Prearranged Glycosides, 4^[\diamond]

Synthesis *via* Prearranged Glycosides of a Tetrasaccharide Fragment Related to the Capsular Polysaccharide of *Streptococcus pneumoniae* Type 27

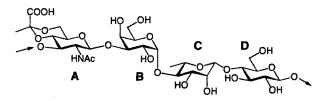
Gunter Schüle and Thomas Ziegler*

Institut für Organische Chemie und Isotopenforschung, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received April 15, 1996

Key Words: Carbohydrates / Tetrasaccharide, bacterial / Glycosylation, intramolecular

The blockwise synthesis of the pyruvated tetrasaccharide 4,6-(*S*)-pyruvic-acetal- β -D-GlcNAc_p-(1 \rightarrow 3)- α -D-Gal_p-(1 \rightarrow 4)- β -L-Rha_p-(1 \rightarrow 4)- β -D-Glc_p-O(CH₂)₅NH₂ (**32**), related to the repeating unit of the capsular polysaccharide of *Streptococcus pneumoniae* type 27, by coupling of the suitably protected disaccharide blocks 4,6-(*S*)-pyruvic-acetal- β -D-GlcNAc_p-(1 \rightarrow 3)- α -D-Gal_p-trichloroacetimidate (**13**) and β -L-Rha_p-(1 \rightarrow 4)- β -D-Glc_p-O(CH₂)₅NHZ (**29** β) is described. The latter

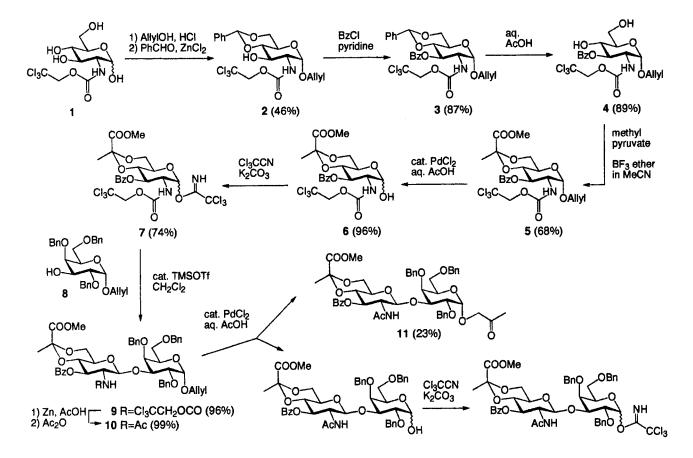

disaccharide acceptor was prepared via prearranged glycosides by intramolecular glycosylation of a protected 5-aminopentyl β -D-glucopyranoside linked by a succinyl bridge at C-3 to C-2 of ethyl 1-thio- α -L-rhamnopyranoside. The dependence of the anomeric selectivity of the coupling on the nature of the protecting group at C-4 of the rhamnosyl moiety is studied.

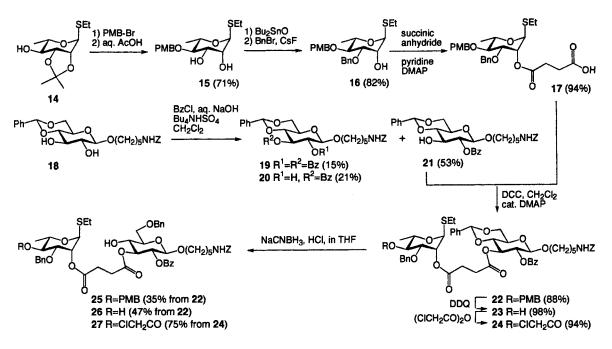
Bacteria of the genus Streptococcus pneumoniae are the main cause of otitis media in juvenils and of pneumonia in immunocompromized individuals^[1]. Since the latter infection is still one of the major causes of death in third world countries, it appears to be highly desirable to vaccinate against S. pneumoniae. In early attempts to obtain efficient vaccines, heat-killed cells of S. pneumoniae^[2] were initially used and it was shown in this respect that the capsular polysaccharides of the bacteria that are present in that vaccine are responsible for the induction of a suitable immune response^[3]. Thus, according to epidemiological studies^[4], the currently available vaccine (Pneumovax[®] 23) contains 23 of the more than 85 serologically distinguishable capsular polysaccharides of S. pneumoniae. However, since polysaccharides are often less effective to mount and maintain an adequate antibody response^[5] and since furthermore infections by pneumococcal types that are not incorporated in the vaccine cannot be prevented, several attempts were undertaken to use synthetic neoglycoconjugates related to various type of pneumococci for that purpose^[6].

Recently, we synthesized a 5-aminopentyl tetrasaccharide glycoside related to the DABC sequence^[6] (Figure 1) of the repeating unit of the capsular polysaccharide of *S. pneumoniae* type $27^{[7]}$. To this end, the type-27 structure appeared to be especially interesting for immunological studies due to the presence of an immunodominant pyruvated *N*-acetylglucosamine residue^[7] found otherwise solely in type-4 pneumococci^[8-10]. The 5-aminopentylaglycon was previously chosen as an anchor for the conjugation of the tetrasaccharide with a protein. This should result in a neo-

glycoprotein and increase the immunogenity of the carbohydrate epitope. For studies of the immunological properties of such neoglycoconjugates and for the evaluation of their immunogenity with respect to their use as vaccines it is, however, desirable to have all possible variations of the polysaccharide repeating unit available. Therefore, the synthesis of the ABCD sequence (Figure 1) of *S. pneumoniae* type-27 polysaccharide using the novel glycosylation protocol via prearranged glycosides^[11,12] is described here. Nevertheless, this approach should also demonstrate here that the latter glycosylation strategy may be readily applied to the synthesis of complex oligosaccharides.

Figure 1. Repeating unit of the capsular polysaccharide of *Strepto*coccus pneumoniae type 27

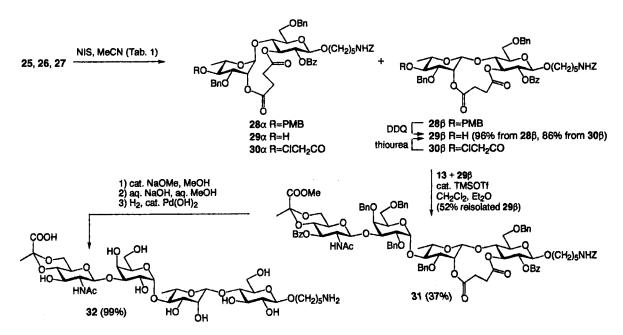

Results and Discussion


For the synthesis of the desired tetrasaccharide 5-aminopentyl glycoside of *S. pneumoniae* type 27 polysaccharide, a convergent blockwise approach via a suitably protected GlcNAc1,3Gal donor (AB part in Figure 1) and a Rha1,4Glc acceptor (CD part in Figure 1) was chosen. Thus, starting from 2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-D-glucopyranose^[13] (1), Fischer glycosylation with allyl alcohol followed by benzylidenation gave first the allyl glycoside 2 (46%). Next, benzoylation in 3-O afforded

Part 3: T. Ziegler, G. Lemanski, A. Rakoczy, *Tetrahedron Lett.* 1995, 36, 8973–8976.

crystalline compound 3 (87%) that was deblocked at 4-O and 6-O by treatment with aqueous acetic acid to give the diol 4 in 89% yield. Acetalation of the latter with methyl pyruvate was performed essentially as described previously for the diastereoselective pyruvation of positions 4 and 6 in glucose derivatives^[14]. Accordingly, compound 4 was treated with methyl pyruvate and $Et_2O \cdot BF_3$ in acetonitrile to give the pyruvylated derivative 5 (68%). The S configuration (i.e. an equatorially oriented methyl group) of the stereogenic acetal was unambiguously assigned by carbon-NMR spectroscopy which showed a significant signal at $\delta = 25.2$ for the methyl group^[14,15]. Cleavage of the allyl aglycon in 5 followed by treatment of intermediate 6 (96%) with trichloroacetonitrile afforded the pyruvated donor 7 in 74% yield. The latter proved to be a superior glycosyl donor since coupling of which with allyl 2,4,6-tri-O-benzyl-α-Dgalactopyranoside^[16] (8) gave the corresponding β -(1 \rightarrow 3)linked disaccharide 9 in 96% yield. For the preparation of the needed disaccharide donor, the trichloroethoxycarbonyl group in 9 was first converted in 99% yield into an acetyl group and the intermediate 10 was once again deallylated with PdCl₂ in aqueous acetic acid. Here the 2-oxopropyl disaccharide 11 (23%) was formed alongside the desired compound 12 (53%). Finally, the latter was converted into the disaccharide imidate 13 (95%) that was used without further purification.

The preparation of the disaccharide acceptor Rha1,4Glc required the selective construction of a difficult to establish β -L-rhamnosidic linkage. For that purpose our recently developed strategy via 2,3-succinyl-bridged glycosides which was shown to be suitable for the desired β-rhamnosylation^[11,12] was applied. As a temporary protecting group for position 4 of the rhamnosyl residue the p-methoxybenzyl (PMB) group was chosen. First, ethyl 2,3-O-isopropylidene-1-thio- α -L-rhamnopyranoside^[17] (14) was converted conventionally by a two-step procedure into the diol 15 (71%) that was regioselectively benzylated at C-3 via a stannylene derivative^[18] to give compound 16 (82%). Next, the succinvl spacer was introduced in 94% yield into position 2 by acylation of 16 with succinic anhydride^[12]. The resulting carboxylic acid 17 was then condensed by the aid of N,N-dicyclohexylcarbodiimide (DCC) with the glucoside 21 to give compound 22 in 88% yield. The glucoside 21 was prepared in 53% yield from 5-(benzyloxycarbonylamino)pentyl 4.6-O-benzylidene-B-D-glucopyranoside^[19] 18 by using Gareggs phase-transfer conditions^[20]. As byproducts, compounds 19 (15%) and 20 (21%), respectively, were obtained as well. When the benzylidene acetal in 22 was reductively opened with sodium cyanoborohydride in acidic solution^[21], the formation of the desired bridged disaccharide 25 (35%) was accompanied by 26 (47%) generated by acidic debenzylation of the labile PMB group.


