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1. Introduction 

Construction of C–S bond has become an important reaction 
in the syntheses of natural products, pharmaceuticals, and organic 
materials owing to their unique properties.[1,2] Aryl sulfides, as an 
important member of this family, have attracted considerable 
attention. Thus, methodologies for the efficient synthesis of this 
type of skeleton are highly desired. In 2013, Singh et al. reported 
the synthesis of unsymmetrical sulfides via the reaction of 
aryl/het-aryl/benzyl halides with sulfonyl hydrazides by means of 
[DBU][HOAc] and CuI as catalyst under microwave 
irradiation.[3,4] Tian et al. reported a Cu-catalyzed thiolation of 
boronic acids with sulfonyl hydrazides.[5] Yoshida et al. also 
provided results of an efficient thiolation of aryl- and 
alkenylborons with thiosulfonates under mild conditions using a 
copper catalyst.[6] However, in contrast, a particularly 
straightforward approach toward the synthesis of aryl sulfides is 
direct C-H thiolation of arenes using suitable sulfur sources. In 
2014, Anbarasan et al. succeed to carry out palladium-catalyzed 
thiolation of arenes with electrophilic sulfur reagent derived from 
succinimide.[7] In addition, metal-catalyzed synthesis of aryl 
sulfides from disulfides via C-H bond cleavage of arenes was 
described.[8] In recent years, synthesis of di(hetero)aryl sulfides 
by metal-free thiolations of electron-rich arenes with arylsulfonyl 
chlorides or sodium arylsulfinates as sulfur sources was 
introduced.[9] Meanwhile, the direct thiolation of arenes with 
thiols as sulfur sources under metal-free conditions was 
developed.[10] 

In the past few years, the sulfonyl hydrazides have been 
widely used as environmentally friendly sulfur sources since they 
are stable, readily accessible, odor-free. More importantly, N2 
and water are the only byproducts when the sulfonyl hydrazides 
are used in organic reaction.[11] Yan et al. and Zhao et al. reported 
their elegant work on iodine-mediated thiolation of electron-rich 
arenes with arylsulfonyl hydrazides through the cleavage of S-
N/S-O bonds, respectively.[12] However, although the 
mechanisms for the sulfonyl hydrazide-based metal-free 
thiolation have been proposed, how the actual thiolation species 
are generated from sulfonyl hydrazides is not very clear. Herein, 
we report a Cu-catalyzed direct C-H thiolation of electron-rich 
arenes with arylsulfonyl hydrazides under acidic conditions and 
propose a possible reaction mechanism. 

2. Results and Discussion 

2.1. Optimization of the reaction conditions 

Initially, 1,3,5-trimethoxybenzene and TsNHNH2 were 
selected as model substrates in the presence of HOAc to optimize 
the reaction conditions. The results are summarized in Table 1. 
This reaction is unlikely to take place in the absence of Cu 
catalyst (Table 1, Entry 1). When CuI was used as the catalyst, 
only 16% yield of the desired product 3aa was obtained (Table 1, 
Entry 2). However, the addition of I2 could increase the yield to 
61% (Table 1, Entry 3). Experiments screening a variety of 
copper sources showed Cu(OTf)2 was the most suitable catalyst 
(Table 1, Entries 4-6). Subsequently, we attempt to catalyse the 
reaction by using CuI2 generated from KI and CuSO4·2H2O in 
situ, but only 28% yield was obtained (Table 1, Entry 7). It is 
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noteworthy that an excellent yield could be obtained in the 
absence of I2 (Table 1, Entry 8). Further investigations were 
focused on the influence of the solvents on the reaction. We 
found that DCE was the best solvent, whereas others solvents 
such as toluene, DMSO, dioxane, and MeOH, gave no good 
yields (Table 1, Entries 9-12). With respect to the concentration 
of additives, it was noticed that 1 mL HOAc was the most 
suitable compared to other concentrations used (Table 1, Entries 
13 and 14). When the reaction time was prolonged to 10 h, 
product 3aa was obtained in 77% yield (Table 1, Entry 15). 
Control experiments indicated that the oxidant is essential to this 
reaction. When the reaction was performed under Ar atmosphere, 
a yield of only 54% was obtained (Table 1, Entry 16). In 
addition, with decreasing the amount of Cu(OTf)2 or ratio 
between of 1a : 2a, the yield of the product was accordingly 
lowered (Table 1, Entries 17 and 18). Then, we examined the 
reaction at 110 ºC, but low yield of mono-thioether product 3aa 
was recorded in comparison to entry 8 (Table 1, entry 19), and 
accompanied by 68% yield of the bis-thioether product. When 
acetic acid is replaced by trifluoroacetic acid, the reaction was 
difficult to carry out (Table 1, Entry 20). Finally, the combination 
of 1,3,5-trimethoxybenzene (0.3 mmol), TsNHNH2 (0.6 mmol), 
Cu(OTf)2 (0.2 mmol), HOAc (1 mL) at 80 °C for 8 h in DCE (2 
mL) was found to be the optimal reaction conditions. 

