15. V. Gutman, The Chemistry of Coordination Compounds in Nonaqueous Solvents [Russian] translation], Mir, Moscow (1971).

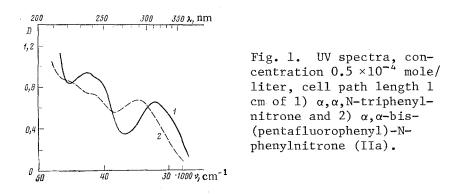
SYNTHESIS OF NITRONES OF THE POLYFLUOROAROMATIC SERIES

N. I. Petrenko, T. N. Gerasimova, and

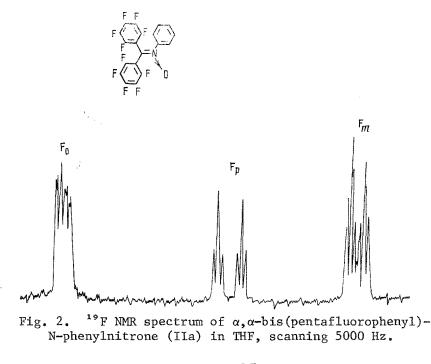
UDC 542.943:547.574.4

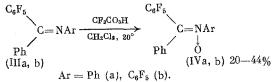
E. P. Fokin

Nitrones are a reactive and intensively investigated class of compounds [1-4] however polyfluoroaromatic nitrones have not been obtained up to the present time with the exception of α, α -diphenyl-N-pentafluorophenylnitrone in [5].


In the present work the possibility has been investigated of obtaining polyfluoro-substituted α, α, N -triarylnitrones by the oxidation of anils of polyfluoroaromatic ketones which were synthesized by the method developed by us previously in [6, 7].

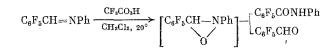
It is known that Schiff bases are oxidized by peracids forming nitrones as a result of electrophilic interaction of the reagent with the unshared pair on the nitrogen atom, or more frequently forming oxaziridines by orthogonal attack at the carbon atom of the azomethine bond. In those cases when such attack is sterically hindered the reaction forming nitrones predominates [8-10].


It was found by us that the anil of decafluorobenzophenone (Ia) was stable to the extended action of AcOOH in CH_2Cl_2 at $\sim 20^{\circ}C$. The interaction of the same anil (Ia) with CF_3CO_3H under these conditions led to the formation of α, α -bis(pentafluorophenyl)-N-phenylnitrone (IIa) in good yield. Similar results were obtained on oxidizing substituted anils of decafluorobenzo-phenone and also the anil of perfluoro-p-tolylketone (Ig).


 $\begin{array}{c} ({\rm Ar}_{\rm F})_2{\rm C} = {\rm NAr} \xrightarrow[{\rm CF_6C0_{3H}}]{} ({\rm Ar}_{\rm F})_2{\rm C} = {\rm NAr} \\ ({\rm Ia} - {\rm g}) & \downarrow \\ & ({\rm II} \, a - {\rm g}), \\ {\rm Ar}_{\rm F} = {\rm C}_6{\rm F}_5, \ {\rm Ar} = {\rm Ph} \ ({\rm a}); \ {\rm Ar}_{\rm F} = {\rm C}_6{\rm F}_5, \ {\rm Ar} = {\rm o} - {\rm MeC}_6{\rm H}_4 \ ({\rm b}); \\ {\rm Ar}_{\rm F} = {\rm C}_6{\rm F}_5, \ {\rm Ar} = {\rm p} - {\rm MeC}_6{\rm H}_4 \ ({\rm c}); \ {\rm Ar}_{\rm F} = {\rm C}_6{\rm F}_5, \ {\rm Ar} = {\rm o} - {\rm MeC}_6{\rm H}_4 \ ({\rm d}); \\ {\rm Ar}_{\rm F} = {\rm C}_6{\rm F}_5, \ {\rm Ar} = {\rm p} - {\rm MeC}_6{\rm H}_4 \ ({\rm e}); \ {\rm Ar}_{\rm F} = {\rm Ar} = {\rm C}_6{\rm F}_5 \ ({\rm f}); \\ {\rm Ar}_{\rm F} = {\rm p} - {\rm CF}_3{\rm C}_6{\rm F}_4, \ {\rm Ar} = {\rm Ph} \ ({\rm g}). \end{array}$

Compound (If), the nucleophilicity of the nitrogen in which is significantly reduced as a result of the acceptor influence of the pentafluorophenyl group, was oxidized more slowly than the remaining anils of type (I), however nitrone (IIf) was formed in high yield in this way. At the same time the anils of 2,3,4,5,6-pentafluorobenzophenone (IIIa, b) containing one pentafluorophenyl residue on the C=N bond interacts with CF_3CO_3H less unequivocally and gave the corresponding nitrones (IVa, b) in lowest yield

Novosibirsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1378-1384, June, 1984. Original article submitted May 10, 1983.