Therefore, the more stable chloroacetyl group was introduced into that position as follows. Compound 22 was selectively debenzylated with dichlorodicyanobenzoquinone (DDQ) to give first 23 (98%), chloroacetylation of which with chloroacetic anhydride afforded 24 (94%). Now the reductive opening of the benzylidene acetal proceeded smoothly and gave the desired alcohol 27 in 75% yield.

All three prearranged glycosides **25**, **26** and **27** were tested for the intramolecular glycosylation step because the influence of a distant protecting group in the donor part of succinyl-bridged glycosides could be evaluated in these cases. It is well-known from "classical" glycosylations by silver silicate-promoted Koenigs-Knorr reactions that blocking groups not directly involved in the reaction (i.e. at C-4 of a halogenose) may influence the anomeric selectivity

of the coupling^[22]. Indeed, when the three derivatives were treated with *N*-iodosuccinimide (NIS) in acetonitrile to give the bridged disaccharides **28–30**, a significant influence of the protecting group at C-4 of the donor moiety on the α/β selectivity of the ring closure reaction could be observed (Table 1). Interestingly, compound **26** bearing a free

Table 1. Intramolecular glycosylation of the prearranged glycosides25, 26 and 27

Starting material	Produ yield (Overall yield (%)	Anomeric ratio [α:β]		
25	28α	(7%)	28 β	(32%)	39%	1:4.6
26	29 a	(9%)	29β	(35%)	44%	1:4.1
27	30α	(10%)	30β	(55%)	65%	1:5.3

hydroxyl group at C-4 of the donor part also gave the disaccharide **29** in 44% yield. This demonstrates that the intramolecular glycosylation is favored over the intermolecular one although a large ring is formed during the condensation. Best results were obtained for the chloroacetylated compound **27**. Here, the complex β -linked disaccharide **30** β , could be isolated in 55% yield. Both disaccharides, **28** β and **30** β were finally converted into the desired acceptor block **29** β by treatment with DDQ and thiourea, respectively.

The final condensation of the disaccharide imidate 13 with the disaccharide acceptor 29β was rather sluggish due to the pronounced instability of the imidate. The tetrasaccharide 31 could thus be isolated in poor 37% yield. However, unreacted acceptor 29β could be reisolated in 52% yield. Sequential deblocking of 31 by first removing all acyl groups (Zemplén) followed by saponification of the methyl ester of the pyruvate acetal and hydrogenolysis afforded the 5-aminopentyl glycoside tetrasaccharide 32 in 99% yield.

We thank Dr. P. Fischer and J. Rebell for recording the NMR spectra and Dr. J. Opitz for performing the elemental analyses and the mass spectrometry. This work was financially supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Experimental

General Procedures: Thin-layer chromatography (TLC): precoated plastic sheets, Polygram SIL G/UV₂₅₄, 40 \times 80 mm (Macherey-Nagel), appropriately adjusted mixtures of carbon tetrachloride/acetone as eluent. Spots were detected by UV light and by charring with 5% sulfuric acid in ethanol. - CC: silica gel S, Riedel-de Haën, 0.032-0.063 mm, eluent carbon tetrachloride/acetone. - Solutions in organic solvents were dried with anhydrous sodium sulfate and concentrated at <40°C, <200 Pa. - NMR spectra: Bruker AC 250 F, CDCl₃ solutions, internal standard TMS, 25 °C. Proton signals (Table 2) were assigned by first-order analysis of the spectra. Of two magnetically nonequivalent geminal protons, the one resonating at lower field was designated as Ha and the one resonating at higher field was designated as H_b. Data in the first row of Table 2 refer to the first sugar residue, those in the second to forth row to the second to forth residue, respectively. Carbon signals were assigned by a comparison of the spectra and by a comparison of the peaks with those of related compounds. Optical rotations were measured at 20 °C with a Perkin-Elmer automatic polarimeter, Model 241. - Melting points: Büchi apparatus, Model SMP-20.

Allyl 4,6-O-Benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranoside (2): A solution of $\mathbf{1}^{[13]}$ (15.8 g, 44.6 mmol) and HCl (2.1 g, 57.6 mmol) in allyl alcohol (104 ml) is stirred for 20 min at 100 °C and concentrated. The residue is mixed with benzaldehyde (40 ml) and freshly molten ZnCl₂ (9 g, 66 mmol), and the mixture is vigorously stirred at room temp. for 12 h during which time a clear solution is obtained. The solution is poured with stirring into a mixture of H₂O (100 ml) and *n*-hexane (100 ml), and the precipitated solid is collected by filtration. The material is resuspended 3 times in *n*-hexane (100 ml) and the suspension is stirred vigorously for 0.5 h and filtered. Recrystallization of the material from EtOH affords **2** (9.9 g, 46%), m.p. 176–177 °C, $[\alpha]_D = +57.5$ (c = 1.4, CHCl₃). - ¹³C NMR: $\delta = 102.0$ (PhCH), 97.0 (C-1), 95.4 (CCl₃), 81.8 (C-4), 74.8 (CH_2CCl_3), 70.8 (C-3), 68.8 (OCH₂CH), 68.7 (C-6), 62.6 (C-5), 55.7 (C-2). – $C_{19}H_{22}Cl_3NO_7$ (482.7): calcd. C 47.27, H 4.59, Cl 22.03, N 2.90; found C 47.13, H 4.73, Cl 22.22, N 2.96.

Allyl 3-O-Benzoyl-4,6-O-benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranoside (3): Benzoyl chloride (1.8 ml, 15.6 mmol) is added with stirring at 0 °C to a solution of **2** (5 g, 10.4 mmol) in pyridine (30 ml), and the mixture is stirred for 1.5 h. A few drops of H₂O are added in order to destroy excess benzoyl chloride, the mixture is diluted with CH₂Cl₂ and washed with aq. HCl and NaHCO₃ solution. Concentration of the solution and crystallization of the residue from EtOH furnishes **3** (5.27 g, 87%), m.p. 128 °C, [α]_D = +34.9 (c = 1.0, CHCl₃). – ¹³C NMR: δ = 101.5 (PhCH), 97.3 (C-1), 95.2 (CCl₃), 79.4 (C-4), 74.3 (CH₂CCl₃), 70.5 (C-3), 68.8 (OCH₂CH), 68.8 (C-6), 63.2 (C-5), 54.7 (C-2). – C₂₆H₂₆Cl₃NO₈ (586.9): calcd. C 53.21, H 4.47, Cl 18.12; N 2.39; found C 53.19, H 4.45, Cl 18.04, N 2.39.

Allyl 3-O-Benzoyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-α-D-glucopyranoside (4): A solution of **3** (5 g, 8.5 mmol) in 90% aq. acetic acid (100 ml) is stirred at 60 °C for 3 h. Concentration of the solution and chromatography (CCl₄/acetone, 3:1) of the residue affords **4** (3.78 g, 89%) as a colorless foam, $[\alpha]_D =$ +101.7 (c = 0.9, CHCl₃). - ¹³C NMR: $\delta = 96.5$ (C-1), 95.2 (CCl₃), 75.1 (C-4), 74.3 (CH₂CCl₃), 71.9 (C-3), 69.5 (C-5), 68.6 (OCH₂), 61.9 (C-6), 53.8 (C-2). - C₁₉H₂₂Cl₃NO₈ (498.7): calcd. C 45.76, H 4.45, Cl 21.33, N 2.81; found C 45.55, H 4.49, Cl 21.19, N 2.68.

Allyl 3-O-Benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranoside (5): Et₂O · BF₃ (0.73 ml, 5.8 mmol) is added at room temp. to a solution of 4 (1.45 g, 2.9 mmol) and methyl pyruvate (0.53 ml, 5.8 mmol) in MeCN (3 ml), and the mixture is stirred for 4.5 h. It is then neutralized by the addition of pyridine, diluted with CH₂Cl₂ and washed with aq. NaHCO₃ solution. Concentration of the solution and chromatography (CCl₄/acetone, 5:1) of the residue furnishes **5** (1.15 g, 68%) as a colorless foam, [α]_D = +94.4 (c = 0.9, CHCl₃). – ¹³C NMR: δ = 99.4 (C_{acetal}), 97.2 (C-1), 95.2 (CCl₃), 75.4 (C-4), 74.4 (*C*H₂CCl₃), 70.4 (C-3), 68.8 (OCH₂), 65.4 (C-6), 62.7 (C-5), 54.6 (C-2), 52.7 (COOCH₃), 25.2 (CH₃). – C₂₃H₂₆Cl₃NO₁₀ (582.8): calcd. C 47.40, H 4.50, Cl 18.29, N 2.40; found C 47.45, H 4.49, Cl 18.38, N 2.26.

3-O-Benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-2-(2,2,2-trichloroethoxycarbonylamino)-D-glucopyranose (6): N₂ is bubbled through a suspension of **5** (0.8 g, 1.4 mmol) and PdCl₂ (25 mg, 0.14 mmol) in 90% aq. acetic acid (40 ml), and the mixture is stirred at 60 °C for 2 d. Concentration of the suspension and chromatography (CCl₄/acetone, 5:1) of the residue affords **6** (0.71 g, 96%) as a colorless foam (mixture of α - and β anomer). - ¹³C NMR (signals of the α anomer): δ = 99.4 (C_{acetal}), 95.2 (CCl₃), 92.8 (C-1), 75.4 (C-4), 74.3 (CH₂), 70.4 (C-3), 65.5 (C-6), 62.5 (C-5), 54.8 (C-2), 52.8 (OCH₃), 25.3 (CH₃). -C₂₀H₂₂Cl₃NO₁₀ (542.8): calcd. C 44.26, H 4.09, Cl 19.60, N 2.58; found C 44.03, H 4.28, Cl 19.69, N 2.47.