Table 1. Optimized reaction conditions [a]  

 
Entry [Cu](mmol) Solvent I2(mmol) HOAc(mL) Yield(%) 

[b] 
1 - DCE - 1 0 

2 CuI (0.2) DCE - 1 16 

3 CuI (0.2) DCE 0.1 1 61 

4 CuBr (0.2) DCE 0.1 1 51 

5 Cu(OTf)2 (0.2) DCE 0.1 1 70 

6 Cu(TFA)2 (0.2) DCE 0.1 1 35 

7 CuSO4·2H2O 

(0.2) + KI (0.4) 
DCE 0.1 1 28 

8 Cu(OTf)2 (0.2) DCE - 1 93 

9 Cu(OTf)2 (0.2) Toluene - 1 51 

10 Cu(OTf)2 (0.2) DMSO - 1 Trace 

11 Cu(OTf)2 (0.2) Dioxane - 1 38 

12 Cu(OTf)2 (0.2) MeOH - 1 Trace 

13 Cu(OTf)2 (0.2) DCE - 0.5 78 

14 Cu(OTf)2 (0.2) DCE - 2 75 

15c Cu(OTf)2 (0.2) DCE - 1 77 

16d Cu(OTf)2 (0.2) DCE - 1 54 

17 Cu(OTf)2(0.1) DCE - 1 80 

18e Cu(OTf)2 (0.2) DCE - 1 67 

19f Cu(OTf)2 (0.2) DCE - 1 19 

20g Cu(OTf)2 (0.2) DCE - - 0 
[a] Reaction conditions: 1a (0.6 mmol), 2a (0.3 mmol), copper source (0.2 
mmol), solvent (2 mL), HOAc (1 mL), in air, 80 ºC, 8 h. [b] Isolated yield. [c] 
Reaction time 10 h. [d] In Argon. [e] 1a : 2a = 0.5 : 0.3. [f]  110 ºC.    [g] TFA 
(CF3CO2H, 1 mL) was added. 

2.2. Scope and limitations of substrates 

With the optimized reaction conditions in hand, the thioether 
reactions of substituted benzenesulfonohydrazides with 1,3,5-
trimethoxybenzene were further explored (Table 2). First, 
benzenesulfonohydrazide underwent the thioether reaction, 

affording 66% yield of mono-thioether product 3ba and 28% 
yield of bis-thioether product 3bb. The reactions of para-
substituted arylsulfonyl hydrazides with electron-withdrawing 
groups were carried out and gave the corresponding mono-
thioether products (3ca, 3da, and 3ea) and bis-thioether products 
(3cb, 3db, and 3eb) in 61-76% and 19-29% yields, respectively. 
Furthermore, the reaction of 3-fluorobenzenesulfonohydrazide 
with 1,3,5-trimethoxybenzene generated the desired mono-
thioether products 3fa and bis-thioether product 3fb in 74% and 
15% yields, respectively. Sterically demanding ortho 
substituents, such as 2-methylbenzenesulfonohydrazide and 
2,4,6-trimethylbenzenesulfonohydrazide, gave the bis-thioether 
product 3gb and 3ka in 60% and 47% yields, respectively. 4-
(Trifluoromethyl)benzenesulfonohydrazide as thioether reagent 
also led to the mono-thioether product 3hb in 79% yield. 
Moreover, the reactions of substituted aryl sulfonyl hydrazides 
with electron-donating groups, such as MeO- and tBu-, gave the 
corresponding mono-thioether products (3ia and 3ja) in moderate 
yields. In addition, naphthalene-2-sulfonohydrazide was also 
tolerated, affording desired products 3la in 62% yields. 