All this forms a basis for the supposition that the main factor, in accordance with the data of [10], determining the direction of the reaction of anils of types (I) and (II) with CF_3CO_3H is the steric hindrance towards reaction at the carbon atom of the C=N bond. In reality the oxidation of benzophenone anil (V), the molecule of which is less sterically screened in comparison with the anils of the polyfluoroaromatic ketones, did not lead to the formation of α, α, N -triphenylnitrone although it proceeded under milder conditions (AcOOH, 20°C). The N,N-diphenylbenzamide isolated from the reaction mixture is in all probability the rearrangement product of the thermally unstable 2,3,3-triphenyloxaziridine formed as an intermediate (cf. [8])

$$\begin{array}{c} Ph_2C = NPh \xrightarrow{MeCO_3H} & Ph_2C \longrightarrow NPh \\ \hline (V) & & O \end{array} \xrightarrow{MeCONPh_2} & Ph_2C \longrightarrow NPh \\ \end{array}$$

We also failed to detect α -pentafluorophenyl-N-phenylnitrone (VI), synthesized alternatively from pentafluorobenzaldehyde and phenylhydroxylamine, in the reaction mixture obtained on oxidation of N-(2,3,4,5,6-pentafluorobenzylidene)aniline with CF₃CO₃H. The anilide of pentafluorobenzoic acid and pentafluorobenzaldehyde were identified in the reaction mixture by ¹⁹F NMR. These were evidently formed as a result of rearrangement and hydrolytic fission of 2-phenyl-3-pentafluorophenyloxaziridine

The formation of pentafluorobenzaldehyde by hydrolysis of the initial anil seems less probable since it was shown previously that the latter was stable in CF_3COOH in [7].

The structure of the obtained nitrones was confirmed by data of elemental analysis and by physicochemical methods. A peak was observed in the mass spectrum of compound (IIa) for the molecular ion at mass 453 and a peak at M - 16 was characteristic of an N-oxide [4]. The UV spectra of nitrones (II) and (IV) were similar to the spectrum of α, α, N -triphenylnitrone [11] and contained an intense (log $\varepsilon > 4$) absorption band in the 280-312 nm region, charac-

(II) ← (II)	-
$\alpha, \alpha, N-Triarylnitrones$ (
of Polyfluoro-Substituted	
Preparation	
TABLE 1.	

Initial	Yield of	Mp. C		Found/ca	Found/calculated, π_h		Empirical	۰ hm	101
	(I) , of,	(rrom alcohol)	σ	Н	Ē4	z	formula	(lg E)	o F ppin (rauo oi intensuies)
(Ia)	20	89-91	50,20 50,35	$\frac{1,15}{1,11}$	$\frac{41,69}{41,92}$	3,09	$C_{19}H_5F_{10}NO$	288 (4,05)	136.9; 137.8; 150.6; 152.6; 161.9; 163.0 (2:2:1:1:2:2)
(qI)	80	109 - 110	51,29 51,40	$\frac{1,47}{1,51}$	$\frac{40,58}{40,66}$	2,88 3,00	C20H7F10NO	283 (4,26)	135,3; 136,7; 142,9; 151,1; 160,8; 162,1 (3:1:1:1:2:2) +
(Ic)	87	137-139	51,66 51,40	$\frac{1,69}{1,51}$	40,63 40,66	2,75 3,00	$C_{20}H_7F_{10}NO$	286 (4,08)	137,1;150,8;152,6;161,8;163,0 (4:1:1:2:2)
(Id)	83	126–127	$\frac{47,50}{48,42}$	$\frac{0.87}{0.86}$	44,34 44,35	$\frac{2,63}{2,97}$	C ₁₉ H ₄ F ₁₁ NO	286 (4,09)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(Ie)	- 92	136–138	49,69 49,70	$\frac{1,27}{1,46}$	39,20 39,32	2,93 2,90	C20H7F10NO2	282 (4,09) 328 inflection	137,3; 150,8; 152,7; 161,8; 163,0 (4:1:1:2:2)
(IÎ)	80 ‡	146-148	41,68 42,01	I	52,59 52,47	2,68 2,58	C ₁₉ F ₁₅ NO	290 (4,07)	$\begin{array}{c} \mathbf{135,0;} \ \mathbf{137,8;} \ \mathbf{147,0;} \ \mathbf{148,0;} \ \mathbf{150,2;} \ \mathbf{160,1;} \\ 162,1 \ (2:2:2:1:2:4:2) \end{array}$
(Iĝ	85	154-155	45,53 45,59	$\frac{1.07}{0.91}$	<u>48,00</u> 48,08	$\frac{2,53}{2,53}$	$C_{21}H_5F_{14}NO$	292 (4,21)	56,6; 135,0; 140,1 (3:2:2)