3-O-Benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranosyl Trichloroacetimidate (7): K₂CO₃ (0.18 g, 1.3 mmol) is added to a solution of **6** (0.57 g, 1.1 mmol) and Cl₃CCN (0.31 ml, 3.0 mmol) in CH₂Cl₂ (10 ml), and the mixture is stirred at room temp. for 2 d. The suspension is centrifuged and decanted from the precipitated solids. Concentration of the solution and chromatography (CCl₄/acetone, 7:1) of the residue furnishes **7** (0.53 g, 74%) as a colorless foam, [α]_D = +70.2 (c = 1.0, CHCl₃). - ¹³C NMR: δ = 99.6 (C_{acetal}), 95.2 (2 C, CH₂CCl₃, C-1), 90.7 (CCl₃), 74.6 (C- 4), 74.5 (CH_2CCl_3), 69.8 (C-3), 65.1 (2 C, C-5,6), 54.6 (C-2), 52.8 (COOCH₃), 25.1 (CH₃). - $C_{22}H_{22}Cl_6N_2O_{10}$ (687.1): calcd. C 38.46, H 3.23, Cl 30.96, N 4.08; found C 38.46, H 3.32, Cl 30.93, N 3.83.

Allyl O-{3-O-benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl}- $(1\rightarrow 3)$ -2,4,6-tri-O-benzyl- α -D-galactopyranoside (9): A suspension of 7 (171.8 mg, 0.25 mmol), 8^[16] (102.2 mg, 0.21 mmol) and molecular sieves (4 Å, 2 g) in CH₂Cl₂ (14 ml) is stirred at room temp. under Ar for 1 h and then cooled to -23 °C. A solution of TMSOTf (7.5 µl, 0.042 mmol) in CH₂Cl₂ (4.5 ml) is slowly added with a syringe to this suspension, and stirring is continued for 2 h. The mixture is neutralized with pyridine, warmed to room temp. and filtered. The filtrate is washed with aq. NaHCO₃ solution and concentrated. Chromatography (CCl₄/acetone, 10:1) of the residue affords 9 (204 mg, 97%) as a colorless foam, $[\alpha]_D = +22.2$ (c = 1.0, CHCl₃). - ¹³C NMR: δ = 102.4 (C-1'), 99.4 (C_{acetal}), 95.7 (C-1), 95.4 (CCl₃), 77.6, 76.9 (C-2,3), 75.1, 73.5, 73.1 (PhCH₂), 74.4 (C-4'), 74.3 (CH₂CCl₃), 72.2 (C-4), 69.5, 69.3 (C-3',5), 68.9, 68.4 (OCH₂, C-6), 65.9 (C-5'), 65.1 (C-6'), 56.9 (C-2'), 52.7 (COOCH₃), 25.3 (CH₃). - C₅₀H₅₄Cl₃NO₁₅ (1015.9): calcd. C 59.11, H 5.41, Cl 10.47, N 1.38; found C 59.19, H 5.57, Cl 10.48, N 1.35.

Allyl O-{2-Acetamido-3-O-benzoyl-2-deoxy-4,6-O-[(S)-1-(meth $oxycarbonyl)ethylidene]-\beta-D-glucopyranosyl]-(1 \rightarrow 3)-2,4,6-tri-O$ benzyl- α -D-galactopyranoside (10): A suspension of 9 (0.58 g, 0.57 mmol) and Zn powder (2.7 g, 41.3 mmol) in acetic acid (30 ml) is stirred at room temp. for 1 h. The mixture is filtered, the filtrate is concentrated and the residual oil is dissolved in pyridine (7.4 ml). Ac₂O (3.7 ml, 39.4 mmol) is added at 0°C to this solution, and the mixture is stirred for 1 h. Concentration of the solution and chromatography (CCl₄/acetone, 7:1) of the residue affords 10 (0.5 g, 99%) as a colorless foam, $[\alpha]_D = +6.6$ (c = 0.9, CHCl₃). $- {}^{13}C$ NMR: $\delta = 103.1$ (C-1'), 99.3 (C_{acetal}), 95.9 (C-1), 78.1, 77.3, 76.7 (C-2,3,4'), 75.0 (C-4), 74.9, 73.5 (PhCH₂), 72.7 (2 C, PhCH₂, C-3'), 69.5 (C-5), 69.1 (OCH₂), 68.4 (C-6), 66.1 (C-5'), 65.2 (C-6'), 54.6 (C-2'), 52.7 (COOCH₃), 25.2 (OCH₃), 23.0 (CH₃CO). -C49H55NO14 (882.0): calcd. C 66.73, H 6.29, N 1.59; found C 66.67, H 6.37, N 1.52.

2-Oxopropyl O-{2-Acetamido-3-O-benzoyl-2-deoxy-4,6-O-[(S)-*I-(methoxycarbonyl)ethylidene*]- β -D-glucopyranosyl}-(1 \rightarrow 3)-2,4,6tri-O-benzyl- α -D-galactopyranoside (11) and O-{2-Acetamido-3-O $benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-\beta-D$ glucopyranosyl}- $(1 \rightarrow 3)$ -2,4,6-tri-O-benzyl-D-galactopyranose (12): A suspension of 10 (483 mg, 0.55 mmol) and PdCl₂ (25 mg, 0.14 mmol) in 90% aqueous acetic acid (60 ml) is treated at 60 °C for 4 h as described for the preparation of 6. Chromatography (CCl_4 / acetone, 5:1) affords first 11 (114.4 mg, 23%) as a colorless oil, $[\alpha]_{D} = +18.2 \ (c = 1.0, \ \text{CHCl}_{3}). - {}^{13}\text{C} \ \text{NMR}: \ \delta = 102.8 \ (\text{C-1'}),$ 99.3 (Cacetal), 96.7 (C-1), 77.4, 76.7, 76.4 (C-2,3,4'), 75.0 (C-4), 74.9, 73.5, 72.5 (PhCH₂), 72.6, 70.0 (C-3',5), 71.2 (OCH₂), 69.1 (C-6), 66.1 (C-5'), 65.1 (C-6'), 54.5 (C-2'), 52.7 (COOCH₃), 26.3 $(COCH_3)$, 25.2 (CH_3) , 23.3 (CH_3CONH) . - $C_{49}H_{55}NO_{15}$ (898.0): calcd. C 65.54, H 6.17, N 1.56; found C 65.64, H 6.19, N 1.60. Eluted next is 12 (246.2 mg, 53%) as a colorless foam (mixture of α and β anomers). - ¹³C NMR (significant signals of the α anomer): $\delta = 103.5$ (C-1'), 99.3 (C_{acetal}), 91.5 (C-1), 52.8 (COOCH₃), 25.2 (CH₃). - C₄₆H₅₁NO₁₄ (841.9): calcd. C 65.63, H 6.11, N 1.66; found C 65.03, H 6.05, N 1.54.

O-{2-Acetamido-3-O-benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranosyl}-(1 \rightarrow 3)-2,4,6-tri-O-benzyl-D-galactopyranosyl Trichloroacetimidate (13): K₂CO₃ (229 mg, 1.67 mmol) is added to a solution of 12 (181 mg, 0.15 mmol) and Cl₃CCN (0.23 ml, 2.3 mmol) in CH₂Cl₂ (4 ml), and the mixture is stirred at room temp. for 3 d. The suspension is centrifuged and decanted from the precipitated solids. Concentration of the solution furnishes crude **13** (202.3 mg, 95%) as a colorless oil (1:1.8 mixture of α and β anomers), that was used without further purification in the next step. $-^{13}$ C NMR (significant signals): $\delta = 161.3$ (CNHCCl₃), 103.2, 102.6 (C-1'), 99.3 (C_{acetal}), 98.8 (C-1 β), 94.7 (C-1 α), 76.3 (C-4'), 68.2 (C-6 α), 68.1 (C-6 β), 66.5 (C-5'), 65.1 (C-6'), 52.8 (COOCH₃), 25.2 (CH₃), 22.9 (CH₃CO).

Ethyl 4-O-(4-Methoxybenzyl)-1-thio- α -L-rhamnopyranoside (15): NaH (0.36 g, 15 mmol) is added at room temp. to a solution of 14^[17] (2.48 g, 10 mmol) in DMF (20 ml), and the mixture is stirred for 45 min. 4-Methoxybenzyl bromide (1.4 ml, 12.5 mmol) and a catalytic amount of Bu₄NBr (ca. 10 mg) are added and stirring is continued for 2.5 h. MeOH is added in order to destroy excess NaH, and the mixture is poured into H₂O. Extraction with CH₂Cl₂, washing of the extract with H₂O and concentration afford an oil that is dissolved in 70% aq. acetic acid (60 ml). The solution is stirred at 60 °C for 2 h and concentrated. Chromatography (CCl₄/ acetone, 7:1) of the residue furnishes 15 (2.33 g, 71%), m.p. 72-74 °C (Et₂O/*n*-hexane), $[\alpha]_{\rm D} = -163.9$ (*c* = 1.4, CHCl₃). $-^{13}$ C NMR: $\delta = 83.6$ (C-1), 81.6 (C-4), 74.6 (PhCH₂), 72.6, 71.9 (C-2,3), 67.8 (C-5), 55.3 (OCH₃), 25.0 (SCH₂), 18.0 (C-6), 14.9 (SCH₂CH₃). C₁₆H₂₄O₅S (328.4): calcd. C 58.51, H 7.37, S 9.76; found C 58.69, H 7.39, S 9.75.

