s, C5), 44.74 (d, C10), 72.96 (t, C16), 74.02 (d, C6), 115.18 (d, C14), 124.79 (d, C3), 137.55 (s, C4), 169.82 (s, C0CH₃), 170.87 (s, C13), 173.74 (s, C15). MS, m/z : 360 (M⁺, C₂₂H₃₂O₄), 318 (M⁺-CH₂O), 317 (M⁺-CH₃OO), 300 (M⁺-CH₃OO₂H). Exact MS, <u>m/z</u> : 300.2091 (Calcd. for C₂₂H₃₂O₄=CH₃OO₂H, 300.2089).

<u>Epoxidation of</u> 10. Using 10 (48.0 mg), a crude epoxide 11 was obtained by the same procedure as performed in the epoxidation of 1 [m-CPBA (28 mg), for 40 min at room temperature, (CH₃)₂S(0.05 ml)]. The crude 11 was purified by a preparative silica gel TLC (benzene-EtOAc, 3 : 2) to give pure 11 (46.7 mg, 93.2%), [α]_D -13.0° (<u>c</u> 0.920). λ_{max} , nm : 204.1 (c 16300). \vee_{max}^{H} , cm⁻¹ : 1780, 1745, 1640, 1243. ¹H NMR, ⁶ ppm : 0.85 (3H, d, <u>J</u> = 6.0 Hz, H₃C17), 0.98 (3H, s, H₃C20), 1.16 (3H, s, H₃C19), 1.24 (3H, s,

3468

H₃C18), 2.07 (3H, s, CH₃CO), 3.04 (1H, d, $\underline{J} = 5.1$ Hz, H3), 4.74 (2H, d, $\underline{J} = 1.8$ Hz, H16), 4.84 (1H, t, $\underline{J} = 2.9$ Hz, H6), 5.82 (1H, tt, $\underline{J} = 1.5$ and 1.8 Hz, H14). $13\overline{C}$ NMR, δ ppm : 15.05 (q, C17), 18.68 (q, C18), 19.91 (t, C2), 21.43 (q, COCH₃), 21.90 (q, C19), 23.13 (t, C1 or C11), 24.30 (t, C1 or C11), 28.69 (q, C20), 31.27 (t, C7), 31.27 (d, C8), 33.38 (t, C12), 38.41 (s, C9), 40.17 (d, C10), 40.93 (s, C5), 62.31 (d, C3), 64.24 (s, C5), 72.96 (t, C16), 75.89 (d, C6), 115.13 (d, C14), 169.82 (s, COCH₃), 170.76 (s, C13), 173.74 (s, C15). MS, m/z : 376 (M⁺, C₂₂H₃₂O₅), 361 (M⁺-CH₃), 334 (M⁺-CH₂O), 317 (M⁺-CH₃CO₂), 316 (M⁺-CH₃CO₂H). Exact MS, m/z : 376.2268 (Calcd. for C₂₂H₃₂O₅, 376.2249).

<u>DIBAL</u> reduction of 8. By the same method as described in "DIBAL reduction of 3 and 4", 8 (94 mg) was reacted with DIBAL [1M THF soln. (0.62 ml) of DIBAL] and finally gave a residue which was purified by preparative silica gel TLC (benzene-EtOAc, 3:1. The TLC afforded unchanged 8 (13.4 mg)and desired 7 (45.2 mg, conversion yield, 58.9%).

