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o-Carborane-based Biphenyl and p-Terphenyl Derivatives
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Abstract: The synthesis and properties of biphenyl- and p-
terphenyl-fused o-carboranes are described. Aryl rings in
the biphenyl and p-terphenyl skeletons are highly coplanar
because of the presence of the o-carborane unit. o-Carbor-
ane exhibits an electron-withdrawing character via the in-
ductive effect, resulting in a decrease in both the HOMO
and LUMO levels of oligophenyls without causing electron-
ic perturbation.

Recently, icosahedral carboranes (C2H12B10)
[1] have been

used as building blocks for p-conjugated molecules[2] and
polymers.[3] In particular, o-carborane (o-C2H12B10), contain-
ing two adjacent carbon atoms, imparts aggregation-induced
emission (AIE)[4] properties to the molecules in which it is
incorporated.[2e–k,3e–h] Optoelectronic properties, including
AIE, are drastically altered by changes in orientation be-
tween the p-conjugated systems and the two adjacent
carbon atoms in the o-carborane unit.[2i,j] When the torsion
angle between the p-conjugated plane and the carbon–
carbon bond approaches 908, AIE is observed due to intra-
molecular charge transfer (CT) from the p-conjugated
system to the o-carborane cluster, as well as suppression of
molecular motion. On the other hand, at a torsion angle
close to 08, o-carborane withdraws electrons inductively
from the p-conjugated unit. Previously, we synthesized a bi-
thiophene-fused o-carborane,[5] in which bithiophene and
the o-carborane�s carbon–carbon bond were fused; that is,
the bithiophene unit and the carbon–carbon bond were on
the same plane (dihedral angle of 08). As a result, the o-car-
borane moiety acted as a strong electron-withdrawing group
through an inductive effect rather than a conjugation effect.
Recently, the bithiophene-fused o-carborane has attracted
attention for optoelectronic materials.[6] Sun, Su, and co-
workers predicted that bithiophene-fused o-carborane deriv-
atives would exhibit large hyperpolarizability values by
virtue of the electron-withdrawing character, which is ex-

pected to be beneficial for applications in nonlinear optical
(NLO) materials.[6a] Marshall, Heeney, and co-workers re-
ported on the transistor performance of conjugated poly-
mers containing the bithiophene-fused o-carborane as an ac-
ceptor.[6b] A variety of electron-deficient and highly planar
oligoaryls can be obtained by the combination of o-carbor-
ane and oligoaryl systems; from this perspective, p-oligo-
phenyls were chosen for investigation in this study. Herein,
we report the synthesis and optoelectronic properties of p-
oligophenyl-fused o-carboranes; that is, compounds in which
biphenyl and p-terphenyl are attached to the two adjacent
carbons of o-carborane.

Synthetic routes to biphenyl- and p-terphenyl-fused o-car-
boranes (4 and 7) are shown in Scheme 1. Treatment of bis-
(2-bromophenyl)acetylene[7] (1) with decaborane (B10H14, 2)
in N,N-dimethylaniline afforded bis(2-bromophenyl)-o-car-
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borane (3) in 16 % yield.[8] Subsequently, the reaction of 3
with nBuLi was carried out to obtain the dilithiated species,
and successive treatment with ZnBr2 and CuCl2 in situ af-
forded biphenyl-fused o-carborane 4 in 41 % isolated yield.
Target compound 7 was prepared by the same method from
1,4-dibromo-2,5-bis(2-bromophenylethynyl)benzene (5)[9]

(Scheme 1). Compounds 4 and 7 were obtained as air- and
moisture-stable white solids, and characterized by 1H, 13C,
and 11B NMR spectroscopy, high-resolution mass spectrome-
try (HRMS), and X-ray crystallography.