Ethyl 3-O-Benzyl-4-O-(4-methoxybenzyl)-1-thio-α-L-rhamnopyranoside (16): A suspension of 15 (1.33 g, 4 mmol) and Bu₂SnO (1.17 g, 4.7 mmol) in benzene (100 ml) is refluxed for 5 h in a Soxhlet apparatus filled with molecular sieves (4 Å). The solution is concentrated and the residue is redissolved in DMF (15 ml). BnBr (0.95 ml, 8 mmol) and CsF (2.2 g, 14.4 mmol) are added and the mixture is stirred at room temp. for 5 h. The mixture is concentrated again, the residue is suspended in CH₂Cl₂ (100 ml) and the suspension is washed with aq. HCl and NaHCO3 solution. Concentration of the solution and chromatography (CCl₄/acetone, 10:1) of the residue furnishes 16 (1.37 g, 82%) as a slightly yellow oil, $[\alpha]_D = -119.8 \ (c = 0.9, \text{ CHCl}_3). - {}^{13}\text{C} \text{ NMR}: \delta = 83.1 \ (C-1),$ 80.3 (C-3), 79.9 (C-4), 75.0, 72.1 (PhCH₂), 70.2 (C-2), 67.9 (C-5), 55.3 (OCH₃), 24.9 (SCH₂), 17.8 (C-6), 14.9 (SCH₂CH₃). -C23H30O5S (418.6): calcd. C 66.00, H 7.22, S 7.66; found C 65.77, H 7.20, S 7.83.

Ethyl 3-O-Benzyl-2-O-(3-carboxypropanoyl)-4-O-(4-methoxybenzyl)-1-thio-α-L-rhamnopyranoside (17): A solution of **16** (2.83 g, 6.8 mmol), succinic anhydride (5.5 g, 54.4 mmol) and a catalytic amount of DMAP (ca. 20 mg) in pyridine (55 ml) is stirred at room temp. for 2.5 d and concentrated. The residue is dissolved in CH₂Cl₂ (100 ml) and the solution is washed 3 times each with 5% aq. HCl, satd. NaHCO₃ solution and H₂O. Concentration of the solution and chromatography (CCl₄/acetone, gradient 5:1 → 3:1) of the residue furnishes **17** (3.31 g, 94%) as a colorless oil, [α]_D = -58.1 (*c* = 1.1, CHCl₃). - ¹³C NMR: δ = 82.2 (C-1), 79.9 (C-3), 78.3 (C-4), 75.1, 71.7 (ArCH₂), 71.3 (C-2), 68.3 (C-5), 55.3 (OCH₃), 29.0, 28.9 (CH₂), 25.6 (SCH₂), 17.9 (C-6), 14.9 (SCH₂CH₃). - C₂₇H₃₄O₈S (518.6): calcd. C 62.53, H 6.61, S 6.18; found C 62.31, H 6.84, S 5.97.

5-(Benzyloxycarbonylamino)pentyl 2,3-Di-O-benzoyl-4,6-O-benzylidene- β -D-glucopyranoside (19) and 5-(Benzyloxycarbonylamino)pentyl 3-O-Benzoyl-4,6-O-benzylidene- β -D-glucopyranoside (20) and 5-(Benzyloxycarbonylamino)pentyl 2-O-Benzoyl-4,6-Obenzylidene- β -D-glucopyranoside (21): A mixture of 18^[19] (1.95 g, 4 mmol), BzCl (0.7 ml, 5.9 mmol) and Bu₄NHSO₄ (276 mg, 0.81 mmol) in CH₂Cl₂ (112.5 ml) and 5% aq. NaOH solution (8.75 ml) is vigorously stirred at -4°C for 20 min. The organic phase is sep-

arated and washed with H₂O. Concentration of the solution and chromatography (CCl₄/acetone, gradient 7:1 \rightarrow 5:1) of the residue affords first **19** (0.41 g, 15%), m.p. 124–126 °C (acetone/*n*-hexane), $[\alpha]_{\rm D} = +1.9$ (c = 0.8, CHCl₃). - ¹³C NMR: $\delta = 101.8$ (PhCH),

101.4 (C-1), 78.8 (C-4), 72.5, 72.0 (C-2,3), 70.2, 66.5 (OCH₂), 68.6 (C-6), 66.6 (C-5), 40.7 (NHCH₂), 29.4, 28.9, 23.0 (CH₂). – $C_{40}H_{41}NO_{10}$ (695.8): calcd. C 69.05, H 5.94, N 2.01; found C 69.04, H 5.95, N 1.82.

