COBALOXIME-MEDIATED RADICAL ALKYL-NITROALKYLANION CROSS COUPLING

Bruce P. Branchaud*¹ and Gui-Xue Yu Department of Chemistry University of Oregon Eugene, OR 97403-1210

Summary: Anaerobic photolysis of aqueous ethanol solutions of alkyl cobaloximes $RCo^{III}(dmgH)_2py$ (dmgH - dimethylglyoxime monoanion) and nitroalkyl anions caused cross coupling in which an H α to the nitro was replaced with R.

In previous studies we found that the success of cobaloxime-mediated radical alkyl-alkenyl^{2,3} and alkyl-heteroaromatic⁴ cross couplings depended upon (1) having a cross coupling partner which is highly reactive with nucleophilic alkyl radicals and (2) having a concentration of the cross coupling partner high enough to provide a sufficient radical-trapping flux (rate constant x concentration) to efficiently trap alkyl radicals in competition with other side reactions. Nitroalkylanions are extraordinarily reactive with nucleophilic alkyl radicals.⁵ For example, the rate of addition of H_2C -CH(CH₂)₃CH₂ to (CH₃)₂C=NO₂ (-2.5 x 10⁵ M⁻¹s⁻¹ at 40 °C),^{5b} with two alkyl substituents at the site of radical attack, is faster than addition of H_2C -CH(CH₂)₃CH₂ to H_2C =CHPh (-8.7 x 10⁴ M⁻¹s⁻¹ at 45 °C),⁶ with no alkyl substituents at the site of radical attack. The relative rates of addition of (CH₃)₃C⁺ to (CH₃)₂C=NO₂⁻, CH₃CH=NO₂, and H_2C =NO₂⁻ at 35 °C are 1:6:35, respectively.^{5a} Since we have successfully cross coupled H_2C =CHPh with RCo^{IIII}(dmgH)₂py,² we decided to examine cobaloxime-mediated alkyl-nitroalkylanion cross coupling.

We found that anaerobic visible light photolyses⁷ of $CH_3(CH_2)_8CH_2$ - $Co^{III}(dmgH)_2py$ (1) with $H_2C=NO_2^-$ Na⁺ (3) or $CH_3CH_2CH=NO_2^-$ Na⁺ (4) led to cross coupling.^{8,9,10} Cross couplings using secondary alkyl $CH_3(CH_2)_8CH(CH_3)Co^{III}(dmgH)_2py$ (2) were also successful but consistently led to somewhat lower yields than with primary 1 under comparable conditions.^{8,9,10} The yields of 5, 6, 7, and 8 were linear with nitroalkylanion concentration at low to moderate concentrations of nitroalkylanions.

RCo ^{III} (dmgH) ₂ py ^a	Nitroalkylanion (concn, mM)	Solvent	Product (% Yield) ^{b,c}
1	3 (20)	95% EtOH/H ₂ 0	5 (16)
1	3 (40)	95% EtOH/H ₂ O	5 (25)
1	3 (60)	95% EtOH/H ₂ 0	5 (48)
1	3 (100)	95% EtOH/H ₂ O	5 (80)
1	3 (200)	95% EtOH/H ₂ O	5 (85)
1	3 (400)	95% EtOH/H ₂ O	5 (81)
1	4 (20)	95% EtOH/H ₂ 0	6 (25)
1	4 (40)	95% EtOH/H ₂ O	6 (45)
1	4 (60)	95% EtOH/H ₂ O	6 (70)
1	4 (80)	95% EtOH/H ₂ O	6 (72)
1	4 (100)	95% EtOH/H ₂ O	6 (77)
1	4 (200)	95% EtOH/H ₂ O	6 (83)
1	4 (400)	95% EtOH/H ₂ 0	6 (83)
2	3 (60)	95% EtOH/H ₂ 0	7 (28)
2	3 (100)	80% EtOH/H ₂ 0	7 (37)
2	3 (200)	80% EtOH/H ₂ 0	7 (58)
2	3 (400)	80% EtOH/H ₂ 0	7 (58)
2	4 (20)	95% EtOH/H ₂ 0	8 (5)
2	4 (60)	95% EtOH/H ₂ 0	8 (28)
2	4 (100)	80% EtOH/H ₂ 0	8 (27)
2	4 (200)	80% EtOH/H ₂ O	8 (56)
2	4 (400)	80% EtOH/H ₂ O	8 (62)

 $a_{RCo}^{III}(dmgH)_{2}$ py concn was 20 mM for all reactions. $b_{Reactions}$ were run at ~15 °C. c Reaction times were ~30 h in all cases.