<u>Compund</u> 12. The same DIBAL reduction method as described above was performed for 1. 1 (170 mg) and 1M THF solution (1.3 ml) of DIBAL finally gave unchanged 1 (37 mg) and 12 (68 mg, conversion yield, 53.7%) by purification on preparative silica gel TLC (benzene-EtOAc, 4: 1). 12, $[^{a}]_{D}$ + 12.6° (c 0.950). $\vee_{\text{Max}}^{\text{max}}$, cm⁻¹: 3560, 3470 (sh.), 878. ¹H NMR, δ ppm : 0.86 (3H, d, J = 6.6 Hz, H₃Cl7), 1.05 (3H, s, H₃C20), 1.21 (3H, s, H₃C19), 1.70 (3H, bs, H₃C18), 3.69 (1H, t, J = 2.5 Hz, H6), 5.83 (1H, m, H3), 6.25 (1H, m, H of furan), 7.19 (1H, m, H of furan), 7.33 (1H, t, J = 1.5 Hz, H of furan). δ ppm [with 0.84 mol. equiv. of Eu(dpm)₃] : 2.73 (3H, d, J = 6.6 Hz, H₃Cl7), 4.20 (3H, s, H₃C20), 5.36 (3H, bs, H₃C18), 6.22 (3H, s, H₃C19); Normarized ratio : 2.0 : 3.3 : 3.9 : 5.3, respectively. ¹³C NMR, δ ppm : 15.46 (q, C17), 18.33 (q, C18), 19.09 (t, C11), 22.60 (t, C2), 24.13 (q, C19), 26.41 (t, C1), 28.58 (q, C20), 30.68 (d, C8), 33.03 (t, C7), 36.66 (t, C7), 36.66 (t, C12), 38.71 (s, C9), 43.92 (d, C10), 44.33 (s, C5), 71.56 (d, C6), 110.97 (d, C14), 125.84 (s, C13), 128.77 (d, C3), 137.32 (s, C4), 138.43 (d, C16), 142.65 (d, C15). MS, <u>m/z</u> : 302 (M⁺, C₂OH₃₀O₂), 287 (M⁺-CH₃), 284 (M⁺ -H₂O). Exact MS, <u>m/z</u> : 302.2235 (Calcd. for C₂OH₃₀O₂, 302.2245).

<u>Compound</u> 13. To a THF (2.0 ml) solution of 1 (86 mg), NBS (96 mg) was added, and stirred for 1.5 hr at room temperature. After the addition of sodium thiosulfate (Na₂S₂O₃, 5H₂O) and water (5.0 ml), the reaction mixture was extracted with ether (20 ml x 3). The ether layer was concentrated to give a residue which was purified by preparative silica gel TLC (CHCl₃-EtOAc, 4 : 1) to afford 13 (102 mg, 95.2%), $[\alpha]_D$ -42.2^O (<u>c</u> 0.900). $v_{\text{max}}^{\text{fil}}$ m, cm⁻¹ : 1780, 1745, 1640. ¹H NMR, δ ppm : 0.86 (3H, <u>J</u> = 6.8 Hz, H₃Cl7), 0.97 (3H, s, H₃C20), 1.16 (3H, s, H₃Cl9), 1.66 (3H, s, H₃Cl8), 4.09 (1H, dd, <u>J</u> = 3.9 and 5.6 Hz, H6 or H3), 4.46 (1H, dd, <u>J</u> = 2.6 and 3.3 Hz, H3 or H6), 4.75 (2H, d, <u>J</u> = 1.8 Hz, H16), 5.82 (1H, qq, <u>J</u> = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 15.17 (q, C17), 20.20 (t, C2), 22.84 (t, C11), 24.54 (q, C20), 24.83 (q, C18), 26.29 (q, C19), 29.34 (t, C1), 29.87 (t, C7), 30.10 (d, C8), 34.20 (t, C12), 37.59 (s, C9), 40.70 (d, C10), 41.99 (s, C5), 59.55 (d, C3), 34.20 (t, C12), 37.59 (s, C4), 115.24 (d, C14), 170.46 (s, C13), 173.57 (s, C15). MS, <u>m/z</u> : 398 (M⁺ + 2)/396 (M⁺, C₂₀H₂₉O₃Br-Br, 317.2116), 316.2053 (Calcd. for C₂₀H₂₉O₃Br-HBr, 316.2038).

