Chemischer Transport ternärer Indiummolybdate

Chemical Vapor Transport of Ternary Indium Molybdates

Udo Steiner^b und Werner Reichelt^{a,*}

Dresden, a Institut für Anorganische Chemie der Technischen Universität, b Hochschule für Technik und Wirtschaft (FH)

Bei der Redaktion eingegangen am 11. Februar 2005.

Professor Rüdiger Kniep zum 60. Geburtstag gewidmet

Abstract. An isothermal section of the phase diagram of the system In/Mo/O at 1273 K was established by isothermal equilibration and XRD analyses of quenched samples. The chemical vapor transport of $In_2Mo_3O_{12}$ was investigated in dependence on mean transport temperature (823 K to 1123 K) and amount of transport agent (Cl₂ or Br₂). The observed transport behaviour is compared with results of thermodynamical calculations and the influence of mean temperature, transport agent and moisture contents is described in

1 Einleitung

Im System In/Mo/O kennt man eine Reihe ternärer Verbindungen. Neben $In_2Mo_3O_{12}$ [1], der einzigen Phase auf dem quasibinären Schnitt In₂O₃-MoO₃, sind das metallreiche Molybdate, die ¹_∞[Mo₄O₆]-Oktaederstränge oder Bruchstücke dieser Stränge enthalten: InMo₄O₆ [5], In₁₁Mo₄₀O₆₂ [2], In₃Mo₁₁O₁₇ [3] und In₅Mo₁₈O₂₈ [4]. Die Koexistenzbeziehungen und Synthesebedingungen dieser Verbindungen waren bislang nur unzureichend bekannt, Arbeiten zum Chemischen Transport existierten in der Literatur bislang nicht. Bei unseren Untersuchungen konnten In₂Mo₃O₁₂ (mit den Transportmitteln Chlor und Brom) und InMo₄O₆ in einkristalliner Form mittels Chemischen Transports dargestellt werden. Wie gezeigt wird, sind thermodynamische Modellrechnungen eine wesentliche Methode zum Verständnis der Transportvorgänge, die im metallreichen Teil des ternären Phasendiagrammes In/Mo/O (unterhalb des quasibinären Schnittes MoO₂-In₂O₃) durch Wasser hervorgerufen werden.

2 Synthese und Koexistenzbeziehungen der ternären Phasen

Röntgenographisch (Röntgenpulverdiffraktometrie, Siemens D5000, CuK- $\bar{\alpha}$ -Strahlung) phasenreine Pulverproben von In₂Mo₃O₁₂ sind farblos und wurden durch Tempe-

Institut für Anorganische Chemie der Technischen Universität Mommsenstraße 13 D-01062 Dresden FAX: 0351 / 463 37287 E-mail: werner.reichelt@chemie.tu-dresden.de detail. Single crystals of the metal rich compound $InMo_4O_6$ were grown by chemical vapor transport in a temperature gradient 1273 K to 1173 K using H₂O as transport agent. The gaseous compound $In_2MoO_4(g)$ accounts for the chemical vapor transport of molybdenium compounds in the metal rich part of the ternary phase diagram In/Mo/O.

Keywords: Chemical vapor transport; Indium; Molybdenum

rung von Gemengen aus In_2O_3 (Chempur, 99.99 %) und MoO_3 (Merck, p. a., zur Reinigung umsublimiert) im Molverhältnis 1:3 (1 Tag bei 873 K, 1 Tag bei 1173 K) dargestellt. Nach Literaturangaben [1] kristallisiert $In_2Mo_3O_{12}$ unterhalb von 608 K monoklin, oberhalb dieser Temperatur orthorhombisch, die Umwandlungstemperatur wird in [10] mit 623 K angegeben. Nach den von uns durchgeführten DSC-Messungen (Netzsch STA 449C, N₂-Strom) ist die Phasenumwandlung vollständig reversibel, die Umwandlungstemperatur liegt bei 607 K, die Umwandlungsenthalpie beträgt 1.3 ± 0.2 kJ/mol.

Zur Ermittlung geeigneter experimenteller Bedingungen zur möglichst phasenreinen Darstellung der verschiedenen metallreichen Molybdate wurden von Fais [5] Versuche bei unterschiedlichen Temperaturen und mit unterschiedlichem Ampullenmaterial durchgeführt. Trotzdem sind die Darstellungsbedingungen, Existenzbereiche und Koexistenzbeziehungen dieser Verbindungen nur unzureichend bekannt, weil die sehr geringen Unterschiede der Zusammensetzungen (siehe Abb. 2) und die sehr ähnlichen Röntgenbeugungsdiagramme der Phasen die Untersuchungen erschweren. Angaben zum Phasendiagramm In/Mo/O waren in der Literatur nicht verfügbar. Deshalb wurden von uns eine Anzahl Proben mit unterschiedlicher Zusammensetzung (Tabelle 1, Abb. 1) durch Temperung in evakuierten Quarzglasampullen (1 Tag bei 873 K, 5 Tage bei 1273 K) dargestellt und die Phasenzusammensetzung mittels Röntgenpulverdiffraktometrie bestimmt. Als Ausgangsmaterial dienten Gemenge aus In₂O₃, MoO₃ und Mo (Heraeus, 99.9+) im entsprechenden Molverhältnis. Im Ergebnis dieser Untersuchungen konnten fünf Koexistenzgebiete eindeutig identifiziert werden (Abb. 2): Im Gebiet I koexistieren In₂MoO₁₂, In₂O₃, und MoO₂, im Dreieck II finden sich In₂O₃, MoO₂ und In(1) im Gleichgewicht. Die Zusammensetzung von

