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ABSTRACT: Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against proliferation 

of Trypanosoma cruzi--the etiologic agent of American trypanosomiasis (Chagas disease)-- exhibiting 

IC50 values in the nanomolar range against the parasites.  This activity is associated with inhibition at the 

low nanomolar level of the T. cruzi farnesyl diphosphate synthase (TcFPPS).  X-ray structures and 

thermodynamic data of the complexes TcFPPS with five compounds of this family show that the 

inhibitors bind to the allylic site of the enzyme with their alkyl chain occupying the cavity that binds the 

isoprenoid chain of the substrate.  The compounds bind to TcFPPS with unfavorable enthalpy 

compensated by a favorable entropy that results from a delicate balance between two opposing effects: 

the loss of conformational entropy due to freezing of single bond rotations, and the favorable burial of 

the hydrophobic alkyl chains.  The data suggest that introduction of strategically placed double bonds 

and methyl branches should increase affinity substantially.  

KEYWORDS. Bisphosphonate, Trypanosoma cruzi, Chagas disease, farnesyl diphosphate synthase, 

FPPS, IPP, DMAPP, ITC, farnesyl pyrophosphate synthase, mevalonate pathway. 

INTRODUCTION 

American trypanosomiasis (Chagas disease) is a major parasitic disease that affects millions of 

individuals world-wide1, 2. T. cruzi, the etiologic agent of American trypanosomiasis, has a complex life 

cycle in which it passes from a blood-sucking Reduviid insect vector to mammals.3 It multiplies in the 

insect gut as an epimastigote form and is spread as a non-dividing metacyclic trypomastigote from the 

insect feces by contamination of intact mucosa or of wounds produced by the blood-sucking activity of 

the vector. In the mammalian host, the parasite proliferates intracellularly in the amastigote form and is 

subsequently released into the blood stream as a non-dividing trypomastigote.3 In humans, spread of 

Chagas disease can also take place via the placenta or by blood transfusion.4, 5 The occurrence of 
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American trypanosomiasis in countries where the disease is not endemic has been attributed to the 

second mechanism.4, 5 Chemotherapy for this neglected disease, based on old and empirically discovered 

drugs, is not very effective.6 Thus, it is critical that we develop new safe drugs based on knowledge of 

the biochemistry and physiology of the microorganism. 2-alkylaminoethyl-1,1-bisphosphonates have 

emerged as a new avenue for the development of compounds active against Chagas disease. 

 Bisphosphonates of general formula 1 (Figure 1) are metabolically stable pyrophosphate (2) 

analogues in which a methylene group replaces the oxygen atom bridge between the two phosphorus 

atoms of the pyrophosphate moiety. Substitution at the carbon atom with different side chains has 

generated a large family of compounds.7-10 Bisphosphonates became compounds of pharmacological 

importance since calcification studies were done more than 40 years ago.11-13 Currently, several 

bisphosphonates (Figure 1) such as pamidronate (3), alendronate (4), risedronate (5), and ibandronate (6) 

are in clinical use for the treatment and prevention of osteoclast-mediated bone resorption associated 

with osteoporosis, Paget's disease, hypercalcemia, tumor bone metastases, and other bone diseases. 

Selective action on bone is based on binding of the bisphosphonate moiety to bone mineral.14 It has 

been postulated that the parasite’s acidocalcisomes, organelles equivalent in composition to the bone 

mineral, may accumulate bisphosphonates and facilitate their antiparasitic action.14 In the case of bone, 

bisphosphonates act by a mechanism that leads to osteoclast apoptosis.15 The site of action of 

aminobisphosphonates has been narrowed down to the isoprenoid pathway and, more specifically, to 

inhibition of protein prenylation.16 Within the isoprenoid pathway, farnesyl pyrophosphate synthase 

(FPPS; also called farnesyl diphosphate synthase) was identified as the main target of 

bisphosphonates.17-22 FPPS catalyses two consecutive 1´-4 condensation reactions between an allylic  