Compound 4 was soluble in common organic solvents
such as CHCl3, CH2Cl2, THF, toluene, benzene, and DMF.
Single crystals of 4 were readily obtained from CHCl3 and
MeOH, and the molecular structure, as determined by X-
ray crystallography, is shown in Figure 1.[10] The crystal
structure of 4 revealed a high planarity of the biphenyl skel-
eton with a torsion angle (C1-C2-C3-C7) of 179.2(2)8 be-
tween the two aromatic rings,[10a] which is almost same as
that of phenanthrene (178.388).[11] The C5�C6 bond length
(1.643(2) �) of the carborane cage in 4 is longer than those
in benzene (1.397 �), a general carbon–carbon double bond,
and a single bond. The solubility of 7 in organic solvents
was much lower than that of 4 ; the former could be dis-
solved only in hot CHCl3, benzene, and toluene. Single crys-
tals of 7 were obtained from hot benzene and MeOH, and
its molecular structure was confirmed by X-ray crystallogra-
phy (Figure 1 B).[10b] The structure of 7 revealed the highly

planar p-terphenyl skeleton with a torsion angle of 178.9(4)8
(C1-C2-C3-C7). From the structures of 4 and 7, it appears as
if the 2- and 2’-positions in the two adjacent phenyl rings
are rigidly held in the same plane by a clasp.

To obtain further insight into the aromaticity of the C1�
C6 benzocarborane rings in 4 and 7, nucleus-independent
chemical shift (NICS) values were calculated at the B3LYP/
6-31G ACHTUNGTRENNUNG(d,p)//B3LYP/6-31G ACHTUNGTRENNUNG(d,p) level.[12] The results are sum-
marized in Figure 2, together with values for the related
compounds phenanthrene and 9,10-dihydrophenanthrene.
The NICS(1) value of central aromatic ring of phenanthrene
was �9.2 ppm, whereas that of the central 6-membered ring
of 9,10-dihydrophenanthrene was �0.1 ppm. In compound 4,
the NICS(1) values of the arene ring and C1�C6 benzocar-
borane ring were found to be �10.3 and �1.2 ppm, respec-
tively. The NICS(1) calculation of the C1�C6 benzocarbor-
ane ring of 7 was also carried out, and the value was esti-
mated to be �1.0 ppm (Figure 2). These results indicate that
the C1�C6 benzocarborane rings of 4 and 7 are non-aromat-
ic rings.

Figure 3 shows the molecular orbitals of 4, 9,10-dihydro-
phenanthrene, biphenyl, and phenanthrene obtained by den-
sity functional theory (DFT) calculations. In compound 4,
no overlap of orbitals between the biphenyl moiety and car-
borane skeleton was observed. Thus, the molecular orbital
of 4 was identical to those of 9,10-dihydrophenanthrene and
biphenyl. The energy band gaps of 4 (4.90 eV) and 9,10-di-
hydrophenanthrene (4.99 eV) were narrower than that of bi-

Figure 1. ORTEP drawings of compounds 4 (A) and 7 (B). Thermal ellip-
soids are drawn at the 30 % probability level. Selected bond lengths (�):
4 C1�C2 1.410(3); C2�C3 1.483(2); C3�C4 1.407(3); C4�C5 1.502(3);
C5�C6 1.643(2); C6�C1 1.492(3); 7 C1�C2 1.402(5); C2�C3 1.477(5);
C3�C4 1.407(5); C4�C5 1.510(5); C5�C6 1.633(5); C6�C1 1.497(5).

Figure 2. NICS values (ppm) of 4, phenanthrene, 9,10-dihydrophenan-
threne, and 7 calculated at the B3LYP/6-31G ACHTUNGTRENNUNG(d,p)//B3LYP/6-31ACHTUNGTRENNUNG(d,p)
level.
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phenyl (5.37 eV) since the phenyl rings of biphenyl are
twisted due to the repulsion of hydrogen atoms. The highly
coplanar biphenyl moiety of 4 narrows the energy band gap
in comparison with 9,10-dihydrophenanthrene. The highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) levels of 4 were estimated to be
�6.55 and �1.65 eV, respectively; these values were lower
than those of the other compounds examined. Since a contri-
bution of the electrical perturbation of the o-carborane skel-
eton to the biphenyl moiety was not observed, the deep
HOMO and LUMO levels arose from the electron-with-
drawing feature of o-carborane via the inductive effect. The
LUMO energy level of 4 was estimated from the cyclic vol-
tammogram (CV) peak onset potentials measured in the
DMF solution, as shown in Figure S15 in the Supporting In-
formation. A reduction signal with a peak onset at �1.2 V
(vs. ferrocene/ferrocenium) appeared, whereas no peak was
observed in biphenyl.[13]