^{*} Doz. Dr. W.Reichelt

Tabelle 1Proben zur Ermittlung der Koexistenzbeziehungen imSystem In/Mo/O bei 1273 K

Nr.	Koexistenzgebiet	In : Mo : O	Ergebnis der Phasenanalyse
	0		2 ,
1	Ι	1:1:4	In ₂ Mo ₃ O ₁₂ , MoO ₂ , In ₂ O ₃
2	In ₂ O ₃ /MoO ₂	1:1:3.5	MoO_2 , In_2O_3
3	In ₂ O ₃ /MoO ₂	1:2.5:6.5	MoO_2 , In_2O_3
4	II	1:1.7:4	MoO_2 , In_2O_3 , In
5	II	1:0.5:1.5	MoO_2 , In_2O_3 , In
6	MoO ₂ /In	1:3:6	MoO_2 , In, $(In_{n+1}Mo_{4n+2}O_{6n+4})$
7	MoO ₂ /In	1:1:2	MoO_2 , In, $(In_{n+1}Mo_{4n+2}O_{6n+4})$
8	III	1:2.5:4.5	InMo ₄ O ₆ , MoO ₂ , In
9	III	1:3.5:6.5	InMo ₄ O ₆ , MoO ₂ , In
10	III	1:1.4333:2.5	$In_{n+1}Mo_{4n+2}O_{6n+4}$, In, MoO ₂
11	IV	1:4.7:7.6	InMo ₄ O ₆ , MoO ₂
12	IV	1:6:9.5	InMo ₄ O ₆ , MoO ₂ , Mo
13	IV	1:4.25:6.3	InMo ₄ O ₆ , MoO ₂ , Mo
14	In11Mo40O62	11:40:62	$In_{n+1}Mo_{4n+2}O_{6n+4}$
15	InMo ₄ O ₆ /In	1:3.5:5.3	InMo ₄ O ₆
16	V	1:4:5	InMo ₄ O ₆ , Mo

Abb. 1 Zusammensetzungen der Proben zur Ermittlung der Koexistenzbeziehungen im System In/Mo/O

Abb. 2 Koexistenzbeziehungen der Phasen im ternären System In/Mo/O bei 1273 K

Proben auf dem quasibinären Schnitt MoO_2 -In (Proben 6 und 7) war nach der Temperung häufig geringfügig in das Gebiet III verschoben. Ursache dafür ist vermutlich der Abtransport von In_2O_3 aus dem Probengemenge, hervorgerufen durch Wasserspuren in der Ampulle (vergleiche dazu Abschnitt 4.3). Im Gebiet III beobachtet man die Koexistenz von MoO₂ und In(l) neben metallreichen Indiummolybdaten wechselnder Zusammensetzung. Wie bereits erwähnt, sind die verschiedenen beschriebenen Verbindungen [2-5] röntgenographisch kaum zu unterscheiden, insbesondere wenn Gemenge mehrerer dieser Phasen vorliegen. Eine Ausnahme stellt InMo₄O₆ dar, das bei Abwesenheit anderer Indiummolybdate eindeutig identifizierbar ist. Die Verbindungen In₁₁Mo₄₀O₆₂, In₃Mo₁₁O₁₇ und In₅Mo₁₈O₂₈ wurden deshalb in Tabelle 1 in der allgemeinen Formel In_{n+1}Mo_{4n+2}O_{6n+4} zusammengefasst. In Übereinstimmung mit Beobachtungen von *Fais* [5] wird bei Temperaturen ≤ 1273 K zumeist InMo₄O₆ gebildet (Proben 8 und 9), nach längerem Tempern (z. T. mit I₂ als Mineralisator) und Zwischenhomogenisierung aber auch verschiedene Phasen In_{n+1}Mo_{4n+2}O_{6n+4}.

Neben den sehr ähnlichen Zusammensetzungen der Phasen kommt erschwerend hinzu, dass die Phasengleichgewichte zusätzlich durch Chemische Transporteffekte (Abdestillation von koexistierendem In(1) sowie Transport mit $H_2O(g)$, siehe Kapitel 4.3), hervorgerufen durch unvermeidliche geringe Temperaturgradienten im Temperofen, beeinflusst werden. Die in Abb. 2 (vergrößerter Ausschnitt) dargestellten Koexistenzbeziehungen der verschiedenen metallreichen Indiummolybdate sind deshalb nur als Vorschlag möglicher Koexistenzen anzusehen, zumal die in der Literatur [2-5] charakterisierten Phasen vermutlich nur Grenzzustände in einem komplexen System mit Übergängen zwischen diskreten Phasen und Fehlordnungen darstellen. Eindeutig nachweisbar sind dagegen die Koexistenzen in den Gebieten IV und V, hier findet man jeweils InMo₄O₆ und Mo im Gleichgewicht mit MoO₂ bzw. In(l). Die beste Methode zur Darstellung röntgenographisch phasenreiner Pulverproben von InMo₄O₆ ist, wenn man von Zusammensetzungen auf dem Schnitt InMo₄O₆-In(l), analog Probe 15 (Abb. 1), ausgeht. Der geringe Indium-Überschuss wandert über die Gasphase an die kühlste Stelle der Temperampulle, zurück bleibt nahezu phasenreines InMo₄O₆, gelegentlich wurden röntgendiffraktometrisch Spuren von In oder Mo nahe der Nachweisgrenze gefunden.