No.	1-H (J _{1,2})	2-H (J _{2,3})	3-Н (J _{3,4})	4-H (J4,5)	5-H (J _{5,6a})	6a-H (J _{6a,6b})	6b-Н (J _{5,6b})	substituents
2	4.92d (3.0)	3.70-4.05m	3.70-4.05m (8.9)	3.57t (8.9)	3.70-4.05m (5.1)	4.27dd (-9.6)	3.70-4.05m	5.98-5.82m (CH=CH ₂), 5.55s (PhCH), 5.35-5.10m (CH=CH ₂ , NH), 4.82d, 4.68d (CH ₂ CCl ₃ , J = -12.0 Hz), 4.25-4.16m, 4.04-3.70m (OCH ₂), 2.71d (OH, J = 2.3 Hz)
3	4.98d (3.7)	4.28dt (10.2)	5.67dd (9.7)	3.87t (9.4)	4.09-3.98m (4.7)	4.33dd (-10.1)	3.91-3.78m	4.04-3.70m (OCH ₂), 2.71d (OH, $J = 2.3$ Hz) 6.00-5.84m (CH=CH ₂), 5.55s (PhCH), 5.41d (NH, $J = 10.1$ Hz), 5.39 5.24m (CH=CH ₂), 4.68d, 4.47d (CH ₂ CCl ₃ , $J = -12.0$ Hz), 4.25-4.21m 4.09-3.98m (OCH ₂)
4	4.95d (3.6)	4.17dt (10.7)	5.38dd (9.0)	3.97-3.76m	3.97-3.76m	3.97-3.76m (-9.8)	3.79dd (3.5)	$(CH=CH_2)$, 4.69d, 4.46d (CH_2 Cl ₃ , $J = -12.0$ Hz), 5.40-5.24m ($CH=CH_2$), 4.69d, 4.46d (CH_2 CCl ₃ , $J = -12.0$ Hz), 4.27-4.18m, 4.07- 3.98m (OCH ₂), 3.34d, 2.38br.d (OH)
5	4.92d (3.6)	4.17dt (10.0)	5.51t (10.0)	3.70t (10.2)	3.83-3.65m	4.22-3.93m (-10.0)	3.88dd (4.7)	5.99-5.83m (CH=CH ₂), 5.40d (CH ₃) = 10.1 Hz), 5.37-5.24m (CH=CH ₂), 4.66d, 4.48d (CH ₂ CCl ₃ , J = -12.0 Hz), 4.22-3.92m (OCH ₂), 3.83s (COOCH ₃), 1.49s (CH ₃)
6[a]	5.34d (3.5)	4.31-4.05m (10.0)	5.58t (10.0)	3.70t (9.9)	4.31-4.05m	4.31-4.05m (-10.0)	3.75t (10.4)	5.82d (NH, $J = 10.0$ Hz), 4.69d, 4.45d (CH ₂ CCl ₃), 3.83s (COOCH ₃), 1.49s (CH ₃)
7	(3.3) 6.40d	4.37ddd	5.59dd	(3.3) 3.70t	3.94-3.77m	4.13dd	3.99dd	8.78s (C=NH), 5.40d (CONH, $J = 9.3$ Hz), 4.60s (CH ₂ CCl ₃), 3.86s
9	(3.7)	(10.5) 3.98dd	(9.5)	(9.5)	(4.7)	(-10.2)	(4.7)	$(COOCH_3), 1.51s (CH_3)$
y	4.76d (3.5) 4.90d	(10.2) 4.20-3.85m	4.20-3.85m 5.22t (9.6)	3.55-3.42m 3.72t				5.96-5.80m (CH=CH ₂), 5.30-5.15m (CH=CH ₂), 5.09d (NH, $J = 10.1$ H ₂), 4.61-4.54m (CH ₂ CCl ₃), 4.93d, 4.67d, 4.50d, 4.48d, 4.40d, 4.20- 3.85m (PhCH ₂), 4.20-3.85m (OCH ₂ -CH=CH ₂), 3.82s (COOCH ₃),
10	(8.8) 4.79d	(9.6) 3.96dd	(9.6) 4.12dd	(9.6) 3.92br.d	3.97-3.91m	3.52-3.46m	3.48dd	1.49s (CH ₃) 5.93-5.85m (CH=CH ₂), 5.29-5.16m (CH=CH ₂), 5.33d (NH, J = 9.8
	(3.6) 4.89d (8.4)	(10.2) 4.34dt (9.9)	(3.0) 5.23t (9.9)	(<1.0) 3.72t (9.7)		(-10.0) 4.15-4.10m (-10.5)	(5.2) 3.74t (10.5)	Hz), 4.93d, 4.51d (PhCH ₂ , $J = -11.4$ Hz), 4.61s (PhCH ₂), 4.47d, 4.40d (PhCH ₂), $J = -11.8$ Hz), 4.15-4.10m, 3.97-3.91m (OCH ₂ -CH=CH ₂), 3.83s (COOCH ₃), 1.62s (CH ₃ CON), 1.49s (CH ₃)
11	4.93d (3.5)	3.99dd (10.3)	4.18dd	3.91br.d (<1.0)	4.03-3.93m	• •		5.25-5.16m (NH), 4.94-4.84m (PhCH ₂), 4.62d (2H, PhCH ₂ , $J = -12.1$ Hz), 4.49d (2H, PhCH ₂ , $J = -11.4$ Hz), 4.47d, 4.38d (PhCH ₂ , $J = -11.5$
	4.91d (7.7)	4.35dt (9.5)	(2.9) 5.20t (9.5)	3.71t (9.5)	3.54-3.41m (5.0)	4.13dd (-10.5)	3.73t (10.5)	Hz), 4.174 (CH, 10CH ₂), 3 - 114 Hz), 4.174 (1, 3.004 (1 HCH ₂), 5 - 114 Hz), 4.175 (CH ₂ CO), 3.82s (COOCH ₃), 2.10s (CH ₃ CO), 1.59s (CH ₃ CON), 1.49s (CH ₃)
12[a]	5.24br.s	4.18-3.31m	3.97dd	3.92br.d	4.18-3.31m	3.53dd	3.46dd	5.82d (NH, $J = 9.7$ Hz), 4.87br.s, 4.65br.s (4H, PhCH ₂), 4.50d (2H,
	4.51d	(10.2) 4.18-4.04m	(3.3) 5.28t	(<1.0) 3.71t	(6.5) 4.18-3.31m	(-9.4) 4.07dd	(5.8) 4 18-3 31m	PhCH ₂ , <i>J</i> = -11.5 Hz), 4.47d, 4.37d (PhCH ₂ , <i>J</i> = -11.8 Hz), 3.82s (COOCH ₃), 1.59s (CH ₃ CON), 1.48s (CH ₃)
	(8.5)	(10.0)	(10.0)	(9.5)	(4.9)	(-10.5)	4,10 5.5111	
15	5.23d (1.3)	4.00dt (3.5)	3.85ddd (9.3)	3.36t (9.4)	4.08dq (6.2)	1.34d		4.69d, 4.62d (PhCH ₂ , <i>J</i> = -11.1 Hz), 3.80s (OCH ₃), 2.72d (OH, <i>J</i> = 3. Hz), 2.43d (OH, <i>J</i> = 4.9 Hz), 2.68-2.48m (SCH ₂), 1.28t (SCH ₂ CH ₃ , <i>J</i> 7.4 Hz)
16	5.28d (0.9)	4.06dd (3.3)	3.79dd (9.1)	3.46t (9.3)	4.11-4.01m (6.2)	1.29đ		4.80d, 4.57d (PhCH ₂ , $J = -10.5$ Hz), 4.68s (PhCH ₂), 3.80s (OCH ₃), 2.66d (OH, $J = 1.8$ Hz), 2.64-2.46m (SCH ₂), 1.27t (SCH ₂ CH ₃ , $J = 7.4$ Hz)
17	5,17d (1.5)	5.44dd (3.3)	3.85dd (9.3)	3.41t (9.3)	4.05dq (6.2)	1.29d		112 4.81d, 4.53d (PhCH ₂ , $J = -10.5$ Hz), 4.65d, 4.50d (PhCH ₂ , $J = -11.3$ Hz), 3.80s (OCH ₃), 2.77-2.48m (CH ₂), 1.26t (SCH ₂ CH ₃ , $J = 7.4$ Hz)
19	4.76d (7.8)	5.46dd (9.5)	5.78t (9.6)	3.95-3.84m (9.5)	3.69dt (4.9)	4.43dd (-10.5)	3.95-3.84m (9.6)	5.53s (PhCH), 5.08 (PhCH ₂), 4.06br.s (NH), 3.55-3.45m (OCH ₂), 3.20br.d (NCH ₂), 1.56-1.18m (CH ₂)
20	4.52d (7.7)	3.72dd (9.2)	5.48t (9.4)	3.87-3.75m (9.4)	3.92dt (4.9)	4.38dd (-10.5)	3.87-3.75m (9.4)	5.51s (PhCH), 5.07 (PhCH ₂), 4.85br.t (NH), 3.65-3.52m (OCH ₂), 3.4' 3.14m (NCH ₂), 1.31-1.25m (CH ₂)
21	4.63br.d	5.18dd	3.65t	4.03br.t	3.92-3.77m	4.37dd	3.82t	5.54s (PhCH), 5.06 (PhCH ₂), 4.63br.d (NH), 3.55-3.42m (OCH ₂),
22	(7.9) 4.68d	(9.1) 5.29dd	(9.3) 5.56t	(9.2) 3.84t	(4.9) 3.59dt	(-10.5) 4.40dd	(10.2) 3.93-3.74m	2.93-2.14m (NCH ₂), 1.57- $\overline{1}$.17m (CH ₂) 5.51s (PhCH), 5.07s (PhCH ₂ OCO), 4.76d, 4.48d (PhCH ₂ , $J = -10.4$
	(7.9) 5.14d (1.1)	(9.6) 5.29dd (3.3)	(9.7) 3.76dd (9.3)	(10.3) 3.36t (9.4)	(5.0) 4.03dq (6.2)	(-10.6) 1.28d	(9.7)	Hz), 4.57br.t (NH), 4.45d, 4.35d (PhCH ₂ , $J = -11.2$ Hz), 3.93-3.74m (OCH ₂), 3.79s (OCH ₃), 2.96-2.89m (NCH ₂), 3.69-3.35m (CH ₂), 1.24 (SCH ₂ CH ₃ , $J = 7.4$ Hz), 1.54-1.15m (CH ₂)
23	4.68d (7.8) 5,18d	5.28dd (9.5) 5.28dd	5.54t (9.5) 3.56dd	3.77t (9.5) 3.48br.t	3.59dt (4.9) 4.00dg	4.38dd (-10.4) 1.29d	3.92-3.73m (9.4)	(5.51s (PhCH), 5.07s (PhCH ₂ OCO), 4.44d, 4.21d (PhCH ₂ , <i>J</i> = -11.1 Hz), 4.57br.t (NH), 3.92-3.73m, 3.63-3.41m (OCH ₂), 2.78br.s (OH), 1.27t (SCH ₂ CH ₃ , <i>J</i> = 7.4 Hz), 1.51-1.05m (CH ₂)
	(1.0)	(3.0)	(9.3)	(9.3)	(6.2)		3 51 3 49-	
24	4.68d (7.8) 5.21d	5.28dd (9.3) 5.29dd	5.55t (9.5) 3.69dd	3.78t (9.5) 4.97t	3.59dt (5.0) 4.10dq	4.39dd (-10.4) 1.18d	(10.4)	5.53s (PhCH), 5.07s (PhCH ₂ OCO), 4.57br.t (NH), 4.42d, 4.18d (PhCH ₂ , $J = -12.0$ Hz), 3.94-3.74m, 3.51-3.42m (OCH ₂), 3.88s, 3.86s (CH ₂ Cl), 2.93br.q (NCH ₂), 2.70-2.40m (CH ₂), 1.27t (SCH ₂ CH ₃ , $J = -12.0$ Hz), 3.94-3.74m, 3.51-3.42m (OCH ₂), 3.88s, 3.86s (CH ₂ Cl), 2.93br.q (NCH ₂), 2.70-2.40m (CH ₂), 1.27t (SCH ₂ CH ₃ , $J = -12.0$ Hz), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m, 3.51-3.42m (CH ₂ Cl), 3.94-3.74m (CH ₂ Cl), 3.88s, 3.86s (CH ₂ Cl), 3.94-3.74m (CH ₂ Cl), 3.94-3.7
25	(1.3) 4.54d	(3.3) 5.20dd	(9.7) 5.29t	(9.7) 3.90-3.71m	(6.2) 3.90-3.71m	3.90-3.71m	3.90-3.71m	7.4 Hz), 1.65-1,16m (CH ₂) 5.07s (PhCH ₂ OCO), 4.78d (PhCH ₂ , J = -10.4 Hz), 4.59-4.41m
	(7.6) 5.12d (1.5)	(9.7) 5.35dd (3.2)	(9.7) 3.90-3.71m (9.4)	3.36t (9.4)	4.04dq (6.2)	1.29d		(PhCH ₂ , NH), 3.63-3.42m (OCH ₂), 3.79s (OCH ₃), 2.94-2.88m (NCH ₂), 2.78-2.41m (CH ₂), 1.25t (SCH ₂ CH ₃ , J = 7.4 Hz), 1.64-1.21n (CH ₂)
26	4.47d		5.18-5.06m	3.50dt	3.91-3.81m	3.78dd	3.71dd	5.07s (PhCH ₂ OCO), 4.65-4.55m (PhCH ₂ , NH), 4.31d (PhCH ₂ , $J =$
	(7.4) 5.15d (1.5)	5.36dd (3.0)	(9.3) 3.64dd (9.4)	(9.3) 3.91-3.81m (9.3)	(3.3) 4.01dq (6.2)	(-11.0) 1.30d	(5.0)	-11.0 Hz), 3.44-3.32m (OCH ₂), 3.40br.d (OH), 2.76br.d (OH), 2.91br.q (NCH ₂), 2.73-2.16m (CH ₂), 1.27t (SCH ₂ CH ₃ , J = 7.4 Hz), 1.50-1.19m (CH ₂)
27	4.57d	5.18dd	5.28t		3.93-3.75m	3.84dd	3.93-3.75m	5.07s (PhCH2OCO), 4.62-4.53m (PhCH2, NH), 4.51d, 4.26d (PhCH2
	(7.6) 5.18d (1.6)	(9.3) 5.36dd (3.2)	(9.8) 3.70dd (9.8)	4.97t (9.8)	(5.0) 4.11dq (6.2)	(-10.5) 1.18d		= -12.2 Hz), 3.93-3.75m, 3.50-3.40m (OCH ₂), 3.87s, 3.83s (CH ₂ Cl), 2.92br.q (NCH ₂), 2.82-2.35m (CH ₂), 1.27t (SCH ₂ CH ₃ , <i>J</i> = 7.4 Hz), 1.69-1,16m (CH ₂)
28 α	4.54d (7.9)	5.16dd (9.5)	5.52t (10.2)	4.05t (10.5)	3.82-3.77m (1.5)	3.93dd (-10.6)	3.76-3.70m	5.10s (PhCH ₂ OČO), 4.65d (PhCH ₂ , J = -12.4 Hz), 4.58-4.50m (PhCH ₂ , NH), 4.36d, 4.19d (PhCH ₂ , J = -11.4 Hz), 3.90-3.84m, 3.43
	5.07br.s (<1.0)	5.07br.s (<1.0)	3.82-3.77m (<1.0)	3.23br.d (9.8)	3.76-3.70m (6.4)	1.10d		br.q (OCH ₂), 3.81s (OCH ₃), 2.94-2.89m (NHCH ₂), 2.74-2.46m, 1.94 1.16m (CH ₂)