In the case of the molecular orbitals of 7, a similar ten-
dency as for 4 was observed (see Figure S16 in the Support-
ing Information). The orbitals of 7 were identical to those of
5,6,12,13-dibenzACHTUNGTRENNUNG[a,h]anthracene and p-terphenyl, and the
energy band gap (4.18 eV) was similar to that of 5,6,12,13-
dibenz ACHTUNGTRENNUNG[a,h]anthracene (4.26 eV). Deep HOMO (�6.53 eV)
and LUMO (�2.35 eV) energy levels were estimated, which
were derived from the inductive electron-withdrawal of o-
carborane.

UV/Vis absorption spectra of compounds 4 and 7 in
CHCl3 (1.0 � 10�5

m) are shown in Figure 4 together with the

spectra of biphenyl and p-ter-
phenyl. Biphenyl exhibited
a broad absorption peak (Fig-
ure 4 A), whereas 4 exhibited
a peak with a vibronic struc-
ture. In addition, the absorption
peak edge of 4 was batho-
chromically shifted compared
with that of biphenyl. As shown
in Figure 4 B, the spectrum of 7
also exhibited a vibronic struc-
ture, which was bathochromi-
cally shifted in comparison with
that of p-terphenyl. These re-
sults are consistent with the
suppression of the rotary
motion of the phenylene rings
by the o-carborane skeleton. p-
Electrons are more effectively
delocalized through the highly
planar oligophenyl moieties
fixed by o-carborane than the
corresponding oligophenyls.

Photoluminescence (PL)
spectra of 7 and p-terphenyl are
shown in Figure S18 in the Sup-
porting Information (in CHCl3;
1.0 � 10�5

m). The PL spectrum
of 7 exhibited a clear vibrational structure, and 7 emitted
bright purple fluorescence with a PL quantum efficiency
(FPL) of 0.52.[14] The Stokes shift was considerably small; the
absorption peak at 336 nm (Figure 4 B) and the PL peak at
337 nm (Figure S18, Supporting Information) indicated a 0–
0 transition band. On the other hand, the PL peak top of p-
terphenyl appeared at 340 nm with a higher FPL of 0.93. A
broad vibrational PL spectrum of p-terphenyl was observed,
thus suggesting that similar structures of p-terphenyl moiet-
ies in both 7 and p-terphenyl are formed in the excited
state. To understand the decrease in FPL of 7 (=0.52), PL
measurements in a frozen medium were carried out (in 2-
MeTHF; 1.0 � 10�5

m at 77 K), as shown in Figure S19 in the
Supporting Information. The PL intensity of 7 increased ap-
parently at 77 K; therefore, the main non-radiative deactiva-
tion process is caused by the molecular motion of the o-car-
borane moiety rather than by an intramolecular CT process.

In conclusion, the synthesis, characterization, and proper-
ties of oligophenyl-fused o-carboranes have been described.
Owing to the effect of the o-carborane unit, high coplanarity
of the oligophenyl moieties was achieved. As a result, exten-
sion of p-conjugation, small Stokes shift, 0–0 transition
band, and clear vibronic structures in UV and PL spectra
were observed. In addition, o-carborane acted as a strong
electron-withdrawing group; in particular, o-carborane with-
drew electrons inductively. o-Carborane decreased both
HOMO and LUMO levels of oligophenyls without provid-
ing electronic perturbation. The energy levels of p-terphen-
yl-fused o-carboranes were lower than those of the corre-

Figure 3. The HOMO/LUMO orbitals and their energy levels calculated at the B3LYP/6-31G ACHTUNGTRENNUNG(d,p) level of
theory for compound 4, 9,10-dihydrophenanthrene, biphenyl, and phenanthrene.
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sponding thiophene-fused benzocarborane. Further synthe-
ses of various oligoaryl-fused o-carboranes and evaluation
of the properties of completely coplanar oligoaryls are pres-
ently under investigation. Functionalization of the obtained
biphenyl- and p-terphenyl-fused o-carboranes toward elec-
tron deficient p-conjugated building blocks is currently un-
derway.
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