3 Thermodynamische Daten und Modellrechnungen

Nimmt man vereinfachend an, dass die Koexistenzdrücke der verschiedenen Phasen $In_{n+1}Mo_{4n+2}O_{6n+4}$ sowie von InMo₄O₆ sehr ähnlich sind und formuliert auch im Gebiet III InMo₄O₆ als Gleichgewichtsphase, ergibt sich aus den beobachteten Koexistenzbeziehungen im System In/Mo/O, dass der Sauerstoffpartialdruck in den Gebieten I bis V durch folgende Gleichungen bestimmt wird:

- (I): $2/3 \text{ In}_2\text{Mo}_3\text{O}_{12}(s) \Leftrightarrow 2/3 \text{ In}_2\text{O}_3(s) + 2 \text{ MoO}_2(s) + \text{O}_2(g)$
- (II): $2/3 \operatorname{In}_2 O_3(s) \Leftrightarrow 4/3 \operatorname{In}(l) + O_2(g)$
- (III): 4 MoO₂(s) + In(l) \Leftrightarrow InMo₄O₆(s) + O₂(g)
- (IV): $MoO_2(s) \Leftrightarrow Mo(s) + O_2(g)$
- (V): $1/3 \text{ InMo}_4\text{O}_6(s) \Leftrightarrow 1/3 \text{ In}(1) + 4/3 \text{ Mo}(s) + \text{O}_2(g)$

Für die ternären Verbindungen des Systems sind keine thermodynamischen Daten aus der Literatur bekannt, so dass auf Abschätzungen zurückgegriffen werden musste.

Abb. 3 p-T-Diagramm des Systems In/Mo/O mit den Sauerstoffkoexistenzzersetzungsdrucklinien der Koexistenzgebiete II bis V

Daten für $In_2Mo_3O_{12}$ wurden mit den Annahmen $\Delta S_{R,298}^{\circ} = 0$ J/mol·K und $\Delta C_{p,R} = 0$ J/mol·K sowie $\Delta H_{R,298}^{\circ} = -100$ kJ/mol (aus den analogen Reaktionen der Verbindungen Al₂Mo₃O₁₂ und Cr₂Mo₃O₁₂ mit Daten aus [6, 7]) für die Reaktion (3.1) abgeschätzt.

$$In_2O_3 + 3 MoO_3 \rightarrow In_2Mo_3O_{12}$$

$$(3.1)$$

Die thermodynamischen Daten von $InMo_4O_6$ sind sehr genau anhand der beobachteten Koexistenzbedingungen (Abb. 2) einzugrenzen: Die Koexistenzdrucklinie von (III) muss sich im schmalen Bereich zwischen den Sauerstoffkoexistenzzersetzungsdrücken von In_2O_3 und MoO_2 einordnen, während, wegen der Koexistenz von $InMo_4O_6$ mit Mo und In(1), im Gebiet V der Sauerstoffpartialdruck bei Werten unterhalb der Zersetzungsdruckkurve von MoO_2 festgelegt ist (vergleiche das p-T-Diagramm in Abb. 3).

In Tabelle 2 sind die so abgeschätzten thermodynamischen Daten für $In_2Mo_3O_{12}$ und $InMo_4O_6$ sowie die Daten

 Tabelle 2
 In den Rechnungen verwendete thermodynamische

 Daten der Indiumverbindungen

Phase	Т	ΔH_T^o	$S_{\mathrm{T}}^{\mathrm{o}}$	C _P ^{a)}	J/K mol		Literatur
	Κ	kJ/mol	J/K mol	А	В	С	
Kondensierte I	Phasen	1					
In(l)	900	20.04	95.38	29.1	0	0	[6]
$In_2O_3(s)$	298	-926.54	104.25	122.75	8.1	-22.0	[6]
$In_2Mo_3O_{12}(s)$	298	-3266	339	293.3	165	0	Abschätzung
InMo ₄ O ₆ (s)	298	-1773	226	210.8	85.6	0	Abschätzung
Gasförmige Vo	erbind	ungen					
In(g)	298	264.54	173.89	22.70	2.365	-2.38	[6]
InCl(g)	298	-75.5	248.3	37.27	0.695	-1.17	[6]
$InCl_2(g)$	298	-222.2	312.2	57.85	0.29	-3.35	[6]
$InCl_3(g)$	298	-376.5	341.6	82.69	0.28	-5.36	[6]
$In_2Cl_6(g)$	298	-889.5	529.3	182.3	0.45	-11.85	[6]
InBr(g)	298	-56.9	259.7	37.6	0.42	-0.75	[6]
$InBr_2(g)$	298	-155	335	58	0.025	-1	Abschätzung
InBr ₃ (g)	298	-258.4	369.8	82.7	0.28	-5.36	[6]
InI(g)	298	8.14	267.5	37.45	-0.08	-0.42	[6]
$InI_2(g)$	298	-23.45	352.0	58.2	0.025	-1.0	[6]
InI ₃ (g)	298	-119.3	400.3	83.2	0.025	-1.76	[6]
$In_2MoO_4(g)$	1000	-744.7	537.1	150.7	3.96	-38.61	[21]