Since the nitro functional group can be converted into the important ketone or aldehyde groups under mild conditions (anaerobic aqueous TiCl_3),¹¹ we have formally developed an equivalent to carbanion-carbonyl addition that is compatible with hydroxylic solvents and should be compatible with common organic functional groups. As an illustration of that point, the completely aqueous-compatible sequence of reactions, $\text{CH}_3(\text{CH}_2)_8\text{CH}_2\text{Br}$ to 1 (91% average isolated yield) then 1 to 6 (83% isolated yield using 5 equiv of 4) then 6 to 9 (85% isolated yield),¹² in 64% overall isolated yield for three steps (86% average for each step), is equivalent to aqueous-incompatible standard carbanion-carbonyl couplings such as carbanion-aldehyde addition followed by alcohol to ketone oxidation or cross coupling of organocadmium¹³ or organomanganese¹⁴ reagents with acid halides.

Reasonable non-chain and chain mechanisms can be formulated to rationalize our results. The non-chain model shown below is analogous to ones we have proposed for alkyl-alkenyl² and alkyl-heteroaromatic⁴ cross couplings. The chain mechanisms that could be written are analogous to SRM1 cross coupling of alkylmercuric halides with nitroalkylanions.⁵ We strongly favor the non-chain mechanism for this and all cobaloxime-mediated cross couplings for fundamental reasons which have been discussed in detail elsewhere.⁴ In brief here, a consideration of one electron reduction potentials of $Co^{II}(dmgH)_2py$ versus $RCo^{III}(dmgH)_2py$ leads to the conclusion that $Co^{II}(dmgH)_2py$ should act as a chain-terminating radical scavenger, diverting the reaction flux away from a chain reaction and into the non-chain pathway shown below.

Acknowledgements. The Alfred P. Sloan Foundation and NSF CHE 8806805 provided financial support. The General Electric QE-300 NMR used in this work was purchased with funds from NIH RR 02336 and NSF CHE 8411177. The VG ZAB-2FHF MS and VG 12/253 Quad MS used in this work were purchased with funds from NIH RR 03001, NSF DMB 8414627, and the M. J. Murdoch Charitable Trust.

References and Notes

- 1. Fellow of the Alfred P. Sloan Foundation, 1987-1989.
- (a) Branchaud, B. P.; Meier, M. S.; Choi, Y. Tetrahedron Lett. 1988, 29, 167.
 (b) Branchaud, B. P.; Meier, M. S. Tetrahedron Lett. 1988, 29, 3191. (c) Branchaud, B. P.; Meier, M. S., J. Org. Chem., in press.
- For radical-alkene reactions via cobalt radical chemistry see: (a) Baldwin, J. E.; Li, C.-S. J. Chem. Soc. Chem. Commun. 1988, 261. (b) Coveney, D. J.; Patel, V. F.; Pattenden, G. Tetrahedron Lett. 1987, 28, 5949. (c) Patel, V. F.; Pattenden, G. J. Chem. Soc. Chem. Commun. 1987, 871. (d) Baldwin, J. E.; Li, C.-S. J. Chem. Soc. Chem. Commun. 1987, 166. (e) Scheffold, R. Fure Appl. Chem. 1987, 59, 363.
- 4. Branchaud, B. P.; Choi, Y. L. J. Org. Chem. 1988, 53, in press.
- (a) Russell, G. A.; Khanna, R. K. In Nucleophilicity; Harris, J. M.; McManus, S. P., Eds.; ACS Advances in Chemistry Series 215; American Chemical Society: Washington, D. C., 1987; pp 355-68. (b) Russell, G. A.; Guo, D. Tetrahedron Lett. 1984, 25, 5239. (c) Madden, K. P.; Taniguchi, H.; Fessenden, R. W. J. Am. Chem. Soc. 1988, 110, 2753.
- 6. Citterio, A.; Arnoldi, A.; Minisci, F. J. Org. Chem. 1979, 44, 2674.
- Photolyses were performed using a 300 W incandescent light bulb in Pyrex test tube reaction vessels in a simple Pyrex apparatus previously described in detail in Branchaud, B. P.; Meier, M. S.; Malekzadeh, M. N. J. Org. Chem. 1987, 52, 212.
- The R-Co^{III}(dmgH)₂py 1 and 2 were prepared in moderate to good isolated yields as previously described in references 2 and 7.
- 9. Products 5, 6, 7, and 8 were characterized by ¹H NMR, ¹³C NMR, and MS.
- 10. All yields for cross-coupling products are for isolated, chromatographically purified materials. Yields were determined by ¹H NMR integration vs Ph₃CH added as an internal standard to chromatographically homogeneous samples prior to ¹H NMR analysis.
- 11. McMurry, J. E. Accts. Chem. Res. 1974, 9, 281.
- 12. 3-tridecanone 9 was characterized by ¹H NMR, and by ¹H NMR and ¹³C NMR of its 2,4-DNP derivative (mp = 42.5-43.0 °C).
- 13. Jones, P. R.; Desio, P. J. Chem. Rev. 1978, 78, 491.
- 14. Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis 1977, 2, 130.

(Received in USA 24 August 1988)