*Long wave absorption bands are cited. +¹⁹F NMR spectra were taken on a Bruker HX-90 (84.7 MHz) instrument in CDCl₃, $\Delta\delta$ for C₆F₆ and CCl₃F were taken as 163.0 ppm. ‡Reaction mixture was stirred for 24 h.

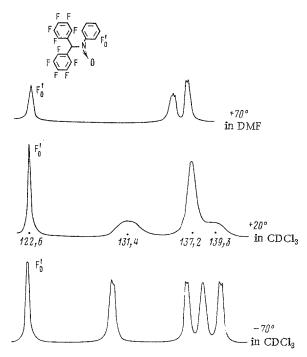


Fig. 3. ¹⁹F NMR spectrum of α, α -bis-(pentafluorophenyl)-N-(o-fluorophenyl)nitrone (IId) in the region 120-140 ppm, scanning 6000 Hz.

teristic of the nitrone group conjugated with an aromatic ring [12] (Fig. 1 and Table 1). In the spectra of nitrones (la-g), the molecules of which contain two polyfluorinated rings in the α position, these bands were shifted towards the shorter wavelength region by \sim 15-25 nm in comparison with the unfluorinated analog.

The ¹⁹F NMR spectrum of compounds (IVa) contained three signals with intensity ratios 2:1:2 characteristic of pentafluorophenyl groups. In the ¹⁹F NMR spectrum of nitrone (IIa), which contains two C_6F_5 groups, six signals were observed of relative intensity 2:2:1:1:2:2 (Fig. 2). This makes it possible to consider different shielding of the fluorine atoms of the C_6F_5 groups situated cis and trans to the N-phenyl residue. Since the greatest difference of chemical shifts was observed for para fluorine atoms it may be proposed that the determining factor was the electronic interaction of the polar nitrone group with the pentafluorophenyl residues oriented relative to it in various ways. It must be noted that the signals of the ortho fluorine atoms were removed furthest from one another in the ¹⁹F NMR spectra of anils of polyfluoroaromatic ketones, i.e., in the case in question the relative deshielding played a more significant role as a result of the difference in spatial influence of the unshared pair of the nitrogen and the N-aryl ring [6, 7].

The ¹⁹F NMR spectrum of α, α -bis(pentafluorophenyl)-N-(o-fluorophenyl)nitrone (IId) contained four signals at low field (120-140 ppm) with relative intensity 1:1:2:1 (Fig. 3). The signal at 122.6 ppm belonged to the fluorine atom in the N-aryl ring and the remaining three to the four fluorine atoms in the ortho positions of the C₆F₅ groups. An increase of temperature to 70°C led to a strengthening of the signals at 131.4 and 139.3 ppm and a decrease to -70°C to the appearance in this region of four signals of equal intensity. Similar temperature changes in the ¹⁹F NMR spectrum were also observed for α, α -bis(pentafluorophenyl)-N-(o-tolyl)nitrone (IIb) and are evidently explained by the magnetic nonequivalence of the ortho fluorine atoms of one of the pentafluorophenyl groups (at ~20°C) or of the fluorine atoms in all ortho positions of these groups (at reduced temperature). This may be explained by increased hindrance to the rotation of the pentafluorophenyl rings in the molecules of nitrones (IIb, d) around the C_{arom}-C_{Sp}² bond and by the presence of a nonbonding interaction of one of the ortho fluorine atoms of the C₆F₅ group with the oxygen atom. A similar interaction leading to strong deshielding of the ortho hydrogen atoms was proposed previously when interpreting the NMR spectra of α -arylnitrones in [13, 14].

EXPERIMENTAL

UV spectra were taken on a Specord UV-VIS instrument in EtOH, ¹⁹F NMR spectra on a Varian A56/60A (56.4 MHz) instrument in THF, $\Delta\delta$ for C₆F₆ and CCl₃F were taken as 163.9 ppm. Molecular weight was determined on a MS-3301 high resolution mass spectrometer.