^{a)} $C_p = A + 10^{-3}B \cdot T + 10^5 C \cdot T^{-2}$

aller weiteren, in den Rechnungen berücksichtigten kondensierten und gasförmigen Indiumverbindungen zusammengestellt. Für die Molybdänverbindungen sei auf die Zusammenstellung in [11] verwiesen, die Daten aller weiteren gasförmigen Verbindungen wurden [6] entnommen.

Die Modellrechnungen zum Chemischen Transport im System In/Mo/O wurden mit dem Programm TRAGMIN [8] durchgeführt, welches den Transportvorgang mit dem Erweiterten Transportmodell nach *Krabbes, Oppermann* und *Wolf* [9] beschreibt. Eine ausführliche Darstellung der Vorgehensweise findet sich (am Beispiel des Systems Cd/Mo/O) in [11]. Zum Vergleich wurden zusätzlich einige Rechnungen mit dem Programm CVTrans [12], das auf dem Kooperativen Transportmodell nach *Gruehn* und *Schweizer* [13] beruht, durchgeführt. Die bei der Berechnung der Transportraten verwendeten Parameter waren: Ampullenquerschnitt $q = 1.2 \text{ cm}^2$, Ampullenlänge $\lambda l = 12 \text{ cm}$ und Ampullenvolumen $v = 17 \text{ cm}^3$ (entsprechend den bei den Transportexperimenten verwendeten Ampullen) sowie ein mittlerer Diffusionskoeffizient $D_0 = 0.025 \text{ cm}^2 \cdot \text{s}^{-1}$.

4 Chemischer Transport

4.1 $In_2Mo_3O_{12}$

Farblose Kristalle von $In_2Mo_3O_{12}$ mit bis zu mehreren mm Länge konnten mit den Transportmitteln Cl_2 und Br_2 im Temperaturgefälle $\Delta T = 100$ K bei mittleren Transporttemperaturen zwischen 823 und 1123 K abgeschieden werden (Abb. 4).

Zuerst soll das Transportmittel Cl₂ ausführlicher betrachtet werden. Zur genaueren Messung der Transportraten und zur detaillierten Verfolgung des Transportgeschehens erfolgten diese Transportversuche in einer Anordnung zur kontinuierlichen Bestimmung der Transportraten (Transportwaage nach *Pliess* u. a. [14]), wobei die mittlere Temperatur und die Chlormenge variiert wurden (Ergebnisse in Tabelle 3). Die Abb. 5 zeigt eine typische Messkurve: Nach einer kurzer Periode der Gleichgewichtseinstellung wird ein stationärer Transportzustand mit linearer Zu-

m (Cl ₂)	n(Cl)	T ₂ T ₁	T_1	Modellrechnungen mit Feuchtigkeitsgehalt (mol H ₂ O)				Experiment	
mg	mol	Κ	Κ	wasserfrei	10^{-5}	$2.5 \cdot 10^{-5}$	$5 \cdot 10^{-5}$	TR	Q ^{a)}
2.5	7·10 ⁻⁵	973 1073 1173	873 973 1073	27 13 5.7	18 10 5.1	12 7.6 4.6	7.4 5.3 3.7	3.2 1.9 2.4	0.27 0.25 0.52
10.6	3.10-4	973 1073 1173	873 973 1073	29 17 8.1	26 16 7.5	23 14 7.1	19 12 6.5	0.9 2.4 5.5	0.04 0.17 0.77

Tabelle 3Ergebnisse der Transportwaageversuche zum Chemischer Transport von $In_2Mo_3O_{12}$, $TM = Cl_2$; Transportraten (TR) in mg/h

^{a)} $Q = TR_{exp} / TR_{bep}$ berechnet für $n(H_2O) = 2.5 \cdot 10^{-5} \text{ mol}$

Abb. 5 Ergebnis einer Transportwaage-Messung zum Chemischen Transport von $In_2Mo_3O_{12}$

nahme von Δm (konstanter Transportrate) erreicht. Gegen Versuchende verringert sich die Transportrate meist etwas bevor ein Abknick der Kurve signalisiert, dass der bei T_2 vorgelegte Bodenkörper aufgebraucht ist und vollständig bei T_1 abgeschieden wurde.

