Downloaded by: Collections and Technical Services Department. Copyrighted material.

A Convenient Synthesis of 2-Arylvinyl and 4-Aryl-1,3-butadienyl Arenedithiocarboxylates

Masaru ISHIDA, Hiroyuki SATO, Shinzi KATO*

Department of Industrial Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11, Japan

Vinyl dithiocarboxylates have attracted considerable attention because of their potential usefulness as synthetic intermediates ^{1,2,3}. However, the known synthetic methods are concerned with vinyl alkanedithioates and general methods have

0039-7881/82/1132-0927 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

not been developed. We report here a new practical method for the synthesis of the title compounds 7 and 8, via the new phosphonium salts, phosphoniomethyl iodide dithiocarboxylates 3^4 .

The phosphonium salts 3 are prepared by addition of piperidinium arenedithiocarboxylates⁵ 1 to a chloroform suspension of iodomethyltriphenylphosphonium iodide⁶ (2) at room temperature (Table 1). Treatment of the salts 3 suspended in tetrahydrofuran with an equimolar amount of potassium *t*-butoxide at -75 °C under argon gave a deep purple colored solution of the ylid 4. Subsequent addition of an aryl aldehyde 5 and warming of the mixture to 0 °C gave, after work up, the crystalline arylvinyl arenedithiocarboxylates 7. Similar treatment of 4 with cinnamaldehydes 6 gave the 4-aryl-1,3-butadienyl arenedithiocarboxylates 8.

To the best of our knowledge, this procedure is the first general method for the preparation of the crystalline compounds 7 and 8 (Table 2).

Table 1. Yields and Physical Properties of Phosphoniomethyl Dithiocarboxylate lodides (3)

Prod- uct No.	Aτ¹	Yield" [%]	m.p. [°C]	Molecular Formula ^b	I.R. (KBr) $\nu_{C=S}$ [cm ⁻¹]	U.V. and Vis. (CH ₂ Cl ₂) λ_{max} , [nm] (log ε)	1 H-N.M.R. (CDCl $_{3}$) δ [ppm]
3a	C ₆ H ₅	46	174-178°	$C_{26}H_{22}S_2PJ$	1230,	308 (4.37);	7.20-8.20 (m, 20 H, H _{arom}); 5.90 (d, 2 H, CH ₂)
3 b	4-H ₃ CC ₆ H ₄	72	179~182°	(556.5) $C_{27}H_{24}S_2PJ$ (570.5)	1040 1240, 1040	483 (2.34) 321 (4.38); 487 (2.44)	7.40-8.15 (m, 19 H, H _{arom}); 5.85 (d, 2 H, CH ₂); 2.42 (s, 3 H, CH ₃)
3c	4-H ₃ COC ₆ H ₄	63	202-205°	$C_{27}H_{24}OS_2PJ$ (586.5)	1250, 1045	360 (4.36); 483 (2.53)	7.25-8.05 (m, 19 H, H _{arom}); 6.08 (d, 2 H, CH ₂); 3.79 (s, 3 H, CH ₃ O)
3d	4-Cl—C ₆ H ₄	39	171-175°	$C_{26}H_{21}S_2PCIJ$ (590.9)	1230, 1045	318 (4.42); 488 (2.44)	7.20-8.20 (m, 19 H, H _{arom}); 5.85 (d, 2 H, CH ₂)

^a Yield of isolated products.

Table 2. 2-Arylvinyl and 4-Aryl-1,3-butadienyl Arenedithiocarboxylates 7 and 8

Produ No.	act Ar¹	Ar^2	Yield ^a [%]	m.p. [°C] (solvent)	Molecular Formula ^b	I.R. (KBr) v_{Cross} [cm ⁻¹]	U.V. and Vis. (CH_2CI_2) λ_{max} [nm] $(\log \varepsilon)$	'H-N.M.R. (CDCl ₃) δ [ppm]	M.S. (70 eV) m/e (M+)
7a	C ₆ H ₅	4-O ₂ N—C ₆ H ₄	45	135-138°	$C_{15}H_{11}NO_2S_2$	1245,	311 (4.42);	6.6-8.2 (m, 11 H)	301
,	-03	2 .		(C_2H_5OH)	(301.3)	1045	512 (2.38)		
7b	4-H ₃ C-C ₆ H ₄	C_6H_5	75	50-51°°	$C_{16}H_{14}S_2$	1240,	269 (4.21);	2.35 (s, 3 H);	270
					(270.4)	1045	328 (4.32);	6.8–8.2 (m, 11 H)	
						1070	503 (2.40)	2.25 (* 2.11).	315
7c	$4-H_3C-C_6H_4$	$4-O_2N-C_6H_4$	89	122-128°c	$C_{16}H_{13}NO_2S_2$	1250,	332 (4.43);	2.35 (s, 3 H);	313
					(315.4)	1052	507 (2.34)	6.75-8.4 (m, 10 H)	286
7d	$4-H_3CO-C_6H_4$	C_6H_5	39	49-50°°	$C_{16}H_{14}OS_2$	1245,	249 (4.19);	3.85 (s, 3 H);	200
					(286.4)	1040	269 (4.20);	6.75-8.3 (m, 11 H)	
							356 (4.47);		
						1055	503 (2.53)	2.55 (a : 2.11)	331
7e	4-H3CO-C6H4	$4-O_2N-C_6H_4$	56	166-168°	$C_{16}H_{13}NO_3S_2$	1255,	367 (4.58);	3.55 (s, 3 H);	331
				(C_2H_5OH)	(331.4)	1040	504 (2.57)	7.35–8.85 (m, 10 H)	
8a 8b	4 H CO C H	2-O ₂ NC ₆ H ₄	94	96-100°	$C_{18}H_{15}NO_3S_2$	1250,	361 (4.52);	3.85 (s, 3 H);	357 ^d
	$4-H_3CO-C_6H_4$	2-U2IN-C6II4	77	(CH ₂ Cl ₂ /	(357.5)	1040	491 (2.72)	6.5-8.3 (m, 12 H)	
				C ₂ H ₅ OH)	(33713)	10.0	(-)		
	4 II 60 G II	40 N C H	88	192-194°	$C_{18}H_{15}NO_3S_2$	1240,	245 (4.29);	3.90 (s, 3 H);	357 ^d
	$4-H_3CO-C_6H_4$	$4-O_2N-C_6H_4$	00	(CH ₂ Cl ₂ /	(357.5)	1040	365 (4.55);	6.65-8.25 (m, 12 H)	
				C ₂ H ₅ OH)	(337.3)	• • • •	513 (2.96)		