(DMAPP or GPP) and a homoallylic substrate (IPP) to give a final product FPP. These reactions 

constitute the two committed steps in the biosynthesis of farnesyl pyrophosphate. In the first step it 

catalyzes the 1´-4 condensation of one molecule of IPP (homoallylic substrate) and one molecule of 

DMAPP (allylic substrate) to give GPP. In the second step it condenses one molecule of GPP and one 

molecule of IPP. Inhibition of the enzymatic activity of FPPS blocks farnesyl pyrophosphate and 
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geranylgeranyl pyrophosphate formation, compounds which are required for the post-translational 

prenylation within osteoclasts of small GTPases such as Rab, Rho and Rac.23 

 

Figure 1. General formula and chemical structure of pyrophosphate and bisphosphonates.  1-general 

bisphosphonate; 2-pyrophosphate; 3-6-representative FDA-approved bisphosphonates clinically 

employed for different bone disorders: 3, palmidronate; 4, alendronate; 5, residronate; 6, ibandronate. 

Besides their effectiveness in long-term treatment of bone disorders, bisphosphonates exhibit a wide 

range of biological activities that include, in addition to stimulation of γδ T cells of the immune 

system,24 antibacterial,25 herbicidal,26 antitumor27-30 and antiparasitic activities.31-35 

In vivo assays showed that risedronate can significantly increase survival of T. cruzi-infected mice.36   

Besides being effective growth inhibitors of T. cruzi in in vitro and in vivo assays without toxicity to the 

host cells14, bisphosphonates were found to be also effective against pathogenic trypanosomatids other 

than T. cruzi.  Those include T. brucei rhodesiense, Leishmania donovani, and L. mexicana as well as 

apicomplexan parasites such as Toxoplasma gondii and Plasmodium falciparum.33, 34, 37-43 These results 

point to bisphosphonates as potential candidates for chemotherapy of a range of neglected infectious 

diseases. They have the advantage, among other favorable characteristics, that they are relatively 

inexpensive and easy to synthesize.  Furthermore, one may assume a low toxicity for bisphosphonate-

containing drugs considering that many bisphosphonates are FDA-approved drugs that have been widely 

used for many years in the long-term treatment of bone disorders.   
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Figure 2. Bisphosphonate drugs used in this study40.  [2-(n-propylamino)ethane-1,1-diyl]bisphosphonic 

acid (BR25 = 10);  [2-(n-pentylamino)ethane-1,1-diyl]bisphosphonic acid (BR6 = 11); [2-(n-

hexylamino)ethane-1,1-diyl]bisphosphonic acid (BR18 = 12); [2-(n-heptylamino)ethane-1,1-

diyl]bisphosphonic acid (BR11 = 1338, 40, 42); [2-(cyclohexylamino)ethane-1,1-diyl]bisphosphonic acid 

(BR28 = 14).  

 

In this paper we report structural and thermodynamic studies of the interaction of five 2-

alkylaminoethyl-1,1-bisphosphonates with T. cruzi FPPS (TcFPPS; Figure 2).  The structures show that 

the inhibitors bind to the allylic site of the enzyme with the phosphates of the bisphosphonates 

coordinating three Mg2+ ions that bridge the compound to the enzyme in a manner similar to that 

observed for the physiological substrates.44-46  The alkyl chains of the inhibitors bind within a long 

cavity normally occupied by the isoprenoid chain of the allylic substrate (Figure 3).  The inhibitors bind 

to TcFPPS with high affinity despite having unfavorable enthalpy of binding.  The favorable entropy 

that results from burying the hydrophobic alkyl chain is the main binding driving force. 

   Although several bisphosphonate families have been shown to inhibit the trypanosomal FPPS, the lack 

of pharmacokinetic studies on these compounds suggests that it is still important to expand the number 

of compounds in the pipeline, especially with compounds of high affinity. 
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Figure 3. Allylic and homoallylic sites of FPPS. The allylic site is the part of the active site occupied by 

Mg and the bisphosphonate 10. The Homoallylic site is occupied by IPP. Magnesiums are shown in cpk 

model while the ligands 10 and IPP are shown as a stick model. The surface shows positive potential as 

blue and negative as red. 

