776 Communications SYNTHESIS

Oxidation of Aromatic Aldehyde and Ketone Alkylthiothiocarbonylhydrazones with Dimethyl Sulfoxide and Acetic Anhydride: A New Synthesis of Disulfides

Seiju KUBOTA*, Hemant K. MISRA, Masayuki SHIBUYA

Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima 770, Japan

The dimethyl sulfoxide/acetic anhydride reagent has been used to oxidize various functionalized alcohols to the corresponding carbonyl compounds under mild conditions^{1,2}. Dimethyl sulfoxide can, for example, also be used as a reagent for the oxidative S—S coupling of thiols to disulfides^{3,4} but, as we have found, no reaction takes place when aldehyde or ketone alkylthiothiocarbonylhydrazones are heated with dimethyl sulfoxide at 100 °C for several hours.

We report here a new convenient method for the synthesis of bis[(alkylthio)-(1-arylalkylidenehydrazono)-methyl] disulfides (4a-i) by the oxidation of various aromatic aldehyde and ketone alkylthiothiocarbonylhydrazones (3a-i) with the dimethyl sulfoxide/acetic anhydride reagent at room temperature.

Whereas the reaction of benzaldehyde methylthiothiocarbonyl hydrazone (3a) with acetic anhydride gives 3-acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (5; structure supported by mass-, I.R.-, and ¹H-N.M.R.-spectrometric data) in analogy to the cyclocondensation of semicarbazones with acetic anhydride⁵, the reaction of 3a with the dimethyl sulfoxide/acetic anhydride system affords only the open-chain bis[(benzylidenehydrazono)-(methylthio)-methyl] disulfide (4a).

$$SCH_3$$
 SCH_3
 $C_6H_5-CH=N-N=C-S-S-C=N-N=CH-C_6H_5$
4 a

The structural assignment of compounds 4a-i is based on microanalyses, mass-, and ¹H-N.M.R.-spectral data. The disulfide 4a is used here as a representative example. The mass spectrum (C.I., NH₃) of 4a shows a M+1 peak at m/e=419 and a prominent 1/2 M⁺ peak at m/e=209 resulting from S-S cleavage. The ¹H-N.M.R. spectrum of disulfide 4a showed methine protons at δ =8.44 ppm (2 H) and two multiplets of aromatic protons centered at δ =7.8 (4 H) and δ =7.40 ppm (6 H), due to the effect of the adjacent azomethine group. A similar type of disulfide $(4; R^1 = C_2H_5, R^2 = C_6H_5, R^3 = H)$ has been prepared by oxidation of benzaldehyde ethyl-dithiocarbohydrazone with iodine⁶. Oxidation of compound 3a with iodine by the reported procedure⁶ gave the disulfide 4a which was found identical with the compound obtained by oxidation of 3a with dimethyl sulfoxide/acetic anhydride.

The formation of the disulfides 4a-i may be rationalized as follows. Acetic anhydride reacts with dimethyl sulfoxide to give acetoxydimethylsulfonium acetate (6) as an intermediate⁷. The reaction of this intermediate with compound 3 gives the substituted thiodimethylsulfonium acetate 7, which is converted into disulfide 4 by the action of another molecule of compound 3.

The method described here affords high yields and is applicable to a wide variety of aromatic and heteroaromatic alkyl-dithiocarbohydrazones.

Aldehyde and Ketone Alkylthiothiocarbonylhydrazones (3):

Compounds 3a-i are prepared from aldehydes or ketones (1) and alkyl hydrazinedithiocarboxylates (2) according to known methods^{5, x, o}.

Table. Bis[(alkylthio)-(1-arylalkylidenehydrazono)-methyl] Disulfides (4) prepared