<u>Compounds</u> 14 and 15. Compound 13 (60.0 mg) was dissolved in CH₂Cl₂ (3 ml). To the solution, p-toluenesulfonic acid (5 mg) was added and stirred for 7 hr at room temperature. To the reaction mixture, saturated NaHCO₃ was added and extracted with CHCl₃ (15 ml x 3). The CHCl₃ extract was subjected to a preparative silica gel TLC (hexane-EtOAc, 2 : 1) to give two fractions, one of which contained 14 and, another of which 15. Either fraction was purified by HPLC [Lichrosorb SI-60 (5 μ m; column, 4.6 mm x 250 mm); hexane-EtOAc, 1 : 3; flow rate, 1.5 ml/min] to give 14 (12.6 mg, 21.0%) and 15 (17.3 mg, 36.3%). 14, [a]_D -63.9° (c 0.360). $\vee \frac{f1}{M}$ m⁻¹ : 1780, 1745, 1640. ¹H NMR, δ ppm : 0.88 (3H, d, J = 6.8 Hz, H₃Cl7), 1.00 (3H, s, H₃C20), 1.14 (3H, s, H₃Cl9), 1.82 (3H, s, H₃C18), 3.75 (1H, dd, J = 2.2 and 3.1 Hz, H6 or H3), 4.02 (1H, dd, J = 1.7 and 3.0 Hz, H3 or H6), 4.76 (2H, d, J = 1.8 Hz, H16), 5.84 (1H, tt, J = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 14.58 (q, C17), 16.63 (t, C2), 17.33 (q, C18), 22.90 (t, C11), 27.46 (q, C19), 28.28 (q, C20), 29.87 (d, C8), 31.33 (t, C1, C7 or C12), 32.21 (t, C1, C7 or C12), 32.91 (t, C1, C7 or C12), 39.94 (s, C9), 43.57 (d, C10), 45.91 (s, C5), 72.96 (t, C16), 74.66 (s, C4), 76.77 (d, C3), 81.63 (d, C6), 115.24 (d, C14), 170.52 (s, C13), 173.68 (s, C15). MS, m/z : 398 (M⁺ + 2)/396 (M⁺, C₂₀H₂₉O₃Br-Br, 317.2116). 15, [a]_D -56.6° (c 0.530). $\vee \frac{f1}{M}$ m, cm⁻¹ : 1780, 1745, 1640. ¹H NMR, δ ppm : 0.91 (3H, d, J = 7.0 Hz, H₃Cl7), 1.06 (3H, s, H₃C20), 1.22 (3H, s, H₃C19), 4.08 (1H, dd, J = 8.1 and 9.5 Hz, H6), 4.29 (1H, dm, J = 13.0 Hz, H18), 4.50 (1H, dm, J = 13.0 Hz, H18), 4.76 (2H, d, J = 1.8 Hz, H16), 5.45 (1H, bt, J = 3.1 Hz, H3), 5.85 (1H, tt, J = 1.5 and 1.8 Hz, H14). ¹³C NMR, δ ppm : 14.29 (q, C17),

17.74 (t, C2), 21.73 (q, C19), 22.19 (t, C1), 23.54 (t, C11), 29.28 (q, C20), 30.80 (t, C7), 36.60 (d, C9), 37.48 (t, C12), 38.00 (s, C9), 41.39 (s, C5), 42.75 (d, C10), 67.75 (t, C18), 72.96 (t, C16), 115.18 (d, C14), 115,95 (d, C3), 143.29 (s, C4), 170.87 (s, C13), 173.80 (s, C15). MS, $\underline{m/z}$: 316 (M⁺, C₂₀H₂₈O₃), 301 (M⁺-CH₃), 283 (M⁺-CH₃-H₂O). Exact MS, m/z : 316.1672 (Calcd. for C20H2803, 316.2038), 301, 1793 (Calcd. for C20H2803-CH₃, 301.1803).

p-Bromobenzoate (16). To a solution of 1 (40.0 mg) in pyridine (1.5 ml), N, Ndimethyl-4-aminopyridine (130 mg) and p-bromobenzoyl chloride (170 mg) were added, and stirred for 6 hr at 65°C. After the addition of 2N NaOH aq. soln. (7 ml), the reaction mixture was extracted with ether (20 ml + 10 ml + 10 ml). The ether layer was concentrated to give a residue which was purified by preparative silica gel TLC (hexane-EtOAc, 1 : 1) to give a crude 16. The crude 16 was further purified by preparative aluminum oxide TLC (hexane-EtOAc, 1 : 1) to give 16 (38.3 mg, 62.0%), mp. 192.5°-194°C (hexane-EtOAc). [a]_D -10.7° (<u>c</u> 0.466). λ max, nm : 242.9 (ε 17200). CD : λ _{ext}, nm : 248.3 ($\Delta \varepsilon$ + 3.97), 229.0 (0.0), 213.0 (-4.14). \vee <u>MBF</u>, cm⁻¹ : 1790, 1750, 1715, 1645, 1598, 1490. ¹H NMR, δppm : 0.89 (3H, d, <u>J</u> = 6.6 Hz, H₃C17), 1.07 (3H, s, H₃C20), 1.26 (3H, s, H₃C19), 1.30 (3H, s, H₃C18), 2.75 (1H, d, \underline{J} = 1.5 Hz, H3), 4.76 (2H, d, \underline{J} = 1.8 Hz, H16), 5.57 (1H, dd, \underline{J} = 2.4 and 3.5 Hz, H6), 5.86 (1H, tt, \underline{J} = 1.5 and 1.8 Hz, H14), 7.58 (2H, dm, \underline{J} = 8.7 Hz, benzene ring protons), 7.97 (2H, dm, J = 8.7 Hz, benzene ring protons). MS, m/z : 518 (W^+ + 2)/516 (M^+ , C₂₇H₃₃O₅Br) (1 : 1), 503 (W^+ + 2-CH₃)/501 (M^+ -CH₃) (1 : 1), 333 (M⁺ -BrC₆H₄CO₂), 316 (M⁺-BrC₆H₄CO₂H). Anal. Calcd. for C₂₇H₃₃O₅Br : C, 62.67; H, 6.43; Br, 15.44. Found : C, 62.75; H, 6.31; Br, 15.50.