Zur Ermittlung der für den Gasphasentransport maßgeblichen Verbindungen und zur Veranschaulichung der wesentlichen Transportgleichungen eignet sich die Darstellung der Transportwirksamkeiten (Gleichung 4.1) in Abb. 6: Wie ersichtlich, erfolgt der Gasphasentransport von Indium als InCl₃(g), der von Molybdän als MoO₂Cl₂(g), Sauerstoff wandert als O₂(g), H₂O(g) und MoO₂Cl₂(g). Weitere Indium- bzw. Molybdän-haltige Gasteilchen spielen für den Transportvorgang nur eine sehr untergeordnete Rolle. Als Transportmittel wirken Cl₂ und HCl, letzteres gebildet durch Reaktion mit Feuchtigkeitsspuren in der Ampulle. Somit wird der Chemische Transport von In₂Mo₃O₁₂ mit Cl_2 durch die Reaktionen (4.2) und (4.3) in guter Näherung beschrieben. Bei größeren Transportmittelmengen (z.B. $3 \cdot 10^{-4}$ mol Cl wie in Tabelle 3) wird der Einfluss der Wasserspuren zurückgedrängt und der Transport erfolgt hauptsächlich über (4.2).

$$\mathbf{w}_{i} = \left[\frac{\mathbf{p}_{i}}{\mathbf{p}_{N}^{*}}\right]_{\mathbf{T}_{2}} - \left[\frac{\mathbf{p}_{i}}{\mathbf{p}_{N}^{*}}\right]_{\mathbf{T}_{1}}$$
(4.1)

Abb. 6 Chemischer Transport von In₂Mo₃O₁₂: Gasphasenzusammensetzung im Auflösungsraum und Transportwirksamkeit, Transportmittel 7·10⁻⁵ mol Cl, $n(H_2O) = 2.5 \cdot 10^{-5}$ mol, $T_2 = 1073$ K, $T_1 = 973$ K

 $(p_i \text{ sind die Partialdrücke der gasförmigen Verbindungen,} p_N^*$ der Bilanzdruck [15] von Stickstoff, zur besseren

Vergleichbarkeit wurde stets auf den Bilanzdruck von $5 \cdot 10^{-10}$ mol N₂ normiert.)

$$In_2Mo_3O_{12}(s) + 6 Cl_2(g) = 2 InCl_3(g) + 3 MoO_2Cl_2(g) + 3 O_2(g)$$

(4.2)

 $In_2Mo_3O_{12}(s) + 12 HCl(g) \leftrightarrows 2 InCl_3(g) + 3 MoO_2Cl_2(g) + 6 H_2O(g)$ (4.3)

Wie aus Tabelle 3 zu entnehmen ist, sind die experimentell bestimmten Transportraten deutlich geringer als die mittels Modellrechnungen vorausgesagten Werte. Auffällig ist auch, dass die beobachteten Raten mit steigender mittlerer Transporttemperatur zunehmen und sich nicht verringern, wie vorausgesagt. Eine Ursache für diese Abweichungen könnten ungenaue (da abgeschätzte) thermodynamische Daten für In₂Mo₃O₁₂ sein, allerdings ergibt sich auch bei Rechnungen mit in sinnvollen Grenzen variierten Daten für In₂Mo₃O₁₂ keine deutlich bessere Übereinstimmung. Eine weitere mögliche Erklärung der Erscheinung ist, dass insbesondere bei niedrigeren Transporttemperaturen nicht der Gasphasentransport durch Diffusion, sondern heterogene Reaktionen in Auflösungs- oder Abscheidungsraum geschwindigkeitsbestimmend für den Transportvorgang sind. Eine quantitative Beschreibung des Transportvorgangs mit dem Diffusionsansatz nach Schäfer [16], wie in den verwendeten Modellierungsprogrammen, wäre dann nicht möglich. Ähnliche Erscheinungen traten auch beim Transport verschiedener Übergangsmetallwolframate MWO₄ auf [17], beim Transport einiger anderer ternärer Molybdate (z.B. CoMoO₄ [18], NiMoO₄) ergab sich dagegen eine sehr gute Übereinstimmung zwischen Experimenten und Modellrechnungen. Zu dieser Problematik sind Untersuchungen an weiteren vergleichbaren Verbindungen wünschenswert.

Die Experimente (durchgeführt in üblichen Zweizonenöfen, keine Transportwaagemessungen) und Modellrechnungen mit dem Transportmittel Br_2 sind in Tabelle 4 zusammengestellt. Übereinstimmend wird eine Zunahme der Transportraten mit steigender mittlerer Transporttemperatur festgestellt, während die experimentell bestimmten Raten wiederum im Vergleich zu den Modellrechnungen niedriger sind. Wesentlich für den Gasphasentransport von Indium ist hier neben $InBr_3(g)$ auch $InBr_2(g)$, für Molybdän

Tabelle 4 Chemischer Transport von $In_2Mo_3O_{12}$, TM = Br₂, $n(Br) = 5 \cdot 10^{-5}$

T_2	T_1	Modellrechn	Experiment			
Κ	Κ	wasserfrei	10^{-5}	$2.5 \cdot 10^{-5}$	$5 \cdot 10^{-5}$	TR
873	773	0.4	0.2	0.1	0.05	< 0.1
973	873	1.9	1.1	0.7	0.4	0.15
1073	973	6.7	4.3	2.9	1.8	0.6
1173	1073	17	12	7.9	5.1	2.5

wiederum nur $MoO_2Br_2(g)$. Als Transportmittel ist nur Br_2 wirksam, HBr dagegen nicht.