Table 2. The direct thiolations of 1,3,5-trimethoxybenzene 2a 
with arylsulfonyl hydrazides [a] 

MeO OMe
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+
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OMe
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[a] Reaction conditions: 1a (0.6 mmol), 2a (0.3 mmol), copper source (0.2 
mmol), solvent (2 mL), HOAc (1 mL), in air, 80 ºC, 8 h. The yields of 
isolated products are given.  

Finally, to broaden the substrate scope of this transformation, 
we tested other electron-rich arenes under the optimized reaction 
conditions. The results are summarized in Table 3. Substituted 
toluenes underwent coupling reactions to TsNHNH2 to generate 
the corresponding mono- and bis-thioether products at 110 ºC. 
For example, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and 
1,4-dimethoxybenzene afforded only bis-thioether products 3lb-
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3nb in 61-74% yields. 1-Methoxy-3,5-dimethylbenzene resulted 
in the formation of bis-thioether product 3ob in 83% yield, while 
mesitylene gave only mono-thioether product 3pa in 92% yield. 
Moreover, when anisole was used as substrate, the mono-
thioether product (4-methoxyphenyl)(p-tolyl)sulfane 3qa was 
obtained in 48% yield. In addition, 1-methyl-1H-indole is also a 
suitable substrate to afford the bis-thioether product 3rb in 70 % 
yield. When 2-methyl-1H-indole was used, the sulfenylation 
reaction took place at the C3 position of the indole ring to give 
the desired product 3sa in 39% yield. 

Table 3. The direct thiolation of electron-rich arenes 2 with 

TsNHNH2
 [a]

DCE (2 mL) 
110 ºC / 8 h

Cu(OTf)2 (0.2 mmol) 
HOAc (1 mL)

+TsNHNH2

1a
3

2

Arene S Me n

MeO

SMeO

S Me

Me MeO OMe

SS

Me Me

OMe

OMe

S

S

Me

Me

3ob, 74%3mb, 61% 3nb, 64%

MeO

S

Me

OMeMe

Me

S S

MeMe Me Me

Me

S

Me

3ra, 48%

3pb, 83% 3qa, 92%

3ta , 39%

Me

S

Me

S

N
H

3sb, 60%

Arene

n = 1 or 2

N
H

S

Me

Me

 

[a] Reaction conditions: 1a (0.6 mmol), rich arenes 2 (0.3 mmol), Cu(OTf)2 
(0.2 mmol), DCE (2 mL), HOAc (1 mL), under air, 110 ºC, 8 h. The yields of 
isolated products are given. 

Subsequently, to gain further insight into the mechanism, a series 
of control experiments were performed (Scheme 1). First, the 
yield decreased significantly in the presence of TEMPO that 
indicated the generation of free radical intermediates during the 
reaction. If hydroquinone is added to the reaction system, the 
thioether reaction will not take place, which additionally 
highlights the formation of free radical intermediates that play a 
key role in the smooth progress of the reaction (Scheme 1, [1]). 
When only TsNHNH2 as substrate is used, S-p-tolyl 4-
methylbenzenesulfonothioate (4a) and 1,2-di-p-tolyldisulfane (4b) 
can be obtained under optimized reaction conditions(Scheme 1, 
[2]). The product 4a can partially generate 4b under standard 
conditions, but 4b cannot be converted to 4a under the same 
conditions(Scheme 1, [3] and [4]). In addition, the blank 
experiments showed that the thioetherification of 1,3,5-
trimethoxybenzene (2a) with TsNHNH2 is not carried out in the 
absence of copper catalyst (Scheme 1, [5]). Therefore, we can 
speculate that Cu(OTf)2 plays an important role in the 
thioetherification. 

Next, different sulfur sources were investigated for the reaction 
with 1,3,5-trimethoxybenzene (2a) aiming to find the real 
thioether species (Scheme 2). When 4a was used as thioether 
reagent, 47% of the mono-thioether product 3aa and 46% of the 
bis-thioether product 3ab were formed, while 4b was not 
detected (Scheme 2, [1]). When 4b was used as thioether reagent, 
only 36% of the mono-thioether products 3aa were obtained, 
whereas 4a was not identified (Scheme 2, [2]). The selection of 