ACENOWLEDGEMENTS We wish to thank Professor Shousuke Yamamura, Keio University, for a sample of tricyclosolidagolactone and IR and 1 H NMR spectra of solidagolactones IV, V and VII.

REFERENCES

- 1. M. Morita, Y. Kojima, N. Kato, K. Miwa, I. Tanaka, T. Yamane and T. Ashida,
- Tetrahedron Lett., 1983, 24, 5631, and references cited therein.
- 2. M. Niwa and S. Yamamura, Tetrahedron Lett., 1981, 22, 2789.
- 3. C. Nishino, S. Manabe, M. Kazui and T. Matsuzaki, Tetrahedron Lett., 1984, 25, 2809.
- 4. S. Manabe, N. Enoki and C. Nishino, Tetrahedron Lett., 1985, 26, 2213.
- 5. E. W. Colvin, S. M. Malchenko, R. A. Ralphael and J. S. Roberts, J. Chem. Soc. Perkin I, 1973, 1989.
- R. McCrindle, E. Nakamura and A. B. Anderson, J. Chem. Soc. Perkin I, 1976, 1590. 6.
- S. Yamamura, M. Ito, M. Niwa, I. Hasegawa, S. Ohba and Y. Saito, <u>Tetrahedron</u> Lett., 1981, **22**, 739. 7.
- E. Breitmaier and W. Voelter, ¹³C <u>NMR Spectroscopy</u>, Chapter 5 : ¹³CNMR of Natural Products, pp 219-299, Werlag Chemie, Weinheim, New York, 1978. 8.
- 9. A. Goswami, R. N. Barua, R. P. Sharma, J. N, Baruah, P. Kulanthaivel and W. Herz, Phytochemistry, 1984, 23, 837.
- 10. C. H. Hasan, T. M. Healey and P. G. Waterman, Phytochemistry, 1982, 21, 1365.
- G. Savona, M. Bruno, F. Piozzi, O. Servettaz and B. Rodriguez, Phytochemistry, 11. 1984, 23, 849.
- 12. I. Kubo, Y-W. Lee, V. Balogh-Nair, K. Nakanishi and A. Chapya, J. Chem. Soc. Chem. Comm., 1976, 949.
- 13. I. Kubo, J. A. Klocke, I. Miura and Y. Fukuyama, J. Chem. Soc. Chem. Comm., 1982, 618.
- S. D. Jolad, J. J. Hoffmann, K. H. Schram and J. R. Cole, J. Org. Chem., 1982, 47, 14. 1356.
- 15. J. L. Gough, J. P. Guthrie and J. B. Stothers, <u>J. Chem. Soc. Chem. Comm.</u>, 1972, 979.
- D. K. Dalling and D. M. Grant, J. Amer, Chem. Soc., 1972, 94, 5318. 16.
- 17.
- D. Cremer and J. A. Pople, <u>J. Amer. Chem. Soc.</u>, 1975, 97, 1354. L. Eguren, A. Perales, J. Fayos, B. Rodriguez, G. Savona and F. Piozzi, <u>J. Org.</u> 18. Chem., 1982, 47, 4157.
- K. Tori, T. Komeno and T. Nakagawa, J. Org. Chem., 1964, 29, 1136. 19.
- 20. T. Anthonsen and R. McCrindle, Acta Chem. Scand., 1969, 23, 1068.