4.2 Koexistenzgebiet I $(In_2Mo_3O_{12}|In_2O_3|MoO_2)$

Ausgehend von Bodenkörpern entsprechend dem Koexistenzgebiet I wird im Temperaturgefälle 1173 K nach 1073 K mit dem Transportmittel Cl₂ die Abscheidung von MoO₂ und In₂Mo₃O₁₂ beobachtet während In₂O₃ im Auflösungsraum zurückbleibt (Tabelle 5). In Modellrechnungen wird dagegen der Chemische Transport von MoO₂ und In₂O₃ vorausgesagt. Ursache der Abweichung sind vermutlich die ungenau bekannten thermodynamischen Daten von In₂Mo₃O₁₂. Mit dem Transportmittel Br2 ergibt sich dagegen eine gute Übereinstimmung zwischen Experiment und Modellrechnungen. Zuerst transportiert MoO₂. Das zusätzliche Vorliegen von In₂Mo₃O₁₂ im Abscheidungsraum nach Beendigung des Experiments erklärt sich daraus, dass nach vollständigem Abtransport von MoO₂ aus dem Auflösungsraum der Transport von In₂Mo₃O₁₂ einsetzt.

4.3 Koexistenzgebiete II bis V – Transport von InMo₄O₆

Die Bedingungen beim Chemischen Transport ausgehend von sauerstoffärmeren Bodenkörpern der Koexistenzgebiete II bis V unterscheiden sich wesentlich von denen oberhalb des quasibinären Schnittes MoO_2 -In₂O₃. Bereits erste Modellrechnungen zum Chemischen Transport mit X₂ bzw. HX (X = Cl, Br, I) zeigten, dass die Partialdrücke der bekannten und üblicherweise transportwirksamen Gasteilchen wie $MoO_2X_2(g)$ und $H_2MoO_4(g)$ bei Temperaturen

Tabelle 5 Ergebnisse der Transportexperimente und Modellrechnungen im Koexistenzgebiet I ($In_2Mo_3O_{12}/In_2O_3/MoO_2$); Berechnung mit 10^{-5} mol H_2O (a), **2.5**·10⁻⁵ mol H_2O (b), $5 \cdot 10^{-5}$ mol H_2O (c)

Transportmittel	bei $T_2 = 1173$ K verbliebener	bei $T_1 = 1073$ K abgeschiedene Phasen (Transportrate in mg/h)			
(mol)	Bodenkörper am Ende des Experiments	Berechnung mit TRAGMIN	Experiment ^{a)}		
10 ⁻⁴ Cl	In_2O_3	a) MoO ₂ (6.6), In ₂ O ₃ (0.5) b) MoO ₂ (5.0), In ₂ O ₃ (0.8) c) MoO ₂ (3.5), In ₂ O ₃ (0.9)	MoO ₂ /In ₂ Mo ₃ O ₁₂ (4.6)		
5.10 ⁻⁵ Br	In_2O_3 , $In_2Mo_3O_{12}$	a) MoO ₂ (1.6) b) MoO₂(1.2) <i>c) MoO</i> ₂ (0.9)	MoO ₂ /In ₂ Mo ₃ O ₁₂ (1.3)		

^{a)} summarische Transportrate für alle abgeschiedenen Phasen

Abb. 7 Bruchstück der Ampulle nach dem Transport im Koexistenzgebiet V mit abgeschiedenen Kristallen von $InMo_4O_6$ und erstarrter Schmelze von Indium

<1273 K deutlich geringer als 10⁻⁶ bar sind und demzufolge nicht transportwirksam sein können. Indium dagegen besitzt eine höhere Flüchtigkeit und liegt hauptsächlich als InX(g) und In(g) vor. Trotzdem wurde bei Transportexperimenten im Temperaturgefälle 1273 K nach 1173 K mit wenig I₂ (<1 mg) als Transportmittel in den Koexistenzgebieten IV und V, neben In(l) und teilweise auch MoO₂, die Abscheidung von stäbchenförmigen Kristallen dunkler Farbe (siehe Abb. 7) mit einer Transportrate von <0.1 mg/h beobachtet. Mit Br₂ oder Cl₂ traten dagegen neben In(l) nur gelegentlich Kristalle mit analogem Habitus in geringsten Mengen im Abscheidungsraum auf [20]. Die stäbchenförmigen Kristalle konnten röntgenographisch eindeutig als InMo₄O₆ charakterisiert werden (Abb. 9). Auffällig war, dass bereits bei Zugabe von mehr als 1 mg I2 kein messbarer Transport von InMo₄O₆ beobachtet wurde.

Verantwortlich für die Transporteffekte ist die von *Kaposi* u.a. [21] charakterisierte gasförmige Verbindung $In_2MoO_4(g)$, wie aus der Gasphasenzusammensetzung und Transportwirksamkeit in Abb. 8 ersichtlich wird. Als Transportmittel wirkt $H_2O(g)$, welches in Spuren dem Ausgangsmaterial anhaftet bzw. bei der Transporttemperatur aus dem Quarzglas der Ampulle freigesetzt wird. Transportversuche ohne Zugabe eines halogenhaltigen Transportmittels bestätigten, dass Halogenverbindungen (z.B. I₂ oder HI) als Transportmittel keine Bedeutung besitzen.