The structural and thermodynamic information presented here provides the basis for the design of novel, 

more effective compounds for the treatment of Chagas disease. In particular, new inhibitors with 

strategically placed double bonds and methyl-group branches are predicted to have significantly 

increased affinity. 

RESULTS AND DISCUSSION 

Structure of the inhibitor complexes 

Like the FPPS from other species, including humans, 17, 47 the farnesyl diphosphate synthase of T. cruzi 

(TcFPPS) is a physiological homodimer (monomers A and B). The structures of TcFPPS in complex 

with five bisphosphonates 10-14 (resolutions between 2.01 Å and 3.0 Å; Table 1) each contained, in 
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Table 1. Structures of TcFPPS complex: Data collection and Refinement Statistics 

Crystal 

 

TcFPPS+IPP 

11 + Mg2+ 

 

TcFPPS+ 

13 + Mg2+ 

TcFPPS+IPP 

12 + Mg2+ 

TcFPPS+IPP 

14 + Mg2+ 

 

TcFPPS+IPP 

10 + Mg2+ 

Space group P6122 

Cell 
dimensions(Å) 

a = 57.9; b = 57.9; c = 392.4 

a = 103.2  

b = 103.2  

c = 386.6  

X-ray Source BNL-X6a BNL-X6a BNL-X6a BNL-X6a BNL-X6a 

Res(Å)   

(HighRes shell) 

50.0-2.1 50.0-2.01 50.0-2.65 50.0-3.05 50.0-2.35 

(2.14-2.1) (2.04-2.01) (2.70-2.65) (3.1-3.05) (2.39-2.35) 

Measured 
Reflect. 

173,165 152,558 174,663 79,815 453,674 

Unique 
Reflections 

22,705 27,252 12,287 7,407 49,874 

I/σ 23.6 (4.3) 34.3 (6.2) 38.0 (7.8) 46.9 (16.8) 26.6 (2.2) 

Completeness 
(%) 

93.2 (98.2) 97.8 (98.7) 95.7 (99.8) 87.8 (90.3) 96.0 (93.7) 

Rmerge (%) 11.3 (50.9) 8.0 (34.6) 10.5 (47.3) 6.9 (14.3) 9.0 (52.0) 

Refinement 

Rcryst (%) 22.1 20.3 23.6 23.1 22.0 

Rfree 
28.4 26.7 30.7 29.6 28.5 

Monomer in ASU 1 1 1 1 3 

Total Atoms 3,037 3,205 2,960 2,916 9,014 

Protein atoms 2,900 2,900 2902 2854 8701 

Water molecules 89 256 23 3 161 

R.m.s deviations 

Bond length (Å) 0.021 0.02 0.008 0.007 0.009 

     Angle (°) 1.82 1.83 1.13 0.97 1.21 

Bfactor(Å2) 

Protein 31.14 28.33 51.53 46.81 33.36 

Allylic 36.23 27.25 40.18 47.54 29.54 

Homoallylic 58.19 59.30 51.17 49.13* 44.72 

H20 35.01 35.59 34.12 26.10 30.51 

                                            *Occupancy :  0.6 
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addition, 3 divalent cations (Mg2+) and isopentenyl pyrophosphate (IPP) or SO4
-2 (13-TcFPPS complex 

has SO4
-2). Crystals of the complexes belong to space group P6122; four of the complexes have an 

average cell dimension of 392 Å along c-axis, 5 Å shorter than the equivalent dimension in the apo 

structure48 (Table 1) indicating that the structures of the complexes pack more compactly than that of the 

apo enzyme. 