4	\mathbb{R}^1	R ²	\mathbb{R}^3	Reaction time [h] ^a	Yield ^b [%]	m.p. [°C] (solvent)	Molecular formula ^c	M.S. ^d m/e (M+1)	1 H-N.M.R. (CDCl ₃ /TMS _{int}) e δ [ppm]
а	CH ₃	Н	-	23	90	165° (acetone)	C ₁₈ H ₁₈ N ₄ S ₄ (418.6)	419	2.50 (s, 6 H, SCH ₃); 7.50-7.35 (m, 6 H _{arom}); 7.84-7.77 (m, 4 H _{arom}); 8.44 (s, 2 H, CH=)
b	CH ₃	Н	-√_>CN	23	89	202-203° (chloroform)	$C_{20}H_{16}N_6S_4$ (468.6)	469	2.51 (s, 6 H, SCH ₃); 7.76-7.04 (m, 4 H _{arom}); 7.96-7.84 (m, 4 H _{arom}); 8.44 (s, 2 H, CH=)
С	CH ₃	Н	- (_)→cı	22	79	204° (benzene)	C ₁₈ H ₁₆ Cl ₂ N ₄ S ₄ (487.5)	488	2.48 (s, 6 H, SCH ₃); 7.44–7.30 (m, 4 H _{atom}); 7.80–7.67 (m, 4 H _{arom}); 8.37 (s, 2 H, CH=)
d	CH₃	Н	-√_>-Br	26	81	200° (benzene)	C ₁₈ H ₁₆ Br ₂ N ₄ S ₄ (576.4)	577	2.50 (s, 6 H, SCH ₃); 7.60-7.48 (m, 4 H _{arom}); 7.73-7.63 (m, 4 H _{arom}); 8.37 (s, 2 H, CH=)
е	CH ₃	H	-√_>-СН₃	28	70	176-177° (benzene)	$C_{20}H_{22}N_4S_4$ (446.6)	447	2.83 (s, 6 H, CH ₃); 2.50 (s, 6 H, SCH ₃); 7.34-7.20 (m, 4 H _{arom}); 7.76-7.63 (m, 4 H _{arom}); 8.38 (s, 2 H, CH=)
f	CH ₃	Н		21	93	186° (chloroform)	$C_{24}H_{20}N_6S_4$ (520.7)	521	2.56 (s, 6H, SCH ₃); 8.33-7.48 (m, 12 H _{quinoline}); 8.67 (s, 2H, CH=)
g	n-C ₃ H ₇	н	~	23	89	106-107° (ethanol)	$C_{22}H_{26}N_4S_4$ (474.7)	475	1.04 (t, 6 H, CH ₃); 1.92-1.60 (m, 4 H, CH ₂ CH ₃); 3.08 (t, 4 H, SCH ₂); 7.48-7.35 (m, 6 H _{arom}); 7.88-7.72 (m, 4 H _{arom}); 8.40 (s, 2 H, CH=)
h	<i>i</i> −C ₃ H ₇	н	~>	16	85	160° (chloroform)	$C_{22}H_{26}N_4S_4$ (474.7)	475	1.40 (d, 12 H, CH ₃); 4.00- 3.72 (m, 2 H, —CH); 7.50- 7.32 (m, 6 H _{arom}); 7.88-7.76 (m, 4 H _{arom}); 8.41 (s, 2 H, CH=)
i	CH₃	CH ₃	-(_)	22	89	169-170° (acetone)	$C_{20}H_{22}N_4S_4$ (446.6)	447	2.48 (s, 6 H, SCH ₃); 2.52 (s, 6 H, CH ₃); 7.50-7.34 (m, 6 H _{arom}); 8.00-7.84 (m, 4 H _{arom})

^a Stirring at room temperature.

b Yield of pure isolated product after crystallization.

^c The microanalyses were in satisfactory agreement with the calculated values: C, ±0.30; H, ±0.30; N, ±0.30.

d Obtained on a JEOL JMS-D300 spectrometer. All mass spectra were taken in ammonia gas for chemical ionization.

Obtained on a JEOL PS-100 spectrometer.

Bis|(alkylthio)-(1-arylalkylidenehydrazono)-methyl| Disulfides (4a-i); General Procedure:

A mixture of dimethyl sulfoxide (3 ml) and acetic anhydride (2 ml) is stirred at room temperature for 1 h. Then, the aldehyde or ketone alkylthiothiocarbonylhydrazone (3; 1 mmol) is added and stirring is continued for 1 h. The separated yellow crystalline product 4 is isolated by suction and recrystallized from a suitable solvent (see Table).

3-Acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (5):

A mixture of benzaldehyde methylthiothiocarbonylhydrazone (3a; 3.15 g, 0.015 mol) and acetic anhydride (20 ml) is heated at $100\,^{\circ}\mathrm{C}$ for 1 h, and then concentrated under reduced pressure. The resultant solid is crystallized from methanol to give colorless crystalline 5: yield: 3.47 g (92%); m.p. 75–76 °C.

 $\begin{array}{ccccccccc} C_{11}H_{12}N_2OS_2 & calc. & C~52.36 & H~4.79 & N~11.10 \\ (252.3) & found & 52.47 & 4.81 & 10.96 \end{array}$

M.S. (70 eV): $m/e = 252 \text{ (M}^+\text{)}$; 209 (M⁺ – CO—CH₃).

I.R. (KBr): $v = 1660 \text{ cm}^{-1}$ (C==O).

¹H-N.M.R. (CDCl₃/TMS_{int}): δ = 2.30 (s, 3 H, CO—CH₃); 2.56 (s, 3 H, SCH₃); 7.06 (s, 1 H, 5-H); 7.30 ppm (s, 5 H_{arom}).

Received: November 10, 1981 (Revised form: January 5, 1982)

0039-7881/82/0932-0778 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

^{*} Address for correspondence.

¹ A. J. Mancuso, D. Swern, Synthesis 1981, 165.

² J. D. Albright, L. Goldman, J. Am. Chem. Soc. 87, 4214 (1965); 89, 2416 (1967).

³ C. N. Yiannios, J. V. Karabinos, J. Org. Chem. 28, 3246 (1963).

⁴ T. J. Wallace, J. Am. Chem. Soc. 86, 2018 (1964).

⁵ S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka, M. Shibuya, J. Org. Chem. 45, 1473 (1980).

⁶ J. Sandström, Arkiv Kemi 4, 297 (1974).

⁷ J. D. Albright, J. Org. Chem. 39, 1977 (1974).

⁸ H. Busch, M. Starke, J. Prakt. Chem. [2] 93, 59 (1916).

⁹ J. Korosi, German Patent (DOS) 1934809 (1970), Egyesuelt Gyogyszer es Tapszergyar; C. A. 72, 100334 (1970).