thiophenol 4c as sulfur source showed that the reaction of 2a 
and 4c cannot take place (Scheme 2, [3]). In contrast, the 
reaction of 2a with 4-methylbenzenesulfinic acid 4d as sulfur 
source can proceed smoothly and give a 56% yield of mono-
thioether product 3aa, 41% yield of bis-thioether product 3ab, 
and 11% yield of product 4b (Scheme 2, [4]). Moreover, the 
results for the three-component reactions of 2a, 4c, and 4d show 
that only p-toluenesulfonic acid can react with 2a and the yields 
of the mono-thioether product 3aa and bis-thioether product 3ab 
significantly decreased in the presence of thiophenol 4c (Scheme 
2, [5]). Finally, we tested the reaction of (4-methoxyphenyl) 4-
methylbenzenesulfonothioate 4e as sulfur source with 2a under 
standard conditions, and the mono-thioether 3ia, the bis-thioether 
3ab, and 4b were obtained, and accompanied by 38% yield of the 
product 3ja. (Scheme 2, [6]). 

 

Scheme 1. Control experiments performed to establish the 
reaction mechanism. 

On the basis of the above mentioned experimental details and 
previous reports,[25] the following reaction mechanism was 
proposed (Scheme 3). First, TsNHNH2 is oxidized to 
intermediate (I) in the presence of Cu(OTf)2 as catalysts, 
afterward, the intermediate (I) is oxidized to generate sulfonyl 
radicals (II). Some of the sulfonyl radicals are subsequently 
reduced to arylthio radicals (III) by monovalent copper ions. 
Then, the sulfonyl radical interacts with the arylthio radical to 
yield two important thioether intermediates 4a and 4b, 
respectively. The corresponding catalytic cycle-1 and catalytic 
cycle-2 are as follows: (1) the arenes react with monovalent 
copper to produce aryl copper intermediate (IV), followed by the 
oxidative addition of intermediate (IV) with 4a to form the 
intermediate (V), and then, the reductive elimination of 
intermediate (V) to give the thioether product 3, while Cu(I) 
catalyst is released and ready for use in the next catalytic cycle. 
(2) Oxidative addition of intermediate (IV) with 4b forms the 
intermediate (V′), and then, the reductive elimination of 
intermediate (V′) to give the thioether product 3, arylsulfuric acid 
(VI), and Cu(I) catalyst. Subsequently, aryl sulfuric acid (VI) is 
converted into the intermediate 4b by Cu(I) catalyst under acidic 
conditions, and the intermediate 4b re-enter into a new catalytic 
cycle.[25c] 

3. Conclusions 

In summary, we have proposed an efficient Cu-catalysed 
direct C-H thiolation of electron-rich arenes with arylsulfonyl 
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hydrazides. Mechanistic studies suggested that both free-radical 
formation and Cu-catalysed cycle may be involved in the reaction 
pathway, and the disulfanes and sulfonothioates are the main 
thiolation intermediates in this transformation. 
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Scheme 2. Experimental details for the reaction of 2a and 
different sulfur sources. 
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Scheme 3. Proposed mechanism for Cu-catalyzed direct 
thiolation of arenes. 

4. Experimental Section 

4.1. Materials and instruments 

Chemicals were obtained commercially and used as received. 
NMR spectra were recorded on a Bruker DPX–400 spectrometer 
using TMS as the internal standard. EI–Mass spectrum was 
measured on a LC/Q–TOF MS (Micromass, England) or GC-MS 
(Agilent 7890A/5975C) instrument. All products were isolated 
by short chromatography on a silica gel (200–300 mesh) column 
using petroleum ether (60–90 °C), unless otherwise noted. 
Arenes and arylsulfonyl hydrazides were of analytical grade 
quality, purchased from Adamas-beta Pharmaceuticals, Inc.  

4.2. General procedure for the direct thiolation of electron-rich 
arenes with arylsulfonyl hydrazides 

First, a solution of rich arenes (0.3 mmol), arylsulfonyl 
hydrazides (0.6 mmol), Cu(OTf)2 (0.2 mmol), and HOAc (1 mL) 
in DCE (2 mL), was stirred at 80 °C (or 110 °C) for 8 h under air. 
Second, the reaction mixture was quenched with water (10 mL) 
and extracted with EtOAc (3 × 10 mL). The combined EtOAc 
extracts were dried over anhydrous MgSO4 and filtered, followed 
by solvent removal under reduced pressure. The residue was 
purified by flash column chromatography on silica gel using PE / 
EtOAc as the eluent. 

