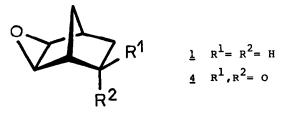
RUTHENIUM-CATALYZED OXIDATION OF 2,3-EPOXYNORBORNANE. INFLUENCE OF THE NATURE OF THE REOXIDIZING REAGENT.


A.TENAGLIA, E.TERRANOVA AND B.WAEGELL.

Laboratoire de Stéréochimie, associé au CNRS URA 109 LASCO, Faculté des Sciences St-Jérôme, Avenue Escadrille Normandie Niemen. 13397 Marseille Cédex 13, France.

The nature of the reoxidizing reagent plays a decisive role in the outcome of the ruthenium-catalyzed oxidation of 2,3-epoxynorbornane.

Catalytic oxidations involving RuO4* generated in situ strongly depend upon the reaction conditions (1) and upon the nature of the reoxidizing species (2). It was therefore of interest to analyze this influence on the tandem ruthenium-catalyzed rearrangement/oxidation of 2,3-epoxy bicyclo [2.2.1] heptane <u>1</u> which we have recently reported (3). We describe here our preliminary results (see Table) which are of particular interest in view of the fact that a Baeyer-Villiger type reaction (entry 1) occurs when NaOC1 is used as reoxidizing species (4); the epoxide ring remains intact under the basic conditions of the reaction. Although the mechanistic studies are still under progress, the first intermediate in the process giving the epoxylactone 2 is likely to be the ketoepoxide 4.

It is not clear yet, how the chloroepoxide $\underline{3}$ is formed although it probably results from a straightforward chlorination of $\underline{1}$ by sodium hypochlorite acting as a chlorine source (5). It is also interesting to note that the use of hydrogen peroxide (entry 2) or potassium persulfate (entry 3) allows the isolation of the glycol $\underline{5}$ previously postulated as an intermediate (3). Quite curiously, the other reoxidizing species currently used, such as NaBrO₂ (entry 4) [but also the N-oxide of N-methylmorpholine and tBuOOH (2)] leave the norbornane epoxide untouched. Finally it should be mentioned that the use of Oxone (6) gives rise to the formation of product <u>8</u> (entry 5), resulting from a retro-Claisen (3) on the diketone <u>9</u> (entry 6).

Entry	Reoxidizing Species (nb.equiv.)	Reaction time	Product(s) Yield(%)
1	NaOC1 (20)	4h	$ \begin{array}{c} $
2	н ₂ 0 ₂ (4)	17h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
3	κ ₂ ⁵ 2 ⁰ 8 (4)	2d	<u>5</u> (86%)
4	NaBrO ₂ (2)	18	$\underline{1}$ (recovered unchanged)
5	Oxone [®] (4)	2h	<u>Н</u> со ₂ н 37%
6	NaIO ₄ (4) (see ref.3)	1,5h	9 48%

TABLE. Ruthenium-Catalyzed Oxidation of 2,3-epoxynorbornane 1.

thank Drs.Delavarenne and Grosius for stimulating We Norsolor/Orkem for financial support and a scholarship discussions and to one of us (E.T.).

REFERENCES

- 1 By RuO4* we mean the species which is the most likely to be formed under the following experimental conditions : RuCl3.3H2O (0.022) mmol.) ; reoxidizing species [x equivalents -relatively to substrate-(see Table)] for 1 mmol. of epoxynorbornane 1 in CH3CN / CCl4 / H2O (2 / 2 / 3 mL) at 60°C. P.H.J.Carlsen, T.Katsuki, V.S.Martin, K.B.Sharpless, J.Org.Chem., 1981, 46, 3936.
- 2 K.Takehura, T.Hayakawa, H.Orita, Bull.Chem.Soc.Japan, 1986, 59, 2637.
 3 A.Tenaglia, E.Terranova, B.Waegell, Tetrahedron Lett., 1989, 30, 5275.
- 4 H.Nakata, Tetrahedron, 1963, 19, 1959.
 5 S.K.Chakrabartty in "Oxidation in Organic Chemistry", part C, Chap V, Ed. W.S.Trahanovsky, Academic Press, 1978.
- 6 Potassium hydrogen persulfate, available from Janssen Chemica, under the trade name Oxone (B), is a ternary mixture containing 2 moles KHSO₅, 1 mole KHSO4, 1 mole K₂SO4.

(Received in France 11 November 1989)