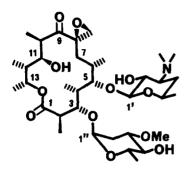
SYNTHESIS OF OLEANDOMYCIN THROUGH THE INTACT AGLYCONE, OLEANDOLIDE

Kuniaki Tatsuta, Yoshiyuki Kobayashi, Hiroki Gunji, and Hirokazu Masuda Department of Applied Chemistry, Keio University Hiyoshi, Kohoku, Yokohama 223, Japan

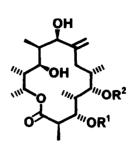
Summary: Oleandomycin has been reconstructed by an introduction of the two sugar units onto the intact aglycone, oleandolide, which was first synthesized through the stereoselective oxidation of the 8-exo-methylene derivative.

Oleandomycin (1) is a medically important macrolide antibiotic. Although synthetic efforts have been focused on the aglycone part,^{1,2)} neither the isolation nor the synthesis of the intact aglycone, oleandolide (8), has been reported to date. Herein we describe the synthesis of oleandolide (8) from oleandomycin (1) and the reconstruction of 1, the latter of which corresponds to the epilogue of the total synthesis, through effective removal and introduction of the sugar moieties.

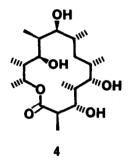
Oleandomycin (1) was converted into the 9-dihydro-8-exo-methylene 2^{3} (85%; amorphous, $[\alpha]_D = 28^\circ$, Rf 0.26 (CHCl₃-MeOH 3:1)) by treatment with CrCl₂¹) (1M HCl/Me₂CO/Ar, 12 h)³ followed by reduction (NaBH₄/i-PrOH-EtOAc, 1 h). The product 2 was hydrolyzed with a 1.5% methanolic hydrogen chloride solution to give the decleandrosyl compound, which was treated with 3% H20, (MeOH, 14 h) to give the N-oxide followed by hydrolysis with 2M HCl (CHCl₂CH₂Cl, 60°C, 5 h) to afford the 8-methylene aglycone 3^{3} (62% from 2; cubes, mp 192°C, $[\alpha]_D$ +30°, Rf 0.86 (CHCl₃-MeOH 3:1)). The stereochemistry at the C-9 was confirmed to be the same as that of the previously reported (8R,9S)-9-dihydro-8-methyloleandolide¹⁾ (4) by guantitative hydrogenation of 3. Consequently, in the following epoxidation, the presence of the C-9 β -hydroxyl group was expected to assist the approach of perbenzoic acid from the β face of the methylene to generate the natural epoxide in view of the Henbest principle. 4) The C-3 and 5 hydroxyl groups were selectively protected by benzylidenation¹⁾ with pbromobenzaldehyde dimethyl acetal (CSA/CH₂Cl₂, 3 h) to afford 5³⁾ (90%; cubes, mp 223°C, [a], +26°, Rf 0.52 (hexane-EtOAc 1:1)). Subsequent epoxidation of 5 with m-chloroperbenzoic acid (CCl₄, 2 h) provided exclusively the β -epoxide 6³⁾ (needles, mp 235°C, $[\alpha]_{n}$ +8°, Rf 0.45 (hexane-EtOAc 1:1)), which was oxidized with pyridinium dichromate (CH_2Cl_2 , 8 h) to give the C-9 ketone 7³) (64% from 5; amorphous, $[\alpha]_D$ -70°, Rf 0.50 (hexane-EtOAc 4:1)). The epoxide ring in question is confirmed to have the natural configuration by the aforesaid hydroxyl group assistance⁴⁾ and, finally, the completion of the synthesis presented below. Hydrogenolysis of 7 (H2/20% Pd (OH)2-C, dioxane, 1 h) afforded the aglycone, oleandolide³⁾ (8 and its 5,9-hemiacetal⁸), in 91% yield (crystals, mp 122-126°C, [α]_p -13°, Rf 0.31 (hexane-EtOAc 1:1), Rf 0.43 (CHCl₃-

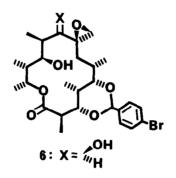

MeOH 20:1)). Although the TLC showed a single spot with more than 20 solvent systems, the ¹³C-NMR in CDCl₃ showed the signals due to the C-1 lactone carbonyl carbon at δ 176 and 178 in a ratio of 1:3, and also those of the C-9 carbonyl carbon at δ 207 and the hemiacetal carbon at δ 99 in a 1:3 ratio.³⁾ In CD₃OD, the corresponding signals were similarly observed in 2:1 ratios.³⁾ The ¹H-NMR also showed the presence of two isomers 8 and 8' in the following ratios depending upon the solvent: approximately 1:3 in CDCl₃; 1:2 in C₆D₆; 3:2 in (CD₃)₂CO; 2:1 in CD₃OD.³⁾ However, acetylation (Ac₂O/Py, 2 days) of the aglycone gave exclusively the triacetate 9³⁾ (82%; plates, mp 231°C, [α]_D +43°, Rf 0.28 (PhH-EtOAc 3:1)). These results reveal that oleandolide exists in an interconvertible mixture of the C-9 ketone (8) and the 5,9-hemiacetal (8') structures in solutions.