In Tabelle 6 sind die Ergebnisse der durchgeführten Transportexperimente den Resultaten von Modellrechnungen gegenübergestellt. Geeignet zur einkristallinen Darstellung von $InMo_4O_6$ sind Bodenkörper aus den Koexistenzgebieten IV und V. Stets beobachtet man neben $InMo_4O_6$ die Abscheidung von größeren Mengen In(1), aufgrund der stark inkongruenten Auflösung und wegen der Zusammensetzung der transportwirksamen Gasphasenspezies $In_2MoO_4(g)$ auch bei Ausgangbodenkörpern aus dem Koexistenzgebiet IV. Der Transportvorgang wird durch die formale Transportgleichung (4.4) und das Gleichgewicht (4.5) beschrieben (vergleiche Abb. 8c):

$$\ln Mo_4O_6(s) + 7 \ln (l,g) + 10 H_2O \Rightarrow 4 \ln_2 MoO_4(g) + 10 H_2(g)$$

(4.4)

Abb. 8 a), c) Koexistenzgebiet V: Abscheidung von In/InMo₄O₆, Gasphasenzusammensetzung im Auflösungsraum (a) und Transportwirksamkeit (c), Transportmittel $5 \cdot 10^{-6}$ mol H₂O, T₂ = 1273 K, T₁ = 1173 K

b), d) Koexistenzgebiet II: Abscheidung von In_2O_3/MoO_2 , Gasphasenzusammensetzung im Auflösungsraum (b) und Transportwirksamkeit (d), Transportmittel 5·10⁻⁶ mol H₂O, T₂ = 1273 K, T₁ = 1173 K

$$In (l) \leftrightarrows In(g) \tag{4.5}.$$

Bei $\Delta T = 100$ K wird die Abscheidung von MoO₂ neben Indium berechnet. Dieses wird auch experimentell bestätigt, häufig finden sich im Abscheidungsraum neben InMo₄O₆ auch Kristalle von MoO₂. Die Transportraten sind gering (für InMo₄O₆ stets deutlich <0.1 mg/h) und erfordern zur Abscheidung einiger mg Transportzeiten von mehr als zwei Wochen.

Ausgehend von Bodenköpern mit Zusammensetzungen entsprechend den Koexistenzgebieten II bzw. III wird die Abscheidung von In(l) neben MoO_2 und In_2O_3 , niemals aber der Phasen $In_{n+1}Mo_{4n+2}O_{6n+4}$ oder $InMo_4O_6$ beobachtet. Die Transportraten im Gebiet II sind übereinstimmend mit den Ergebnissen der Modellrechnungen deutlich größer als in den anderen Gebieten (Tabelle 6). Der gemeinsame Transport von MoO_2 und In_2O_3 wird durch die Gleichungen (4.6) und (4.7) beschrieben (vergleiche Abb. 8d). $H_2(g)$ entsteht bei der Reduktion von H_2O durch Indium (welches zu In_2O_3 oxidiert wird) und ist als Transportmittel anzusehen.

 $In_2O_3(s) + MoO_2(s) + H_2(g) \leftrightarrows In_2MoO_4(g) + H_2O(g)$ (4.6)

$$In_2O_3(s) + 3 H_2(g) \Leftrightarrow 2 In(g) + 3 H_2O(g)$$
 (4.7)

Eine Zugabe von Transportmittel ist nicht notwendig. Die gewöhnlich in den evakuierten Quarzglasampullen vorhan-

Koexistenzgebiet		Modellrechn	ungen	Experiment $\delta T = 100 \text{ K}$			
	$\Delta T(\mathbf{K})$	Abgeschiedene Phasen bei T_I (TR in mg/h)		Abgeschiedene Phasen bei $T_1 = 1173$ K (TR in mg/h)	Verbliebener Bodenkörper bei $T_2 = 1273$ K nach Experimentende		
II (In ₂ O ₃ /In/MoO ₂)	50	In ₂ O ₃ (0.3)	MoO ₂ (0.075)				
	80	$In_2O_3(0.4)$	$MoO_2(0.09)$				
	100	$In_2O_3(0.4)$	MoO ₂ (0.09)	$In/MoO_2/In_2O_3 ~(\approx 0.3)$	MoO ₂		
III $(In/MoO_2/In_{n+1}Mo_{4n+2}O_{6n+4})$	50	In(0.15)	MoO ₂ (0.025)				
	80	In(0.2)	MoO ₂ (0.03)				
	100	$In_2O_3(0.3)$	$MoO_2(0.04)$	$In/MoO_2/In_2O_3(<0.1)$	MoO_2 , $In_{n+1}Mo_{4n+2}O_{6n+4}$		
IV (MoO ₂ /Mo/InMo ₄ O ₆)	50	In(0.07)	InMo ₄ O ₆ (0.005)				
	80	In(0.1)	$MoO_2(0.01)$				
	100	In(0.1)	$MoO_2(0.01)$	In/MoO ₂ /InMo ₄ O ₆ (<0.05)	InMo ₄ O ₆ , MoO ₂ , Mo		
V (InMo ₄ O ₆ /In/Mo)	50	In(0.1)	$InMo_4O_6(0.02)$				
	80	In(0.2)	$InMo_4O_6(0.02)$				
	100	In(0.2)	MoO ₂ (0.02)	In/InMo ₄ O ₆ /MoO ₂ (<0.1)	InMo ₄ O ₆ , Mo		