Synthesis of Initial Anils. Anils (Ia-e, g) and (IIIa) were obtained according to [6,7]. N-(2,3,4,5,6-Pentafluorobenzylidene) aniline was synthesized according to [15]. Anils (Ie), (IIIb), (V) were synthesized by the method described in [7] increasing the reaction time to 7-10 h.

 $\begin{array}{c} \underline{Pentafluoro-N-(2,3,4,5,6-pentafluorobenzhydrylidene)aniline (IIIb), yield 80\%, mp 112-114°C (from EtOH). UV spectrum, <math>\lambda_{max}$, nm (log ε): 268 (4.26), 320 (3.50). ¹⁹F NMR spectrum, (δ , ppm): 138.4; 151.0; 151.8; 160.9; 162.1; 163.9 (2:1:2:2:1:2). Found: C 52.19; H 1.09; F 43.20; N 3.28\%. C₁₉H₅F₁₀N. Calculated: C 52.19; H 1.25; F 43.45; N 3.21\%.

 $\frac{\text{Perfluorobenzhydrylideneaniline (If), yield 70\%, mp 117-118°C (from EtOH). UV spectrum, }{\lambda_{\text{max}}, nm (log <math>\varepsilon$): 246 (4.15), 325 (3.44). ¹⁹F NMR spectrum, (δ , ppm): 139.9; 142.2; 148.6; 149.8; 151.6; 160.1; 161.0; 163.1 (2:2:1:1:2:3:2:2). Found: C 43.49; F 53.74; N 2.68\%. C₁₉F₁₅N. Calculated: C 43.28; F 54.06; N 2.66\%.

Benzophenone anil (V), yield 74%, mp 112-113°C (from EtOH) (cf. [16]).

<u>Polyfluoro-Substituted</u> $\alpha, \alpha, N-Triarylnitrones.$ Trifluoroacetic anhydride (0.71 ml) and 90% H₂O₂ (0.2 ml) in CH₂Cl₂ (10 ml) dried over CaCl₂ were stirred for 0.5 h at 20°C. The solution of peracid was then added dropwise to a solution of the initial Schiff base (1 mmole) in CH₂Cl₂ (10 ml), the mixture was stirred for 1 h at 20°C, poured onto ice, and extracted with ether. The ether solution was washed with aqueous NaHCO₃ solution, dried over MgSO₄, evaporated, and the residue washed with alcohol. The yields and characteristics of the obtained nitrones (II) are shown in Table 1.

 $\frac{\alpha-\text{Pentafluorophenyl-}\alpha, \text{N-diphenylnitrone (IVa)}}{\alpha} \text{ was synthesized and isolated similarly}} to that described above. Yield of product (IVa) was 44% mp 129-131°C (from EtOH). UV spectrum <math>\lambda_{\text{max}}$, nm (log ϵ)*: 304 (4.20). ¹⁹F NMR spectrum (δ , ppm): 137.1; 151.8; 162.3 (2:1: 2). Found: C 63.00; H 2.94; F 25.75; N 3.70%. C₁₉H₁₀F₅NO. Calculated: C 62.81; H 2.77; F 26.15; N 3.86%.

<u> α -Phenyl- α , N-bis(pentafluorophenyl)nitrone (IVb)</u> was isolated by TLC. Separation of the mixture was carried out on plates with a bound layer of SiO₂ of type LSL₂₅₄ 5/40 µm in benzene. Yield of compound (IVb) was 20%⁺, mp 144-146°C (from EtOH). UV spectrum, λ_{max} , nm (log ε)*: 312 (4.20). ¹⁹F NMR spectrum (δ , ppm): 137.5; 148.3; 149.9; 152.9; 160.9 (2:2:1:1: 4). Found: C 50.35; H 1.01; F 42.15; N 3.30%. C₁₉H₅F₁₀NO. Calculated: C 50.35; H 1.11; F 41.92; N 3.09%.

<u>Oxidation of N-(2,3,4,5,6-Pentafluorobenzylidene)aniline</u>. A solution of CF_3CO_3H prepared from trifluoroacetic anhydride (0.71 ml) and 90% H₂O₂ (0.2 ml) in CH_2Cl_2 (10 ml) was added dropwise to a solution of the anil of pentafluorobenzaldehyde (0.27 g) and stirred for 1 h at 20°C. The reaction mixture was processed as described above. The obtained product contained pentafluorobenzaldehyde and pentafluorobenzoic acid anilide in a 1:1 ratio according to data of the ¹⁹F NMR spectrum.