a Yield of pure, isolated product.

^b Satisfactory microanalyses obtained: C ± 0.14 , H ± 0.05 .

Satisfactory microanalyses obtained: C ± 0.25 , H ± 0.09 , N ± 0.25 , S ± 0.20 ; exception: 7a, C -0.5.

^c Recrystallization not necessary.

^d At 20 eV.

Triphenylphosphoniomethyl p-Toluenedithiocarboxylate Iodide (3b); Typical Procedure:

Piperidinium p-toluenedithiocarboxylate (1, 0.51 g, 2.0 mmol) is added to a suspension of iodomethyltriphenylphosphonium iodide (2; 1.10 g, 2.0 mmol) in chloroform (60 ml). The mixture is stirred for 4 h at room temperature. The resulting homogeneous solution is washed with water (3×50 ml) and dried with sodium sulfate. After removal of the solvent, the residue is added dropwise with stirring to dry ether (200 ml) at 0 °C to give 3b as orange precipitates; yield: 0.82 g (72%). Pure 3b is obtained by recrystallization from ethyl acetate/dichloromethane; m.p. 179-182 °C.

C₂₇H₂₄JPS₂ calc. C 58.85 H 4.24 (570.5) found 56.89 4.19

2-(4-Nitrophenyl)-vinyl p-Toluenedithiocarboxylate (7c); Typical Procedure:

To the salt 3b (0.57 g, 1.0 mmol) suspended in dry tetrahydrofuran (30 ml) is added potassium t-butoxide (0.112 g, 1.0 mmol) under argon at -75 °C. The mixture is stirred at that temperature for 30 min. Then, 4-nitrobenzaldehyde (5; 0.151 g, 1.0 mmol) is added and the mixture gradually warmed to 0 °C within 3 h. The mixture is poured into water (50 ml), extracted with ether (3 × 50 ml), and the extract dried with sodium sulfate. After removal of the solvent, the residue is chromatographed on silica gel (benzene/n-hexane = 1:10 as eluent) to give 7c as red crystals; yield: 0.281 g (89%). Pure 7c is obtained by recrystallization from ethanol; m.p. 122-128 °C.

 $C_{16}H_{13}NO_2S_2$ calc. $C_{60.93}$ H 4.15 (315.4) found 61.12 4.15

4-(2-Nitrophenyl)-1,3-butadienyl p-Toluenedithiocarboxylate (8a); Typical Procedure:

Similarly to the synthesis of 7c, from the salt 3c (0.586 g, 1.0 mmol) and 2-nitrocinnamaldehyde (6; 0.177 g, 1.0 mmol) is obtained 4-(2-nitrophenyl)-1,3-butadienyl p-toluenedithiocarboxylate (8a) as red crystals; yield: 0.335 g (94%). A pure sample is recrystallized from dichloromethane/ethanol: m.p. 96-100 °C.

 $C_{18}H_{15}NO_3S_2$ calc. $C_{18}G_{15}$

Received: April 27, 1982

^{*} Author to whom correspondence should be addressed.

M. Saquet, T. Thuillier, Tetrahedron Lett. 21, 2165 (1980).

² G. Levesque, A. Mahjour, Tetrahedron Lett. 21, 2247 (1980).

M. Schoufs, J. Meijer, P. Vermeer, L. Brandsma, Synthesis 1978, 439.

⁴ We have previously reported the corresponding acylated salts: [Ar—CS₂—CH(CO—C₆H₅)P(C₆H₅)₃]Ar—CS₂°; S. Kato, S. Imamura, M. Mizuta, *Int. J. Sulfur Chem.* [A] **2,** 283 (1972), and the nitrogen analogues, aminomethyl dithiocarboxylates; M. Ishida, S. Kato, M. Mizuta, *Z. Naturforsch.* [b] **36,** 1047 (1981).

⁵ S. Kato, T. Mitani, M. Mizuta, Int. J. Sulfur Chem. 8, 359 (1973).

⁶ H. Hellmann, J. Bader, Tetrahedron Lett. 1961, 724.

Compounds 7b-d were chromatographed on silica gel (benzene/n-hexane = 1:10 as eluent); 8a and 8b were also chromatographed on silica gel (benzene as eluent).