4.3. p-Tolyl(2,4,6-trimethoxyphenyl)sulfane [3aa] [12b] 

1H NMR (400 MHz, CDCl3): δ 6.96 (d, J = 3.6 Hz, 4H), 6.21 
(s, 2H), 3.86 (s, 3H), 3.80 (s, 6H), 2.25 (s, 3H). 13C NMR (101 
MHz, CDCl3): δ 162.90, 162.64, 134.25, 129.41, 126.14, 91.33, 
56.45, 55.56, 21.03. 

4.4. (2,4,6-Trimethoxy-1,3-phenylene)bis(p-tolylsulfane) [3ab] 
[12b] 

1H NMR (400 MHz, CDCl3): δ 6.98 (s, 8H), 6.41 (s, 1H), 3.86 
(s, 6H), 3.76 (s, 3H), 2.25 (s, 6H). 13C NMR (101 MHz, CDCl3): 
δ 163.45, 134.80, 129.56, 126.66, 92.55, 62.45, 56.51, 21.06. 

4.5. Phenyl(2,4,6-trimethoxyphenyl)sulfane [3ba] [13] 

1H NMR (400 MHz, CDCl3): δ 7.18-7.12 (m, 2H), 7.02 (d, J = 
9.2 Hz, 3H), 6.22 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H). 13C NMR 
(101 MHz, CDCl3): δ 163.05, 162.68, 138.81, 128.60, 125.76, 
124.48, 91.34, 56.44, 55.57. 

4.6. (2,4,6-Trimethoxy-1,3-phenylene)bis(phenylsulfane) [3bb] 

1H NMR (400 MHz, CDCl3): δ 7.21-7.15 (m, 4H), 7.07 (d, J = 
6.8 Hz, 6H), 6.44 (s, 1H), 3.87 (s, 6H), 3.76 (s, 3H). 13C NMR 
(101 MHz, CDCl3): δ 163.65, 138.41, 128.78, 126.23, 124.99, 
106.91, 92.55, 62.51, 56.51. HRMS (ESI) m/z calcd for 
C21H21O3S2

+ (M+H)+ 385.09266, found 385.09265. 

4.7. (4-Chlorophenyl)(2,4,6-trimethoxyphenyl)sulfane [3ca] [14] 

1H NMR (400 MHz, CDCl3): δ 7.11 (d, J = 8.4 Hz, 2H), 6.94 
(d, J = 8.8 Hz, 2H), 6.21 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H). 13C 
NMR (101 MHz, CDCl3): δ 163.25, 162.56, 137.52, 130.20, 
128.68, 127.10, 91.36, 56.45, 55.60. 

4.8. (2,4,6-Trimethoxy-1,3-phenylene)bis((4-
chlorophenyl)sulfane) [3cb] 

1H NMR (400 MHz, CDCl3): δ 7.15 (d, J = 8.8 Hz, 4H), 6.99 
(d, J = 8.4 Hz, 4H), 6.43 (s, 1H), 3.88 (s, 6H), 3.76 (s, 3H). 13C 
NMR (101 MHz, CDCl3): δ 166.02, 163.64, 136.89, 130.89, 
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128.89, 127.64, 106.70, 92.57, 62.56, 56.54. HRMS (ESI) m/z 
calcd for C21H18Cl2O3S2

+ (M+H)+ 452.0074, found 452.0056. 

4.9. (4-Fluorophenyl)(2,4,6-trimethoxyphenyl)sulfane [3da] [15] 

1H NMR (400 MHz, CDCl3): δ 7.02 (dd, J = 9.2Hz, 2H), 6.86 
(t, J = 8.8 Hz, 2H), 6.20 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H). 13C 
NMR (101 MHz, CDCl3): δ 163.06, 162.50, 162.10, 159.68, 
133.72 (d, J = 3.3 Hz), 128.02, 127.94, 115.74, 115.52, 99.51, 
91.36, 91.36, 56.43, 55.58. 19F NMR (376 MHz, CDCl3): δ -
118.82. 

4.10. (2,4,6-Trimethoxy-1,3-phenylene)bis((4-
fluorophenyl)sulfane) [3db] 

1H NMR (400 MHz, CDCl3): δ 7.10 (d, J = 4.8 Hz, 2H), 7.08 
(d, J = 5.2 Hz, 2H), 6.92 (s, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.41 (s, 
1H), 3.88 (s, 6H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 
163.42, 128.75, 128.68, 115.97, 115.76, 92.60, 62.55, 56.51. 19F 
NMR (376 MHz, CDCl3): δ -117.71. HRMS (ESI) m/z calcd for 
C21H19F2O3S2

+ (M+H)+ 421.07382, found 421.07339. 