Tabelle 6 Modellrechnungen und Experimente zum Chemischen Transport mit H₂O in den Koexistenzgebieten II bis V, Auflösungstemperatur $T_2 = 1273$ K, $n(H_2O) = 5 \cdot 10^{-6}$ mol

denen Feuchtigkeitsspuren (erfahrungsgemäß zwischen 10^{-5} und $5 \cdot 10^{-5}$ mol H₂O) sind ausreichend für einen nachweisbaren Transporteffekt. Wie Modellrechnungen zeigen, wird bei noch etwas geringeren Wassermengen (z.B. $n(H_2O) = 5 \cdot 10^{-6}$ mol, Tabelle 6) sogar eine etwas höhere Transportrate vorausgesagt. Wegen des relativ hohen H₂-Partialdruckes muss im Verlaufe des Transportexperiments aufgrund von Diffusion durch die Ampullenwandung mit deutlichen H2-Verlusten gerechnet werden. Dieser Effekt würde demnach den Transportvorgang im Verlaufe des Experiments beschleunigen. Pulverisierte Proben der abgeschiedenen stäbchenförmigen Kristalle zeigten stets nur das Röntgenbeugungsdiagramm von InMo₄O₆, Hinweise auf das Vorliegen von Einkristallen der weiteren metallreichen Molybdate wurden nicht gefunden. Das Beugungsdiagramm von InMo₄O₆ (Abb. 9) konnte orthorhombisch indiziert werden (a = 9.6661(3), b = 9.6629(3) c = 2.8632(1) Å), was auf eine mögliche Isotypie zur orthorhombischen Modifikation von KMo₄O₆ (Raumgruppe Pbam) [19] hinweist.

Literatur

- [1] A. W. Slight, L. H. Brixner, J. Solid State Chem. 1973, 7, 172.
- [2] Hj. Mattausch, A. Simon, E.-M. Peters, *Inorg. Chem.* 1986, 25, 3428.
- [3] R. Dronskowski, Hj. Mattausch, A. Simon, Z. Anorg. Allg. Chem. 1993, 619, 1397.
- [4] E. Fais, H. Borrmann, Hj. Mattausch, A. Simon, Z. Anorg. Allg. Chem. 1995, 621, 1178.
- [5] E. Fais, Dissertation, Universität Stuttgart, 1995.
- [6] O. Knacke, O. Kubaschewski, K. Hesselmann, *Thermochemical Properties of Inorganic Substances*, 2nd. Ed., Berlin u. a. 1991.
- [7] V. P. Gluschko, Termitscheskije Konstanti Weshtschetw, Moskau 1974.
- [8] G. Krabbes, W. Bieger, K.-H. Sommer, T. Söhnel, *Programm-paket TRAGMIN*, IFW Dresden, TU Dresden, Institut für Anorganische Chemie, **1995**.
- [9] G. Krabbes, H. Oppermann, E. Wolf, J. Cryst. Growth 1983, 64, 353.

Abb. 9 Röntgenbeugungsdiagramme einer Pulverprobe sowie von pulverisierten Einkristallen von $InMo_4O_6$

- [10] P. V. Klevtsov, Bull. Soc. Franc. Mineral. Crist. 1969, 92, 352.
- [11] U. Steiner, W. Reichelt, Z. Anorg. Allg. Chem. 2000, 626, 2525.
- [12] R. Glaum, O. Trappe, Computerprogramm CVTRANS zur Modellierung chemischer Transportexperimente, Universität Gießen, 1999.
- [13] R. Gruehn, H. J. Schweizer, Angew. Chem. 1983, 95, 80; Angew. Chem. Int. Ed. Engl. 1983, 22, 82.

- [14] V. Plies, T. Kohlmann, R. Gruehn, Z. Anorg. Allg. Chem. 1989, 568, 62.
- [15] H. Schäfer, Z. Anorg. Allg. Chem. 1973, 400, 242.
- [16] H. Schäfer, Chemische Transportreaktionen, Weinheim, 1962.
- [17] U. Steiner, Z. Anorg. Allg. Chem. 2005, 631, im Druck.
- [18] U. Steiner, S. Daminova, W. Reichelt, Z. Anorg. Allg. Chem. 2004, 630, 2541.
- [19] R. Hoffmann, R. Hoppe, K. Bauer, K.-J. Range, J. Less-Comm. Met. 1990, 161, 279.
- [20] U. Steiner, W. Reichelt, 8th European Conference on Solid State Chemistry, Oslo, 2001, Poster-Nr. P155.
- [21] O. Kaposi, L. Lelik, G. A. Semenov, E. N. Nikolaev, Acta Chim. Hung. 1985, 120, 79.