No.	1-H (J _{1,2})	2-H (J _{2,3})	3-H (J _{3,4})	4-H (J4,5)	5-H (J _{5,6a})	6a-H (J _{6a,6b})	6b-H (J _{5,6b})	substituents
28 β	4.54d (7.9) 4.65d (1.3)	5.18dd (9.8) 5.48br.d (3.3)	5.37t (9.7) 3.40dd (8.6)	3.88t (9.5) 3.26t (8.7)	3.87m (5.9) 3.19dq (6.1)	3.80dd (-9.5) 1.29d	3.59br.d (<1.0)	5.07s (PhCH ₂ OCO), 4.78d, 4.73d (PhCH ₂ , <i>J</i> = -11.1 Hz), 4.60m (NH 4.71d, 4.46d (PhCH ₂ , <i>J</i> = -12.0 Hz), 4.43d (PhCH ₂ , <i>J</i> = -10.7 Hz), 4.32d (PhCH ₂ , <i>J</i> = -11.0 Hz), 3.81s (OCH ₃), 3.43-3.39m, 2.94-2.87m (OCH ₃ , NHCH ₃), 2.76-2.51m, 1.54-1.28m (CH ₂)
29 α	4.58d (7.7) 5.08s (0)	5.17dd (9.4) 5.09d (3.0)	5.48t (10.0) 3.88-3.73m (<1.0)	4.06t (10.3) 3.60br.d (8.9)	3.94br.d (9.9) 3.88-3.73m (6.0)	3.88-3.73m 1.29d	3.88-3.73m	
29 β	4.54d (7.9) 4.58d (0)	5.19dd (9.8) 5.48d (3.2)	5.36t (9.6) 3.10dd (9.4)	3.89t (9.6) 3.34t (9.3)	3.59br.d 3.04dq (6.2)	3.91-3.79m 1.29d	3.91-3.79m	5.07s (PhCH ₂ OCO), 4.82d, 4.22d (PhCH ₂ , <i>J</i> = -10.9 Hz), 4.59br.s (NH), 4.78d, 4.43d (PhCH ₂ , <i>J</i> = -11.8 Hz), 3.43br.q (OCH ₂), 2.95-2.89m (NHCH ₂), 2.68-2.48m, 1.53-1.15m (CH ₂), 2.23s (OH)
30α	4.75-4.56m (7.7) 4.75-4.56m	5.14dd (10.2) 5.18-5.14m	5.48t (10.2) 3.76-3.71m (7.7)	4.05t (10.2) 4.90dd (3.0)	3.95-3.86m (<1.0) 3.76-3.71m (6.5)	3.94d (-9.3) 1.23d	3.76-3.71m	5.07s (PhCH ₂ OCO), 4.71d (PhCH ₂ , <i>J</i> = -12.8 Hz), 4.65d (PhCH ₂ , <i>J</i> = -12.4 Hz), 4.75-4.56m (NH), 4.58d, 4.57d (PhCH ₂ , <i>J</i> = -12.1 Hz), 4.0 (CH ₂ Cl), 3.95-3.68m, 3.46-3.42m (OCH ₂), 2.93br.q (NCH ₂), 2.64-2.45m, 1.57-1.22m (CH ₂)
30 β	4.55d (7.8) 4.58d (1.4)	5.18dd (9.8) 5.43d (3.5)	5.38t (9.5) 3.35dd (8.8)	3.93-3.79m 4.84t (8.7)	3.93-3.79m 3.10dq (6.3)	3.93-3.79m (-9.5) 1,19d	3.58br.d (<1.0)	5.07s (PhCH ₂ OCO), 4.78d, 4.45d (PhCH ₂ , $J = -12.0$ Hz), 4.71d, 4.33 (PhCH ₂ , $J = -12.2$ Hz), 4.62-4.53m (NH), 3.93s, 3.92s (CH ₂ Cl), 3.93- 3.79m, 3.49-3.38m (OCH ₂), 2.93br.q (NCH ₂), 2.66-2.50m, 1.54-1.13n (CH ₂)
31	4.77-4.25m (8.0) 4.77-4.25m (0)	5.16dd (9.9) 5.29d (2.9)	5.40t (9.9) 3.75dd (9.0)	4.02t (10.2) 3.61t (9.1)	3.33dq (6.1)	1. 34d		5.39-5.03m (NHCO), 5.07s (PhCH ₂ OCO), 4.72-4.25m (PhCH ₂ , NHCH ₂), 3.83s (COOCH ₃), 3.96-3.68m, 3.65-3.38m (OCH ₂), 2.92br (NCH ₂), 2.62-2.30m, 1.81-1.12m (CH ₂), 1.54s (CH ₃ CO), 1.50s (CH ₃)
	4.87d (3.5) 4.94-4.86m	4.08-3.98m (10.5) 4.08-3.98m (9.9)	3.93dd (3.3) 5.24t (9.9)	3.96-3.68m 3.73t (9.4)	3.96-3.68m 3.65-3.38m	3.65-3.38m (-9.4) 4.17dd (-10.9)	3.41dd (6.4) 3.96-3.68m	

Table 2 (Continued)

^[a] Signals of the α anomer.

Eluted next is **21** (1.24 g, 53%), m.p. 142 °C (EtOH), $[\alpha]_D = -36.7$ (c = 1.0, CHCl₃). $- {}^{13}$ C NMR: $\delta = 101.9$ (PhCH), 101.6 (C-1), 80.9 (C-4), 74.8 (C-3), 72.3 (C-2), 70.1, 68.6 (OCH₂), 66.5 (C-6), 66.3 (C-5), 40.8 (NHCH₂), 29.4, 28.9, 23.0 (CH₂). $- C_{33}H_{37}NO_9$ (591.7): calcd. C 66.99, H 6.30, N 2.37; found C 66.91, H 6.32, N 2.18.

Eluted next is **20** (0.5 g, 21%), m.p. 142 °C (EtOH), $[\alpha]_D = -73.4$ (c = 0.9, CHCl₃). - ¹³C NMR: $\delta = 103.7$ (PhCH), 101.4 (C-1), 78.6 (C-4), 74.4 (C-2), 73.6 (C-3), 70.3, 68.7 (OCH₂), 66.6 (C-6), 66.5 (C-5), 40.8 (NHCH₂), 29.5, 28.9, 23.1 (CH₂). - C₃₃H₃₇NO₉ (591.7): calcd. C 66.99, H 6.30, N 2.37; found C 67.12, H 6.34, N 2.31.

2-O-{[2-O-Benzoyl-4,6-O-benzylidene-1-O-(5-benzyloxy Ethyl carbonylaminopentyl)- β -D-glucopyranos-3-yloxy] carbonylpropanoyl}-3-O-benzyl-4-O-(4-methoxybenzyl)-1-thio- α -L-rhamnopyranoside (22): A mixture of 17 (640 mg, 1.23 mmol), 21 (803.6 mg, 1.36 mmol), DCC (281 mg, 1.36 mmol), and DMAP (15 mg, 0.123 mmol) in CH_2Cl_2 (12 ml) is stirred at room temp. for 26 h. The precipitated dicyclohexylurea is filtered off and the filtrate is washed with H₂O and 5% aq. acetic acid. Concentration of the solution and chromatography (CCl₄/acetone, 8:1) of the residue furnishes 22 (1.18 g, 88%) as a colorless foam, $[\alpha]_D = -37.4$ (c = 0.9, CHCl₃). - ¹³C NMR: δ = 101.8 (C-1), 101.4 (PhCH₂), 82.2 (C-1'), 79.8, 79.4, 78.3 (C-3',4,4'), 75.0, 71.5 (PhCH₂), 72.5, 71.7, 70.9 (C-2,3,2'), 70.2, 66.8 (CH₂O), 68.6 (C-6), 68.2 (C-5'), 66.5 (C-5), 55.3 (OCH₃), 40.7 (NCH₂), 25.5 (SCH₂), 17.6 (C-6'), 15.0 (SCH₂CH₃). - C₆₀H₆₉NO₁₆S (1092.3): calcd. C 65.98, H 6.37, N 1.28, S 2.94; found C 65.98, H 6.32, N 1.11, S 2.96.

Ethyl 2-O-{[2-O-Benzoyl-4,6-O-benzylidene-1-O-(5-benzyloxycarbonylaminopentyl)- β -D-glucopyranos-3-yloxy]carbonylpropanoyl}-3-O-benzyl-1-thio- α -L-rhamnopyranoside (23): A mixture of 22 (1.04 g, 0.96 mmol) and DDQ (0.24 g, 1.05 mmol) in CH₂Cl₂ (18 ml) and H₂O (1 ml) is stirred at room temp. for 16 h and washed with aq. NaHCO₃ solution. Concentration of the solution and chromatography (CCl₄/acetone, 6:1) of the residue furnishes 23 (0.91 g, 98%) as a colorless foam, $[\alpha]_{\rm D} = -23.0$ (c = 0.78, CHCl₃). $-^{13}$ C NMR: $\delta = 101.8$ (PhCH₂), 101.4 (C-1), 82.4 (C-1'), 78.4, 77.9 (C-3',4), 72.5 (C-3), 71.9, 71.8, 70.0 (C-2,2',4'), 71.2 (PhCH₂), 70.2, 66.5 (OCH₂), 68.6 (C-6), 68.5 (C-5'), 66.5 (C-5), 40.8 (NCH₂), 25.6 (SCH₂), 17.6 (C-6'), 14.9 (SCH₂CH₃). $-C_{52}H_{61}NO_{15}S$ (972.1): calcd. C 64.25, H 6.32, N 1.44, S 3.30; found C 64.32, H 6.38, N 1.29, S 3.34.