4.11. (4-(Trifluoromethoxy)phenyl)(2,4,6-
trimethoxyphenyl)sulfane [3ea] 

1H NMR (400 MHz, CDCl3): δ 7.01 (s, 4H), 6.22 (s, 2H), 3.88 
(s, 3H), 3.82 (s, 6H). 13C NMR (101 MHz, CDCl3): δ 163.33, 
162.61, 137.74, 126.89, 121.43, 91.37, 56.45, 55.61. 19F NMR 
(376 MHz, CDCl3): δ -58.06. HRMS (ESI) m/z calcd for 
C16H16F3O4S

+ (M+H)+ 361.07159, found 361.07156. 

4.12. (2,4,6-Trimethoxy-1,3-phenylene)bis((4-
(trifluoromethoxy)phenyl) sulfane) [3eb] 

1H NMR (400 MHz, CDCl3): δ 7.06 (s, 4H), 7.05 (s, 4H), 6.44 
(s, 1H), 3.89 (s, 6H), 3.79 (s, 3H). 13C NMR (101 MHz, CDCl3): 
δ 163.76, 146.96, 137.06, 127.54, 121.58, 106.72, 92.61, 62.66, 
56.56. 19F NMR (376 MHz, CDCl3): δ -58.06. HRMS (ESI) m/z 
calcd for C23H19F6O5S2

+ (M+H)+ 553.05726, found 553.05682. 

4.13. (3-Fluorophenyl)(2,4,6-trimethoxyphenyl)sulfane [3fa] 

1H NMR (400 MHz, CDCl3): δ 7.09 (s, 1H), 6.86 (s, 1H), 6.71 
(s, 1H), 6.63 (d, J = 10.0 Hz, 1H), 6.22 (s, 2H), 3.88 (s, 3H), 3.81 
(s, 6H). 13C NMR (101 MHz, CDCl3): δ 164.44, 163.40, 162.64, 
161.99, 141.62 (d, J = 7.7 Hz), 129.77 (d, J = 8.6 Hz), 121.31 (d, 
J = 2.8 Hz), 112.32 (d, J = 24.2 Hz), 111.34 (d, J = 21.6 Hz), 
97.85, 91.38, 56.45, 55.61. 19F NMR (376 MHz, CDCl3): δ -
113.38. HRMS (ESI) m/z calcd for C15H16FO3S

+ (M+H)+ 
295.07987, found 295.07986. 

4.14. (2,4,6-Trimethoxy-1,3-phenylene)bis((3-
fluorophenyl)sulfane) [3fb]  

1H NMR (400 MHz, CDCl3): δ 7.15 (d, J = 6.0 Hz, 2H), 6.87 
(ddd, J = 8.0, 1.8, 1.0 Hz, 2H), 6.80-6.71 (m, 2H), 6.68 (s, 2H), 
6.46 (s, 1H), 3.90 (s, 6H), 3.77 (s, 3H). 13C NMR (101 MHz, 
CDCl3): δ 165.35 (d, J = 192.0 Hz), 163.92, 161.94, 140.93 (d, J 
= 7.8 Hz), 130.04 (d, J = 8.7 Hz), 121.65 (d, J = 2.9 Hz), 112.83 
(d, J = 24.1 Hz), 111.95 (d, J = 21.6 Hz), 106.14, 92.61, 62.63, 
56.58. 19F NMR (376 MHz, CDCl3): δ -112.79. HRMS (ESI) m/z 
calcd for C21H19F2O3S2

+ (M+H)+ 421.07382, found 421.07376. 

4.15. o-Tolyl(2,4,6-trimethoxyphenyl)sulfane [3ga]  

1H NMR (400 MHz, CDCl3): δ 7.117.07 (m, 1H), 6.97- 6.91 
(m, 2H), 6.61-6.55 (m, 1H), 6.23 (s, 2H), 3.88 (s, 3H), 3.79 (s, 
6H), 2.46 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 162.76, 
129.88, 126.10, 124.60, 124.21, 91.41, 56.45, 55.56, 20.12. 
HRMS (ESI) m/z calcd for C16H19O3S

+ (M+H)+ 291.10494, 
found 291.10483. 

