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Synthetic studies on aryl-l,2,3,4-tetrahydroisoquinolines have attracted much attention from the 
synthetic community owing to the potential biological activities I of this class of  compounds and their 
increasing medicinal interest, 2 Among these heterobicyclic compounds Cherylline 1, a rare phenolic 4-phenyl 
tetrahydroisoquinoline alkaloid, 3 and its dimethylether 2 whose structures are unique for Amaryllidaceae 
alkaloids have long been fascinating targets for organic chemists as witnessed by a number of articles dealing 
with biogenesis, 3 isolation, 4 characterization 5 and synthesis. 6 Cherylline 1 isolated from Crinura powellii and 
other Crinum species 7 may be synthesized in different ways, the most common one involving cyelization under 
acidic conditions of appropriately substituted norbelladine derivatives 5. These methods differ mainly by the 
nature of the leaving group X (hydroxy,6a, 8 alkoxy 6b,f and halogeno 6a) prone to generate the desired benzylic 
carbocation for the annulation step. A different route which mimics the general biogenetic pathway operative in 
the formation of  Amaryllidaceae alkaloids relies upon the base-catalyzed cyclization of trihydroxy derivatives 
5 (X = OH; R 1, R 2 = H) 6a which proceeds via the p-quinone methide intermediate also involved in other 
sophisticated syntheses. 6c However all these routes suffered from the need of several regioselective protection, 
deprotection and refunctionalization reactions on either parent models 5 or cyclized products such as 3 and 4. 
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Other methods have also been described based upon (i) the Poionovski reaction of  properly substituted 
dibenzazocine N-oxides, 9 (ii) the Bischler-Napieralski cyclization of polyalkoxyaromatic formamide 7b and 
isocyanide 6d derivatives followed by several regioselective deprotection, demethylation and N-methylation 
reactions and (iii) the photochemically induced ring closure of ortho-halogenated N-acylbenzylamines. 1° 
Noteworthy, the cyclization is invariably achieved through formation of the benzylic bonds a and e of 1-4 by 
these methodologies. Paradoxically Cherylline dimethylether 2 has rarely been prepared by adapting the 
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preceding methodologies. 11 Some specific syntheses have been developed taking into account that the 
regioselective protection of phenol groups in the parent models is not a prerequisite to their annulation. These 
new routes include (i) ring opening of suitably substituted 3-arylphtalide with methylamine followed by 
metallation, trapping with DMF and subsequent treatment of  the primary annulated product, 12 (ii) reaction of 
p-methoxyphenylmagnesium bromide on an appropriate dimethoxy-4-(2H)-isoquinolone derivative 3 and (iii) 
nickel assisted intramolecular Barbier reaction ofN-(2-iodobenzyl) phenacylamines. 13 

We wish to report in this paper a conceptually new and simple approach to the Cherylfine skeleton 
which allows for the access to Cherylline 1 and its dimethylether 2 indifferently. Our strategy hinges upon the 
remarkable nudeophilicity of  phosphorylated a-aminocarbanions 14 and their ability to generate inter 14c, 15 and 
intramolecularly 16 the easily reducible N-C=C unit in a variety of open chain or annulated adducts. 

Initially the dimethoxyphthalic anhydride 6 readily accessible by oxidation ofm-meconine 17 was opened 
by Friedel-CraRs reaction with anisole to afford the o-aroyldimethoxybenzoic acid derivative 71s, 19 (scheme 
I). The acid 7 was subsequently coupled with N-diphenylpliosphorylmethyl-N-methylamine 8 prepared by a 
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Scheme 1 - 10 OMe 
procedure recently developed in our laboratory. ]4a,20 Initial attempts to prepare the phosphorylated 
carboxarnide 9 by Schotten-Baumann reaction between 8 and the carboxylic acid chloride deriving from 7 
were unrewarding due to the dimctdty associated with the acid chloride function. Indeed, despite the 
investigation of" an extensive range or" reagents and conditions, treatment of 7 with a number of" chlorinating 
agents led invariably to the 3-chloro-3-arylphthalide derivative. 21 On the other hand the choice of the 
cliphenylphosphoryl group in the aminophospho~lated counterpart was dictated by the properties of 
diphenylphosphane oxides incontestably superior in many respects to phosphonJum salts and phosphonates. 22 

In spite of the presence in the parent model 9 of the base sensitive acy] group and several orthodirecting 
substituents for aromatic metal]ation, namely methoxy groups 23 associated to a tertiary cad)oxamide 
function, 24 the phosphorylated o-aroylaromatic carboxamide 9 underwent reBioselective metallation by 
treatment with potassium hexamethyldisilylaz]d¢ in tetrabydrofuran at low temperature. Warming the reaction 
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mixture to room temperature ensured completion of the reaction and classical work-up delivered the fused N- 
methyl-6,7-dimethoxy-4-(4-methoxyphenyi)-l-(2H)-isoquinolone 112s in almost quantitative yield (scheme 1). 
The high degree of conjugation of this product, due notably to the marked olefmic character of the 
carboxamide moiety, associated with the aimnitaneous presence of the Ph2PO group 22b and of the weakly 
bound potassium counterion 22b in the adduct 10 accounts for the high yields of the annulation step. 

With this material in hand two different transformations could be envisioned (scheme 2). Preliminar 
diborane reduction of the carbonyl function of 11 and subsequent reduction of the enamine function of the 
intermediate 1,2-dihydroisoquinoline under slightly acidic conditions furnished the Cherylline dimethylether 2 
with a satisfactory yield. On the other hand the catalytic hydrogenation of the diaryienamide C=42 bond of 11 
gave rise to N-methyl-3,4-dihydro-6,7-dimethoxy-4-(4-methoxyphenyl)-l-(2H)-isoquinolone 1226 which could 
be easily converted, albeit in moderate yield, into (5) Cherylline 27 by cleavage of aryl ether linkages,6g,19, 28 
and subsequent reduction of the carboxamide function. 
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(:1:) Cherylline I Scheme 2 

In conclusion the method presented here offers a new approach to the CheryUine skeleton (bond d 
formation). Furthermore the reported protocol which complements the existent methodologies could 
undoubtedly be broaden to include the synthesis of a variety of alkaloids containing the 4-aryl-isoquinoline 
unit. 
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