The structures were determined by direct refinement or by molecular replacement (complex 10-

TcFPPS) using the structure of the Trypanosoma cruzi FPPS in complex with alendronate and IPP 

(1YHM).  After initial refinement, 2Fo-Fc maps showed excellent density for the bound inhibitors in the 

region corresponding to the allylic site. In the homoallylic site, electron density for IPP is seen in four 

structures – 10, 11, 12 and 14; in 13 a SO4
-2 ion occupies the homoallylic site.  

In all cases, three Mg2+ ions bridge the phosphates of the inhibitors to the protein.  The conserved 

aspartate residues of the two-aspartate rich motifs DDXXD (first aspartate rich motif: FARM, residues 

98-102; second aspartate rich motif: SARM, residues 250-254) bind three divalent cations (Mg2+) that 

are in turn coordinated by the phosphate backbone of the bisphosphonates  (Figure 4a; 11).   The IPP is 

bound to the enzyme by interacting directly with arginine residues (Arg51, Arg108, and Arg360 (Figure 

4b). The conserved RRG sequence (residues 107-109) of the loop following the FARM region and 

residues GK (263 and 264) in the loop following the SARM region are in the conformations usually 

seen in the closed form of the enzyme with both the allylic and homoallylic sites occupied. In all five 

structures the bisphosphonate, occupies the allylic site, and interacts with 3 divalent Mg2+ ions. Ligand 

waters complete the octahedral coordination of the ions. 

Structural alignment of the four complexes with n-alkyl chains (10-13) shows that the phosphate 

backbones of the bisphosphonates interact with the same residues of the protein, located near the top of 

the active site (Figure 4c; Figure 5a). However, deeper into the active site there are a small number of 

significant differences (Figure 5b). In the 12 and 13 complexes, Tyr94 and Gln167 both move to 

accommodate the bisphosphonates with the longer alkyl chains. In the complex with 13, the 

bisphosphonate with the longest alkyl chain, the end of the inhibitor bound to monomer A is at a 
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distance of 3.5 Å from Ile 129 from monomer B. This additional favorable van der Waals interaction 

contributes to the tighter binding of 13 (Table 2) in comparison to the slightly shorter 12 (one fewer 

carbon).   

It was proposed in earlier studies that His93 and Tyr94 (TcFPPS numbering) form the “floor” of the 

allylic site and determine the maximum length of the allylic substrates that can bind to the enzyme49 and 

by extension the length of the inhibitors. The complexes 13-TcFPPS and 12-TcFPPS show that Tyr94 

adopts a different conformation to accommodate longer alkyl chains (Figure 5b). Earlier studies with 

avian FPPS revealed that when Phe112 and Phe113 (equivalent to His93 and Tyr94 of TcFPPS) were 

replaced by residues with smaller side chains (Ala and Ser respectively), the mutated enzyme produced 

geranyl geranyl diphosphate (20 carbons)50. Also, in some species, geranyl geranyl diphosphate 

synthases contained smaller amino acids such as serine or threonine in the position equivalent to 

TcFPPS Tyr94 indicating that Tyr94 may be important in determining final product length51.  These 

observations point to His93, Tyr94 of chain A and Ile129 of the B chain as the residues that determine 

maximum permissible alkyl chain length.  

Comparison of the 14-TcFPPS and 10-TcFPPS complexes 

In the 14-TcFPPS structure, the cyclohexyl moiety adopts a chair conformation.  Structural alignment of 

the 14-TcFPPS and 10-TcFPPS complexes shows that packing of 14 to the enzyme is not as tight as that 

of 10. Also, residue Gln167, one of the conserved residues in α-helix F, adopts a different conformation 

in the two complexes (Figure 4d.).  The same is true about another conserved residue, Tyr211: in 14 its 

hydroxyl points away from bisphosphonate moiety.  Interestingly, in the 14 complex Tyr211 points 

towards the isoprenyl chain of the bound IPP and, as a result, it affects the IPP conformation.  
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Figure 4. Binding of bisphosphonates in various complexes of TcFPPS. (a) TcFPPS in complex with 

11, IPP and 3 divalent cations. Water molecules are shown as red spheres and Mg2+ in white. Protein 

backbone and residues of the active site are shown in green color. 11 and IPP are shown in cream color. 