4.16. (4-(Trifluoromethyl)phenyl)(2,4,6-
trimethoxyphenyl)sulfane [3ha]  

1H NMR (400 MHz, CDCl3): δ 7.38 (d, J = 8.8 Hz, 2H), 7.06 
(d, J = 8.0 Hz, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.81 (s, 6H). 13C 
NMR (101 MHz, CDCl3): δ 164.44, 163.40, 162.65, 161.99, 
141.62 (d, J = 7.7 Hz), 129.82, 129.73, 121.31 (d, J = 3.1 Hz), 
112.44, 112.20, 111.45, 111.23, 97.85, 91.38, 56.45, 55.61. 19F 
NMR (376 MHz, CDCl3): δ -62.16. HRMS (ESI) m/z calcd for 
C16H16F3O3S

+ (M+H)+ 345.07668, found 345.07672. 

4.17. (4-Methoxyphenyl)(2,4,6-trimethoxyphenyl)sulfane [3ia] [16] 

1H NMR (400 MHz, CDCl3): δ 7.07 (d, J = 8.8 Hz, 2H), 6.73 
(d, J = 8.8 Hz, 2H), 6.19 (s, 2H), 3.85 (s, 3H), 3.81 (s, 6H), 3.74 
(s, 3H). 13C NMR (101 MHz, CDCl3): δ 162.70, 162.44, 128.69, 
114.37, 91.33, 56.42, 55.54, 55.42. 

4.18. (4-(Tert-butyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane [3ja] 
[10] 

1H NMR (400 MHz, CDCl3): δ 7.18 (d, J = 8.4 Hz, 2H), 6.97 
(d, J = 8.4 Hz, 2H), 6.21 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H), 1.25 
(s, 9H). 13C NMR (101 MHz, CDCl3): δ 162.94, 162.73, 147.52, 
135.19, 125.70, 91.31, 56.45, 55.56, 34.40, 31.47. 

4.19. Mesityl(2,4,6-trimethoxyphenyl)sulfane [3ka] [17] 

1H NMR (400 MHz, CDCl3): δ 6.81 (s, 2H), 6.08 (s, 2H), 3.77 
(s, 3H), 3.69 (s, 6H), 2.37 (s, 6H), 2.21 (s, 3H). 13C NMR (101 
MHz, CDCl3): δ 161.09, 141.85, 128.72, 91.43, 56.11, 55.44, 
21.61, 21.03.  

4.20. naphthalen-2-yl(2,4,6-trimethoxyphenyl)sulfane [3la][18] 

1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.6 Hz, 1H), 7.63 
(d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.39 – 7.35 (m, 2H), 
7.32 (td, J = 7.4, 7.2, 1.6 Hz, 1H), 7.21 (dd, J = 8.8, 2.0 Hz, 1H), 
6.24 (s, 2H), 3.88 (s, 3H), 3.79 (s, 6H). 13C NMR (101 MHz, 
CDCl3): δ 163.12, 162.71, 136.45, 133.94, 131.33, 128.05, 
127.75, 126.93, 126.23, 124.94, 124.82, 123.06, 98.72, 91.38, 
56.43, 55.57. 

4.21. (4,5-Dimethoxy-1,2-phenylene)bis(p-tolylsulfane) [3mb] 
[12b] 

1H NMR (400 MHz, CDCl3): δ 7.19 (d, J = 8.0 Hz, 4H), 7.11 
(d, J = 8.0 Hz, 4H), 6.77 (s, 2H), 3.71 (s, 6H), 2.32 (s, 6H). 13C 
NMR (101 MHz, CDCl3): δ 136.99, 132.51, 130.72, 130.08, 
129.38, 115.59, 56.13, 21.23. 

4.22. (4,6-Dimethoxy-1,3-phenylene)bis(p-tolylsulfane) [3nb] 
[12b] 

1H NMR (400 MHz, CDCl3): δ 7.15 (s, 1H), 7.09 (d, J = 8.4 
Hz, 4H), 7.02 (d, J = 8.4 Hz, 4H), 6.52 (s, 1H), 3.88 (s, 6H), 2.30 
(s, 6H). 13C NMR (101 MHz, CDCl3): δ 159.53, 138.47, 136.40, 
132.26, 130.02, 129.86, 114.98, 96.23, 56.42, 21.19. 