Ethyl 2-O-{[2-O-Benzoyl-4,6-O-benzylidene-1-O-(5-benzyloxy $carbonylaminopentyl) - \beta - D - glucopyranos - 3 - yloxy]$ carbonylpropanoyl}-3-O-benzyl-4-O-chloroacetyl-1-thio- α -L-rhamnopyranoside (24): A solution of 23 (1.58 g, 1.63 mmol) and chloroacetic anhydride (0.34 g, 2 mmol) in pyridine (12 ml) is stirred at 0 °C for 1 h. The mixture is poured into H₂O and extracted several times with CH₂Cl₂. The combined organic extracts are washed with aq. HCl and NaHCO₃ solution and concentrated. Chromatography (CCl₄/acetone, 7:1) of the residue affords 24 (1.6 g, 94%) as a colorless foam, $[\alpha]_D = -25.3$ (c = 0.7, CHCl₃). $-^{13}C$ NMR: $\delta = 101.8$ (C-1), 101.4 (PhCH), 82.3 (C-1'), 78.5 (C-3'), 74.7, 74.5 (C-4,4'), 72.5, 71.7 (C-2',3), 71.2 (PhCH₂), 70.3 (C-2), 70.2, 66.5 (OCH₂), 68.6 (2 C, C-5',6), 66.6 (C-5), 40.8, 40.6 (NCH₂, ClCH₂), 25.7 (SCH₂), 17.4 (C-6'), 14.9 (SCH₂CH₃). C₅₄H₆₂ClNO₁₆S (1048.6): calcd. C 61.85, H 5.96, Cl 3.38, N 1.34, S 3.01; found C 61.82, H 5.98, Cl 3.49, N 1.27, S 2.88.

Ethyl 2-O-{[2-O-Benzoyl-6-O-benzyl-1-O-(5-benzyloxycarbonylaminopentyl)-β-D-glucopyranos-3-yloxy]carbonylpropanoyl}-3-Obenzyl-4-O-(4-methoxybenzyl)-1-thio-α-L-rhannopyranoside (25) and Ethyl 2-O-{[2-O-Benzoyl-6-O-benzyl-1-O-(5-benzyloxycarbonylaminopentyl)-β-D-glucopyranos-3-yloxy]carbonylpropanoyl}-3-Obenzyl-1-thio-α-L-rhannopyranoside (26): HCl in Et₂O is added at room temp. to a suspension of 22 (1.1 g, 1.01 mmol), NaCNBH₃ (0.8 g, 12.7 mmol) and molecular sieves (3 Å, 1 g) in THF (15 ml) until the evolution of H₂ has ceased. The mixture is stirred for additional 5 min., diluted with CH₂Cl₂ and filtered. The filtrate is washed with H₂O and aq. NaHCO₃ solution and concentrated. Chromatography (CCl₄/acetone, 5:1) of the residue affords first 25 (0.38 g, 35%) as a colorless foam, [α]_D = -27.9 (c = 0.7, CHCl₃). - ¹³C NMR: δ = 101.1 (C-1), 82.2 (C-1'), 79.8, 78.2 (C-3',4'), 76.0

Eluted next is **26** (0.46 g, 47%) as a colorless foam, $[\alpha]_D = -28.7$ (c = 1.0, CHCl₃). $-{}^{13}$ C NMR: $\delta = 101.0$ (C-1), 82.2 (C-1'), 78.3 (C-3'), 75.8, 75.0 (C-3,4), 73.7 (PhCH₂), 71.8 (2 C, C-4', PhCH₂), 71.5 (C-2'), 70.4 (C-2), 69.7, 66.5 (OCH₂), 69.6, 68.7 (C-5,5'), 69.4 (C-6), 40.8 (NCH₂), 25.7 (SCH₂), 17.7 (C-6'), 14.9 (SCH₂CH₃). -C₅₂H₆₃NO₁₅S (974.1): calcd. C 64.12, H 6.52, N 1.44, S 3.29; found C 63.96, H 6.52, N 1.42, S 3.35.

Ethyl 2-O-{[2-O-Benzoyl-6-O-benzyl-1-O-(5-benzyloxycarbonylaminopentyl)-β-D-glucopyranos-3-yloxy]carbonylpropanoyl}-3-Obenzyl-4-O-chloroacetyl-1-thio-α-L-rhamnopyranoside (**27**): Compound **24** (1.6 g, 1.52 mmol) in THF (34 ml) is treated with NaCNBH₃ (1.19 g, 19 mmol) and HCl in Et₂O as described for the preparation of compounds **25** and **26**. Chromatography (CCl₄/ acetone, 5:1) furnishes **27** (1.19 g, 75%) as a colorless oil, $[\alpha]_D =$ -25.3 (c = 0.7, CHCl₃). - ¹³C NMR: $\delta = 101.1$ (C-1), 82.2 (C-1'), 76.1 (C-3'), 74.9 (C-4), 74.4 (2 C, C-3,4'), 73.7, 71.2 (PhCH₂), 71.7, 70.5, 70.0 (C-2,2',5), 69.9, 66.5 (OCH₂), 69.7 (C-6), 66.7 (C-5'), 40.8, 40.6 (NCH₂, ClCH₂), 25.7 (SCH₂), 17.3 (C-6'), 14.9 (SCH₂CH₃). - C₅₄H₆₄ClNO₁₆S (1050.6): calcd. C 61.74, H 6.14, Cl 3.37, N 1.33, S 3.05; found C 61.65, H 6.09, Cl 3.54, N 1.30, S 3.06.

5-(Benzyloxycarbonylamino)pentyl O-[3-O-Benzyl-4-O-(4-methoxybenzyl)-α/β-L-rhamnopyranosyl]-(1→4)-2-O-benzoyl-6-Obenzyl-β-D-glucopyranoside-3,2'-succinate (28): N-Iodosuccinimide (NIS, 259 mg, 1.15 mmol) is added under Ar at 0 °C to a stirred mixture of 25 (251.5 mg, 0.23 mmol) and molecular sieves (3 Å, 0.5 g) in MeCN (3.5 ml), and the mixture is stirred for 21 h. It is then diluted with CH₂Cl₂ and filtered through a layer of Celite. The filtrate is washed with aq. Na₂S₂O₃ solution and H₂O and concentrated. Chromatography (CCl₄/acetone, 6:1) of the residue gives first 28α (17 mg, 7%) as a colorless oil, [α]_D = -51.0 (*c* = 0.7, CHCl₃). - ¹³C NMR: δ = 100.9 (C-1), 92.8 (C-1'), 81.3 (C-4'), 75.3 (C-3), 74.2 (C-3'), 73.5, 72.7, 71.0 (ArCH₂), 73.3, 72.8, 72.3 (C-2,2',4), 70.1 (C-5), 79.7 (2 C, PhCH₂O, C-5'), 68.9 (C-6), 66.5 (OCH₂), 55.3 (OCH₃), 40.8 (NCH₂), 18.9 (C-6'). -C₅₈H₆₅NO₁₆ (1031.4): FAB MS 1032.1 (MH⁺).

Eluted next is **28** β (75.3 mg, 32%) as a slightly yellow oil, $[\alpha]_D =$ +16.5 (c = 1.0, CHCl₃). - ¹³C NMR: $\delta = 101.4$ (C-1), 97.5 (C-1'), 79.4, 78.8 (C-3',4'), 74.9 (C-3), 74.6, 73.6, 72.1 (ArCH₂), 73.4 (C-4), 72.3, 72.0 (C-2,2'), 71.3 (C-5), 69.7, 66.6 (OCH₂), 68.2 (C-6), 66.5 (C-5'), 55.3 (OCH₃), 40.8 (NCH₂), 18.2 (C-6'). - C₅₈H₆₅NO₁₆ (1031.4): FAB MS 1032.6 (MH⁺).

5-(Benzyloxycarbonylamino) pentyl O-(3-O-Benzyl- α /β-L-rhamnopyranosyl)-(1→4)-2-O-benzoyl-6-O-benzyl-β-D-glucopyranoside-3,2'-succinate (**29**): A) Treatment of **26** (222 mg, 0.23 mmol) with NIS (257 mg, 1.15 mmol) in MeCN (10 ml) as described for the preparation of **28** and chromatography (CCl₄/acetone, 4.5:1) affords first **29** α (18 mg, 9%) as a slightly yellow oil, [α]_D = -25.9 (c = 1.4, CHCl₃). - ¹³C NMR: $\delta = 100.9$ (C-1), 92.0 (C-1'), 79.0 (C-3'), 74.5 (C-3), 73.5, 73.1 (PhCH₂), 72.9, 72.6 (C-2,5'), 70.9 (4 C, C-2',3,3',5), 69.7, 66.5 (OCH₂), 68.8 (C-6), 40.8 (NCH₂), 18.0 (C-6'). - C₅₀H₅₇NO₁₅ (912.0): FAB MS 912.6 (MH⁺).

Eluted next is **29** β (74 mg, 35%) as a colorless foam, $[\alpha]_D = +24.9$ (c = 0.4, CHCl₃). $- {}^{13}C$ NMR: $\delta = 101.4$ (C-1), 97.2 (C-1'), 79.4 (C-3'), 74.8 (C-5), 73.2 (C-3), 72.8, 72.0 (C-2,5'), 71.7, 70.8 (PhCH₂), 70.7, 70.1 (C-4,4'), 69.8, 66.5 (OCH₂), 68.8 (C-6), 65.3 (C-2'), 40.8 (NCH₂), 17.7 (C-6'). $- C_{50}H_{57}NO_{15}$ (912.0): calcd. C 65.85, H 6.30, N 1.54; found C 65.76, H 6.34, N 1.41. B) Treatment of 28β (43 mg, 0.04 mmol) with DDQ (10.5 mg, 0.05 mmol) in CH₂Cl₂ (9 ml) and H₂O (0.5 ml) as described for the preparation of 23 affords 29 β (36.5 mg, 96%).

C) A solution of **30** β (237.5 mg, 0.24 mmol, see below) and thiourea (42 mg, 0.55 mmol) in MeOH (10 ml) is stirred at room temp. for 13 d and concentrated. The residue is redissolved in CH₂Cl₂, the solution washed with H₂O and concentrated again. Chromatography (CCl₄/acetone, 5:1) of the residue furnishes **29** β (187.7 mg, 86%).