Oxidation of the Anil of Benzophenone. A solution of AcOOH prepared from acetic anhydride (0.33 ml) and $90\% \text{ H}_2\text{O}_2$ (0.15 ml) in CH_2Cl_2 (5 ml) was added dropwise to a solution of benzophenone anil (0.2 g) in CH_2Cl_2 (8 ml) and stirred for 15 h at 20°C. The product, isolated in the usual manner, was washed with petroleum ether (bp 40-70°C) and N,N-diphenylbenzamide (0.1 g: 48%) was obtained which was identical to a sample described in the literature in melting point and IR spectrum [17].

Preparation of α-Pentafluorophenyl-N-phenylnitrone (VI). Pentafluorobenzaldehyde (1 nmole) and freshly prepared phenylhydroxylamine (1 mmole) in dimethylformamide (DMF) (5 ml) were stirred for 20 h at 20°C. The solution was poured into water, the solid filtered off, and washed with alcohol. Yield of (VI) was 90%, mp 130-133°C (from EtOH). UV spectrum, λ_{max} , nm (log ε)*: 298 (4.11). ¹⁹F NMR spectrum (δ , ppm): 132.9; 154.5; 164.1 (2:1:2). Found: C 54.22; H 1.92; F 32.87; N 4.67%. C₁₃H₆F₅NO. Calculated: C 54.36; H 2.11; F 33.08; N 4.88%.

*Long-wave absorption band is given. †Reaction mixture was stirred for 5 h.

CONCLUSIONS

1. Anils of polyfluorobenzophenones are oxidized by trifluoroperacetic acid in methylene chloride at 20°C forming polyfluoro-substituted α, α, N -triarylnitrones. A condition of this direction for the reaction is the presence on the carbon atom of the azomethine bond of a least one pentafluorophenyl group.

2. Oxidation of the anil of pentafluorobenzaldehyde with trifluoroperacetic acid led to the formation of pentafluorobenzoic acid anilide and pentafluorobenzaldehyde.

LITERATURE CITED

- 1. J. Hamer and A. Macaluso, Chem. Rev., <u>64</u>, 473 (1964).
- 2. G. R. Delpierre and M. Lamehen, Quart. Rev., 19, 329 (1965).
- 3. G. G. Spence, E. C. Taylor, and O. Buchardt, Chem. Rev., 70, 231 (1970).
- 4. E. Breuer, in: S. Patai (editor), The Chemistry of Amino, Nitroso, and Nitro Compounds and Their Derivatives, Part 1, Interscience (1982), p. 459.
- 5. R. E. Banks, W. T. Flowers, R. N. Haszeldine, and P. E. Jackson, Chem. Communs., 201 (1965).
- 6. T. V. Fomenko, T. N. Gerasimova, and E. P. Fokin, Zh. Vses. Khim. O-va., 24, 92 (1979).
- 7. N. I. Danilenko, T. V. Fomenko, I. K. Korobeinicheva, T. N. Gerasimova, and E. P. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim., 1606 (1980).
- E. Shmits, Three-Membered Rings with Two Heteroatoms [in Russian], Mir, Moscow (1970), p. 17.
- 9. J. Ogata and J. Sawaki, J. Am. Chem. Soc., 95, 4692 (1973).
- 10. J. Bjorgo, D. R. Boyd, and D. C. Neill, J. Chem. Soc. Perkin Trans 1, 254 (1977).
- Sadtler Standard Spectra, Ultraviolet Spectra, Sadtler Research Laboratories, Philadelphia, No. 9824.
- 12. T. Kubota, M. Yamakana, and J. Mori, Bull. Chem. Soc. Jpn., 36, 1552 (1963).
- 13. K. Kayano and H. Suzuki, Bull. Chem. Soc. Jpn., <u>42</u>, 3306 (1969).
- 14. D. A. Kerr and D. A. Wilson, J. Chem. Soc. C, 1718 (1970).
- A. K. Barbour, M. W. Buxton, P. L. Coe, R. Stephens, and J. C. Tatlow, J. Chem. Soc., 808 (1961).
- 16. Sadtler Standard Spectra. Infrared Grating Spectra. Sadtler Research Laboratories, Philadelphia, No. 37209P.
- 17. Sadtler Standard Spectra. Infrared Prism Spectra. Sadtler Research Laboratories, Philadelphia, No. 9754.