The introduction of the desosamine molety onto 8 was accomplished by a modified Woodward procedure.⁵⁾ The thioglycoside 10³⁾ (needles, mp 114°C, $[\alpha]_{D}$ +77°) was prepared in 79% yield from desosamine by treatment with 2-mercapto-pyrimidine (Bu₃P/DEAD/PhMe/Ar, -30°+20°C, 15 h) followed by acetylation (Ac₂O/Py, 15 h).⁵⁾ Reaction of 8 with 10 (5 equiv) in the presence of silver triflate (6 equiv) (MS 4A/PhMe-CH₂Cl₂/Ar, 5 h) gave, after silica gel column chromatography with CHCl₃-MeOH (20:1 and 10:1), the desired β -glycoside 11³⁾ (42%; amorphous, $[\alpha]_{D}$ -48°, Rf 0.55 (PhH-Me₂CO-MeOH 3:1:1; Rf 0.74 and 0.63 for 8 and 10)). Methanolysis (MeOH/Et₃N, 10 h) of 11 produced deoleandrosyl-oleandomycin³⁾ (12) in 90% yield (needles, mp 177°C, $[\alpha]_{D}$ -63°, Rf 0.27 (CHCl₃-MeOH 5:1)) identical in all respects with the authentic sample, which was derived in 45% yield from 1 by acid hydrolysis (7% CHCl₂COOH, 60°C, 18 h).

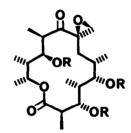

The second glycosidation of the acetate 11 was widely investigated by a variety of conditions including our method⁶⁾ (glycal and NBS), Thiem and Danishefsky method⁷⁾ (glycal and NIS) and others.⁵⁾ The best result was realized by using the glycal 13 and camphorsulfonic acid.⁸⁾ The glycal 13³⁾ (bp₁ 165°C, $[\alpha]_{\rm D}$ +11°) was prepared (TsCl/Et₃N/DMAP/MeCN, 8 h) from 4-O-benzyl-oxycarbonyloleandrose, which was in turn obtained from methyl L-oleandroside by acylation (CbzCl/DMAP/CH₂Cl₂, 2 days) and selective hydrolysis (0.8 M HCl/MeCN, 50°C, 24 h) in 70% yield. Thus, reaction of 11 with 13 (7 equiv) in the presence of CSA (6 equiv) in CH₂Cl₂ (MS 4A, 32°C, 2 days) afforded a mixture of condensed products having Rf 0.45, 0.38 and 0.27 on TLC (CHCl₃-Me₂CO 2:1; Rf 0.06 and 0.9 for 11 and 13), which was chromatographed on silica gel with CHCl₃-Me₂CO (2:1) to give the Rf 0.38-substance as the major product. Hydrogenolysis (H₂/Pd-black, EtOH, 0.5 h) of the major product followed by methanolysis (MeOH/Et₃N, 15 h) gave, after silica gel column chromatography (CH₂Cl₂-MeOH-PhH-DMF 28:7:7:1), oleandomycin³⁾ (1: 40% from 11; amorphous, mp 101°C, [α]_D -59° (MeOH) identical in all respects with that obtained from natural sources.

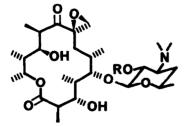
<u>Acknowledgment.</u> We thank Pfizer Taito Co., Ltd. for a generous gift of oleandomycin. Financial support by the Ministry of Education, Science and Culture (Grant-in-Aid for Scientific Research) is gratefully acknowledged.


3976



1: Oleandomycin


- 2: R^1 = oleandrosyl R² = desosaminyl
- 3: $R^1 = R^2 = H$
- 5: R^1 , $R^2 = >CH \sqrt{2}$ ·Br


. .

7: X = 0

8: Oleandolide R≈H

9: R = Ac

11: R = Ac

12: R=H

References and Notes:

 K. Tatsuta, Y. Kobayashi, K. Akimoto & M. Kinoshita, Chem. Lett., <u>1987</u>, 187 (1987); K. Tatsuta, Y. Kobayashi & M. Kinoshita, J. Antibiot., <u>40</u>, 910 (1987).
I. Paterson & P. Arya, Tetrahedron, <u>44</u>, 253 (1988), and references cited therein.