5-(Benzyloxycarbonylamino)pentyl O-(3-O-Benzyl-4-O-chloroacetyl-α/β-L-rhamnopyranosyl)-(1→4)-2-O-benzoyl-6-O-benzyl-β-Dglucopyranoside-3,2'-succinate (**30**): Treatment of **27** (802.3 mg, 0.76 mmol) with NIS (860 mg, 3.82 mmol) in MeCN (11 ml) as described for the preparation of **28** and chromatography (CCl₄/acetone, 6:1) affords first **30α** (77.8 mg, 10%) as a colorless foam, [α]_D = -29.9 (c = 0.8, CHCl₃). - ¹³C NMR: δ = 100.9 (C-1), 91.7 (C-1'), 75.5 (2 C, C-3,3'), 75.4 (C-4), 74.3, 72.6 (PhCH₂), 73.4, 73.0 (C-2,4'), 72.6 (C-2'), 71.6 (C-5), 69.6, 66.5 (OCH₂), 68.8 (C-5'), 68.7 (C-6), 40.8, 40.7 (NCH₂, CICH₂), 18.1 (C-6'). -C₅₂H₅₈CINO₁₆ (988.5): calcd. C 63.19, H 5.91, N 1.42; found C 63.47, H 6.37, N 1.55; FAB MS 989.5 (MH⁺).

Eluted next is **30** β (415.2 mg, 55%) as a colorless foam, $[\alpha]_D = -22.3$ (c = 0.7, CHCl₃). $-^{13}$ C NMR: $\delta = 101.4$ (C-1), 97.5 (C-1'), 75.4 (C-3'), 74.8 (C-4'), 73.9, 71.6 (PhCH₂), 73.6, 73.4 (C-2,3), 72.0, 71.8 (C-4,5'), 70.6 (C-5), 69.8, 66.5 (OCH₂), 68.0 (C-6), 65.8 (C-2'), 40.8, 40.6 (NCH₂, ClCH₂), 17.8 (C-6'). $-C_{52}H_{58}$ ClNO₁₆ (988.5): calcd. C 63.19, H 5.91, Cl 3.59, N 1.42; found C 63.09, H 6.04, Cl 3.47, N 1.43.

5-(Benzyloxycarbonylamino)pentyl O-{2-Acetamido-3-O-benzoyl-2-deoxy-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- β -Dglucopyranosyl}- $(1 \rightarrow 3)$ -(2,4,6-tri-O-benzyl- α -D-galactopyranosyl)- $(1 \rightarrow 4)$ -(3-O-benzyl- β -L-rhamnopyranosyl)- $(1 \rightarrow 4)$ -2-O-benzoyl-6-O-benzyl-β-D-glucopyranoside-3,2'-succinate (31): TMSOTf (14 μl, 0.08 mmol) is added at 0 °C under Ar to a stirred mixture of crude 13 (228.6 mg, 0.23 mmol), 29β (140 mg, 0.15 mmol) and crushed molecular sieves (3 Å, 1.5 g) in CH₂Cl₂ (1.5 ml) and Et₂O (9 ml). The mixture is stirred for 3 h, neutralized by the addition of pyridine and filtered. The filtrate is washed with aq. NaHCO₃ solution and concentrated. Chromatography (CCl₄/acetone, 5:1) of the residue affords first 31 (98.6 mg, 37%) as a colorless foam, $[\alpha]_D =$ +24.5 (c = 0.42, CHCl₃). - ¹³C NMR: $\delta = 103.1$ (C-1""), 101.0 (C-1), 99.3 (Cacetal), 98.9 (C-1"), 97.6 (C-1'), 78.0, 77.7, 77.6 (C-3',3",5'), 76.9, 76.8, 76.5 (C-2",4',4""), 75.7, 75.1, 74.9 (C-4,4",5), 74.8, 73.5, 73.2, 72.9, 72.2 (PhCH₂), 73.8 (C-3), 72.5 (C-3"), 71.9 (C-2), 70.0 (C-5"), 69.6, 66.4 (OCH2), 69.4, 68.4 (C-6,6"), 67.2 (C-2'), 66.1 (C-5"'), 65.1 (C-6"'), 54.5 (C-2"'), 52.7 (COOCH₃), 40.7 (NCH₂), 30.8, 30.6, 29.3, 28.8, 23.0 (CH₂), 25.2 (CH₃), 22.9 (CH_3CONH) , 19.4 (C-6'). – $C_{96}H_{100}N_2O_{28}$ (1735.9): calcd. C 66.42, H 6.15, N 1.61; found C 66.29, H 6.26, N 1.75. Eluted next is unconsumed 29β (72.6 mg, 52%).

5-Aminopentyl O-{2-Acetamido-3-O-benzoyl-2-deoxy-4,6-O-[(S)-1-carboxyethylidene]- β -D-glucopyranosyl}-(1 \rightarrow 3)-(α -D-galactopyranosyl)-(1 \rightarrow 4)-(β -L-rhamnopyranosyl)-(1 \rightarrow 4)- β -D-glucopyranoside (32): A solution of 31 (69 mg, 39.8 µmol) and a catalytic amount of NaOMe in MeOH (4 ml) is stirred at room temp. for 23 h. The solution is neutralized by addition of ion exchange resin (Lewatit, H⁺ form) and filtered. The filtrate is concentrated and the residue is redissolved in MeOH (4 ml). Aq. NaOH solution (1 N, 0.35 ml) is added, the solution is stirred for 3 d, neutralized with ion exchange resin (Lewatit, H⁺ form) and filtered. The filtrate is mixed with Pd(OH)₂ (10% on charcoal, ca. 20 mg) and stirred at room temp. under H₂ for 6 d. Filtration of the mixture, concentration of the filtrate, chromatography of the residue with H₂O on Bio Gel P2 and lyophilization of carbohydrate-containing fractions affords 32 (33.5 mg, 99%) as a colorless foamy material. $[\alpha]_{D} =$ +61.8 ($c = 1.0, H_2O$). - ¹³C NMR (D₂O): $\delta = 103.6$ (C-1""), 102.5 (C-1), 101.5 (Cacetal), 100.9, 100.3 (C-1',1"), 81.0 (C-3"), 79.1 76.9 (C-4""), 76.7 (C-5), 75.9 (C-3'), (C-4'), 74.9 (C-3""), 73.5 (C-2), 72.0 (C-2'), 71.8 (2 C, C-5', 5"), 71.3 (C-4), 71.2 (OCH₂), 70.4 (C-3), 69.9, 69.3 (C-2",4"), 66.1 (C-5"), 64.6 (C-6""), 61.1, 60.7 (C-6,6"), 56.6 (C-2""), 39.7 (NCH₂), 28.5, 26.8, 22.4 (CH₂), 25.0 (CH₃), 22.5 (CH₃CONH), 17.3 (C-6'). - C₃₄H₅₈N₂O₂₂ (846.8): FAB MS (neg.) 845.1 ($M - H^+$).

- ^[1] S. J. Cryz in Immunotherapy and Vaccines (Ed.: S. J. Cryz), VCH, Weinheim, 1991, p. 21-24.
- ^[2] R. Austrian, Trans. Am. Clin. Climatol. Assoc. 1977, 89, 141-161.
- ^[3] C. M. McLeod, M. R. Kraus, J. Exp. Med. 1974, 86, 493-453.
- [4] J. B. Robbins, R. Austrian, C.-J. Lee, S. C. Rastogi, G. Schiff-man, J. Henry, P. H. Mäkelä, C. V. Broome, R. R. Facklam, R. H. Tiesjema, J. C. Parl, J. Infec. Dis. 1983, 148, 1136-1140
- [5] J. A. Leech, A. Gervais, F. L. Ruben, Can. Med. Assoc. J. 1987, 136, 361-365.

- ^[6] G. Schüle, T. Ziegler, Tetrahedron 1996, 52, 2925-2936, and references cited therein.
- [7] L. G. Bennett, C. T. Bishop, Can. J. Chem. 1977, 55, 8-16.
- [8] J. D. Higginbotham, M. Heidelberger, Carbohydr. Res. 1973,
- 27, 297-302.
 [9] J. Y. Lew, M. Heidelberger, Carbohydr. Res. 1976, 52, 255-258.
 [9] H. Lindouist, Carbohydr. Res. 1981. ^[10] P.-E. Jansson, B. Lindberg, U. Lindquist, Carbohydr. Res. 1981, 95, 73-80
- ^[11] T. Ziegler, R. Lau, Tetrahedron Lett. 1995, 36, 1417-1420.
- ^[12] R. Lau, G. Schüle, U. Schwaneberg, T. Ziegler, Liebigs Ann. 1995, 1745-1754
- ^[13] M. Imoto, H. Yoshimura, T. Shimamoto, N. Sakaguchi, T. Shiba, Bull. Chem. Soc. Jpn. **1987**, 60, 2205–2214. [^{14]} T. Ziegler, Tetrahedron Lett. **1994**, 35, 6857–6860.
- ^[15] P. J. Garegg, P.-E. Jansson, B. Lindberg, F. Lindh, J. Lönngren, Kvarnström, W. Nimmich, Carbohydr. Res. 1980, 78, T 127-132.
- ^[16] M. A. Nashed, L. Anderson, Carbohydr. Res. 1976, 51, 65-72. ^[17] A. M. P. van Steijn, M. Jetten, J. P. Kamerling, J. F. G. Vliegen-
- thart, Recl. Trav. Chim. Pays-Bas 1989, 108, 374-383.
- ^[18] N. Nagashima, M. Ohno, *Chem. Lett.* **1987**, 141–144. ^[19] E. Eckhardt, T. Ziegler, *Carbohydr. Res.* **1994**, 264, 263–269.
- [20] P. J. Garegg, I. Kvarnström, A. Niklasson, G. Niklasson, S. C.
 T. Svensson, J. Carbohydr. Chem. 1993, 12, 933-953.
- ^[21] P. Garegg, H. Hultberg, Carbohydr. Res. 1981, 93, C10-C11.
- [22] C. A. A. van Boeckel, T. Beetz, S. F. van Aelst, Tetrahedron **1984**, 40, 4097-4107.

[96105]

FULL PAPER