4.23. (2,5-Dimethoxy-1,4-phenylene)bis(p-tolylsulfane) [3ob] 
[12b] 

1H NMR (400 MHz, CDCl3): δ 7.28 (d, J = 8.0 Hz, 4H), 7.14 
(d, J = 8.0 Hz, 4H), 6.57 (s, 2H), 3.64 (s, 6H), 2.35 (s, 6H). 13C 
NMR (101 MHz, CDCl3): δ 151.64, 137.74, 132.27, 130.30, 
130.20, 124.41, 113.97, 56.69, 21.31. 

4.24. (4-Methoxy-2,6-dimethyl-1,3-phenylene)bis(p-tolylsulfane) 
[3pb] [19]  

1H NMR (400 MHz, CDCl3): δ 7.01-6.97 (m, 4H), 6.89 (d, J = 
8.4 Hz, 2H), 6.82 (d, J = 6.0Hz, 2H), 6.79 (s, 1H), 3.83 (s, 3H), 
2.62 (s, 3H), 2.49 (s, 3H), 2.26 (s, 6H). 13C NMR (101 MHz, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Tetrahedron 6

CDCl3): δ 161.23, 150.81, 147.17, 134.82, 134.65, 134.50, 
134.41, 129.81, 129.63, 126.35, 125.58, 123.69, 111.50, 56.25, 
23.04, 21.02, 20.98, 20.67. 

4.25. Mesityl(p-tolyl)sulfane [3qa] [12b] 

1H NMR (400 MHz, CDCl3): δ 6.98 (d, J = 9.2 Hz, 4H), 6.82 
(d, J = 8.4 Hz, 2H), 2.38 (s, 6H), 2.31 (s, 3H), 2.25 (s, 3H). 13C 
NMR (101 MHz, CDCl3): δ 143.75, 139.20, 134.89, 134.35, 
129.77, 129.40, 127.58, 125.81, 21.88, 21.26, 21.00. 

4.26. (4-Methoxyphenyl)(p-tolyl)sulfane [3ra] [12b] 

 1H NMR (400 MHz, CDCl3): δ 7.35 (d, J = 8.4 Hz, 2H), 7.13 
(d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.8 Hz, 
2H), 3.80 (s, 3H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 
159.57, 136.23, 134.47, 129.89, 129.50, 125.76, 114.98, 55.47, 
21.11. 

4.27. 2,3-bis(p-tolylthio)-1H-indole[3sb][20] 

1H NMR (400 MHz, CDCl3): δ 8.20 (s, 1H), 7.57 (d, J = 
8.0Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.25-7.19 (m, 3H), 7.15-
7.11 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 
6.96 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H), 2.25 (s, 3H). 13C NMR 
(101 MHz, CDCl3): δ 137.94, 136.86, 135.02, 134.80, 134.59, 
130.94, 130.35, 130.26, 130.18, 129.62, 127.06, 123.60, 121.20, 
119.84, 111.05, 108.41, 21.22, 21.05. 

4.28. 2-methyl-3-(p-tolylthio)-1H-indole[3ta][21]  

1H NMR (400 MHz, CDCl3): δ 8.14 (s, 1H), 7.54 (d, J = 7.8 
Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.17 (td, J = 8.0, 7.6, 1.2 Hz, 
1H), 7.13-7.08 (m, 1H), 6.95 (s, 4H), 2.49 (s, 3H), 2.23 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 141.03, 135.79, 135.52, 134.42, 
130.45, 129.59, 125.88, 122.23, 120.76, 119.13, 110.71, 100.00, 
20.97, 12.28.   

4.29. 1,2-Di-p-tolyldisulfane [4a] [22] 

1H NMR (400 MHz, CDCl3): δ 7.38 (d, J = 8.0 Hz, 4H), 7.10 
(d, J = 8.0 Hz, 4H), 2.32 (s, 6H). 

4.30. S-(p-Tolyl) 4-methylbenzenesulfonothioate [4b] [23]  

1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.4 Hz, 2H), 7.24 
(d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 
2H), 2.42 (s, 3H), 2.38 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 
144.71, 142.17, 136.62, 130.33, 129.49, 127.73, 124.72, 21.80, 
21.62. 

4.31. S-(4-Methoxyphenyl) 4-methylbenzenesulfonothioate [4e] 
[24]  

1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.4 Hz, 2H), 7.27 
(d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 9.2 Hz, 
2H), 3.83 (s, 3H), 2.42 (s, 3H). 
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