Assignment of ¹³C-Signals from the *meso*-Carbons by Syntheses of ¹³C-Protoporphyrin-IX Dimethyl Esters

By ALAN R. BATTERSBY,* GORDON L. HODGSON, MASATAKA IHARA, EDWARD MCDONALD, and JOHN SAUNDERS (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary $[\beta^{-13}C]$ -, $[\gamma^{-13}C]$ -, and $[\delta^{-13}C]$ -Protoporphyrin-IX dimethyl esters have been synthesised by unambiguous routes from $[^{13}C]$ formaldehyde to allow assignment of the four n.m.r. ^{13}C -signals from the *meso*-carbons; the dimethyl ester of diacetyldeuteroporphyrin-IX has been similarly studied.

IT was essential for our biosynthetic studies¹ to assign the four n.m.r. ¹³C-signals near δ 97 arising² from the *meso*-carbons (α , β , γ , δ) of protoporphyrin-IX dimethyl ester (10). This has been achieved by the following syntheses³ of specifically ¹³C-labelled porphyrins which, for the β -, and δ -labelled samples, were based on Fischer's pyrromethene route^{3a} using Johnson's *a*,*c*-biladiene method⁴.

The 5-methyl of pyrrole^{3d} (1) was converted into carboxy and decarboxylation gave the α -free pyrrole (2) which was reductively methylated⁵ with [¹³C]formaldehyde (90 atom% in all experiments) yielding $[5-Me^{-13}C]$ -(1). Similarly, pyrrole⁶ (5) afforded the $[5-Me^{-13}C]$ pyrrole (6). The former was converted⁷ into the $[^{13}C]$ pyrromethene (8) [69% from pyrroles (3) and (4)] and the latter into the $[^{13}C]$ pyrromethene (9) (55%) which was known⁴ in unlabelled form. Reaction of the $[^{13}C]$ pyrromethene (8) with unlabelled (9) in AcOH-CHCl₃-SnCl₄ followed by methanolic HBr gave the a,c-biladiene system. Cyclisation of this total material in Me₂SO-pyridine⁴ and treatment of the products with acidic methanol gave the known $diol^{3d}$ (11) in 69% yield from the pyrromethenes. Diol (11) was converted essentially by Jackson and Kenner's halideelimination method^{3d} into $[\beta$ -¹³C]protoporphyrin-IX dimethyl ester (10). The foregoing sequence affords the $\mathsf{PhCH}_2\mathsf{O}_2\mathsf{C}$ porphyrin (10) in 42% yield overall from the dipyrrolic units. $[\delta^{-13}C]$ Protoporphyrin-IX dimethyl ester (10) was similarly synthesised from ¹³C-pyrromethene (9) and unlabelled (8).

The route to $[\gamma^{-13}C]$ protoporphyrin-IX dimethyl ester (10) made use of the ring c-ring D symmetry by condensation of 13 C-formaldehyde with the *a,c*-biladiene (17); this approach has not been widely used⁸ and proof that it yields one pure isomer was first obtained by synthesis in this way⁹ of coproporphyrin-II tetramethyl ester. The route to the diene (17) started with the pyrromethane⁷ (18) synthesised from the pyrroles (15) and (16) each being prepared from (14); diborane reduction¹⁰ of (18) and acetylation gave (19). The pyrromethane (20) obtained from (19) by deprotection and decarboxylation condensed with the aldehyde (7) to yield the unstable (17). Acid-catalysed ring closure using [13C]formaldehyde followed by methanolysis gave the $[\gamma^{-13}C]$ diol (11) [7% overall yield from (19)]; this was converted as before into $[\gamma^{-13}C]$ protoporphyrin-IX dimethyl ester (10).

The three labelled samples of (10) were diluted with (10) from natural sources to give about 5 atom% ¹³C. The ¹³C-spectra then showed in each case one strongly enhanced signal from the ¹³C-enriched meso-site and three small signals from the three other meso-carbons. The

results allow the following unambiguous assignments: α -meso at δ 97.7, β -meso at 97.1, δ -meso at 96.7, and γ -meso at 95.8.

† At 0.01-0.02M in CDCl₃; the precise chemical shifts are significantly affected by concentration.

Each ¹³C-labelled sample of (10) was converted¹¹ into haematoporphyrin dimethyl ester (12) and this then oxidised with Jones' reagent to afford the diketone (13). The ¹³C-spectra so obtained allowed the well spread ¹³Csignals¹² from the meso-carbons to be assigned: α -meso at δ 102.3, β -meso at 99.9, δ -meso at 97.3, and γ -meso at 95.4.

The foregoing results are of key importance for current¹ and future research on the biosynthesis of the porphyrin macrocycle.

We thank the Nuffield Foundation and the S.R.C for financial support.

(Received, 19th April 1973; Com. 560.)

¹ A. R. Battersby, E. Hunt, and E. McDonald, following Communication.

² A. R. Battersby, E. Huht, and E. McDonald, following communication.
² A. R. Battersby, E. McDonald, J. Moron, and J. Feeney, J.C.S. Chem. Comm., 1972, 920.
³ For earlier syntheses of protoporphyrin-IX see (a) H. Fischer and K. Zeile, Annalen, 1929, 468, 114 and refs. therein; (b) R. P. Evstigneeva, V. N. Guryshev, A. F. Mironov, and G. Ya. Volodarskaya, Zhur. obshchei Khim., 1969, 39, 2558; (c) R. Grigg, A. W. Johnson, and M. Roche, J. Chem. Soc. (C), 1970, 1928; (d) R. P. Carr, A. H. Jackson, G. W. Kenner, and G. S. Sach, J. Chem. Soc., 1971, 487; (e) A. M. d'A. Rocha Gonsalves, G. W. Kenner, and K. M. Smith, Chem. Comm., 1971, 1304.
⁴ P. Bamfield, R. Grigg, A. W. Johnson, and R. W. Kenyon, J. Chem. Soc., 1968, 1259; P. Bamfield, R. L. N. Harris, A. W. Johnson, I. T. Kur, and K. W. Soltan, idd 1426.

I. T. Kay, and K. W. Shelton, *ibid.*, 1966, 1436.

⁵ M. W. Roomi and S. F. MacDonald, *Canad. J. Chem.*, 1970, 48, 139. ⁶ F. Morsingh and S. F. MacDonald, *J. Amer. Chem. Soc.*, 1960, 82, 4377.

¹ All dipyrrolic units reported were synthesised by standard pyrrole chemistry (See R. L. N. Harris, A. W. Johnson, and I. T. Kay, *Quart. Rev.*, 1966, **20**, 211; K. M. Smith, *ibid.*, 1971, **25**, 31) from the indicated monopyrroles; confirmatory analytical and spectroscopic data were obtained for each new substance.

See A. W. Johnson and I. T. Kay, J. Chem. Soc., 1965, 1620.

⁹ Details in our full paper.

¹⁰ K. M. Biswas and A. H. Jackson, *Tetrahedron*, 1968, 24, 1145.
 ¹¹ H. Fischer and H. Orth, 'Die Chemie des Pyrrols', Akad. Verlagsgesellschaft, Leipzig, 1937, Vol. 2, Part I, p. 421.
 ¹² For spectrum of (13) at natural abundance see D. Doddrell and W. S. Caughey, J. Amer. Chem. Soc., 1972, 94, 2510.