3) All reactions were done at room temperature, unless otherwise stated. All compounds except for 13 were recrystallized or reprecipitated from EtOAchexane, after silica gel column chromatography, and were fully characterized by spectroscopic means and elemental analyses. Melting points were uncorrected. Optical rotations were measured in CHCl₂ at c 1.0 (23°C) except for 1 in MeOH. Rf-values were measured on silica gel Merck TLC 60F-254. NMR (400 or 500 MHz: $\delta,$ ppm from TMS, and J in Hz) spectra were in CDCl, solution, unless otherwise stated. Significant ¹H-NMR spectral data are the following (with ¹³C-NMR for 8 and 8'). 1: 2.37(s, NMe₂), 2.82 & 2.96(ABq, J= 4.8, CH₂-8), 3.41 (s, OMe), 4.24 (d, J=8.1, H-1'), 4.97 (d, J=3.7, H-1"), 5.61 (q, J=6.6, H-13). 2: 4.22(d, J=7.4, H-1'), 4.97(d, J=3.0, H-1"), 5.06 & 5.38 (each s, CH_2^{-8}). 3: 5.05 & 5.50 (each s, CH_2^{-8}), 5.33 (q, J=6.6, H-13). 5: 5.48(q, J=5.9, H-13), 5.14 & 5.50(each s, CH₂-8), 5.58(s, benzylidene CH). 6: 2.69 & 3.10 (ABq, J=4.8, CH₂-8), 3.74 (dd, J=10.1 & 3.1, H-9), 5.58 (q, J=6.2, H-13). 7: 3.00 & 3.12 (ABq, J=3.6, CH₂-8), 3.05 (dq, J=6.2 & 1.6, H-10), 5.77 (q, J=6.9, H-13). 8: 2.79 & 3.07 (ABq, J=5.4, CH₂-8), 5.68 (dq, J=7.2 & 1.2, CH₂-8) H-13), and 8': 2.71 & 2.98 (ABq, J=5.4, CH_2 -8), 5.02 (dq, J=7.2 & 2.2, H-13) in CDC13. In C₆D₆, 8: 5.82 (dq, J=7.0 & 2.0, H-13), and 8': 5.31 (dq, J=7.0 & 3.0, H-13). In $(CD_3)_2CO_7$ 8: 5.58 (dq, J=6.6 & 1.4, H-13), and 8': 4.89 (dq, J=6.4 & 2.4, H-13). In CD₂OD, 8: 5.68 (dq, J=6.9 & 1.3, H-13), and 8': 4.96 (dq, J=6.9 & 2.2, H-13). 13 C-NMR in CDCl₃; 8: 176(C-1), 207(C-9), and 8': 99(C-9), 178 (C-1). In CD₂OD; 8: 178(C-1), 209.5(C-9), and 8': 100.5(C-9), 179(C-1). 9: 4.75(d, J=6.8, H-5), 5.01(dd, J=6.8 & 1.8, H-11), 5.19(q, J=7.2, H-13), 5.22 (dd, J=10.4 & 2.1, H-3). 10: 1.28(d, J=6.4, Me-5), 5.06(t, J=9.3, H-2), 5.65 (d, J=9.3, H-1). 11: 2.85 & 3.04 (ABq, J=4.8, CH₂-8), 4.44 (d, J=8.2, H-1'), 5.66 (q, J=6.2, H-13). 12: 2.89 & 3.09 (ABq, J=5.0, CH₂-8), 4.32 (d, J=6.1, H-1'), 5.67 (g, J=7.1, H-13). 13: 1.32 (d, J=6.8, Me-5), 4.85 (dd, J=6.3 & 2.9, H-2), 6.38 (dd, J=6.3 & 1.5, H-1).

4) H. B. Henbest & R. A. L. Wilson, J. Chem. Soc., <u>1957</u>, 1958 (1957).

5) R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, and

co-workers, J. Am. Chem. Soc., 103, 3215 (1981), and references cited therein.

- 6) K. Tatsuta, K. Fujimoto, M. Kinoshita & S. Umezawa, Carbohydr. Res., <u>54</u>, 85 (1977); K. Tatsuta, A. Tanaka, K. Fujimoto, M. Kinoshita & S. Umezawa, J. Am. Chem. Soc., <u>99</u>, 5826 (1977).
- 7) J. Thiem, H. Karl & J. Schwentner, Synthesis, <u>1978</u>, 696 (1978); S. J. Danishefsky, H. G. Selnick, D. M. Armistead & F. E. Wincott, J. Am. Chem. Soc., <u>109</u>, 8119 (1987).
- T. Wakamatsu, H. Nakamura, E. Naka & Y. Ban, Tetrahedron Lett., <u>27</u>, 3895 (1986).

(Received in Japan 14 April 1988)