Residues from the FARM and SARM are shown coordinating with Mg2+ ions. The basic amino acids 

Arg360 and Arg51 are observed to be interacting with the diphosphate moiety of IPP. (b) Homoallylic 

site of TcFPPS in complex with 11 (cream) and IPP (cream). IPP interacts with the basic amino acids 

Arg51 and Arg360. Arg107 and Arg108, from the loop after first aspartate rich region, interact with the 

inhibitor in the allylic site (11). (c) Structural overlap of the four BPs with n-alkyl chains (10-13) in 

complex with TcFPPS + Mg2+ + IPP (green). (d) Structural overlap of TcFPPS in complex with 10 

(green) and with 14 (magenta). Residues in the TcFPPS-10 complex are shown in green color and those 

of TcFPPS-14 complex in magenta. Key differences in the conserved interactions of the ligands with 

residues of the active site are shown. 
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Inhibitor Affinities 

Bisphosphonates derived from fatty acids have become interesting potential antiparasitic agents, 

especially 2-alkylaminoethyl derivatives, which were shown to be potent growth inhibitors of the most 

clinically relevant form of T. cruzi with IC50 values in the nanomolar range against the target enzyme38, 

41. Compounds 10−14 are representative members of the 2-alkylaminoethyl family of bisphosphonates, 

which have proven to be far more efficient growth inhibitors of trypanosomatids than their parent drugs 

1-hydroxy-, 1-alkyl-, and 1-amino-bisphosphonates such as compounds 7, 8 and 9 (Figure 6).39, 41, 42 

Compounds 10−14 inhibit the enzymatic activity of TcFPPS with IC50 values of 38 nM, 1.84 µM, 0.49 

µM, 58 nM, 13 nM, respectively (Table 2).40  

Thermodynamic Data 

The interactions of TcFPPS with these 2-alkylaminoethyl bisphosphonates were studied by isothermal 

titration calorimetry at 28 °C. (ITC data for reversible binding of 14 to TcFPPS could not be obtained.) 

The four compounds with n-alkyl chains, bind to the target enzyme with a positive, unfavorable enthalpy 

change (Figure 7; Table 2), in agreement with previous studies with other bisphosphonates52.  This 

unfavorable enthalpy is compensated by large favorable entropy that is itself determined by the 

difference between to opposite effects. As the inhibitor molecules bind, the single bond rotations around 

the C—C bonds of the alkyl chain become frozen in the complex resulting in a loss of conformational 

entropy that becomes larger as the number of carbons in the alkyl chain increases.  At the same time, the 

favorable entropy from the burial of the hydrophobic alkyl chain, also increases with chain length, 

resulting in a very fine balance between these two effects. The values of the unfavorable binding 

enthalpy also vary significantly among the inhibitors. 12 is the most unfavorable by 1.5-2.0 Kcal/mol.  
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Figure 5.  Allylic site binding of inhibitors in various TcFPPS-BPs complexes. (a) TcFPPS in complex 

with 11 and 3 divalent cations. Water molecules are shown as red spheres, Mg2+ in white.  The TcFPPS 

protein backbone and some residues in the active site are shown in green color. 11 is shown as a stick 

model in green color. Residues from the first and second aspartate rich regions are shown coordinating 

the Mg2+ ions. (b) Structural overlap of TcFPPS in complex with four n-alkyl chain bisphosphonates 10-

13. Residues His93, Tyr94, Ile129 (monomer B) at the “bottom” of the allylic site are shown. Monomer 

A of the TcFPPS-11 complex is shown in green, the TcFPPS-13 complex in pink, TcFPPS-12 complex 

in brown, TcFPPS-10 complex in violet while monomer B is shown in red, cyan, yellow and blue 

respectively. The distance between the terminal carbon of the longest bisphosphonate 13 and the Ile 129 

is 3.5 Å. 

   

   The high affinity of 14 (IC50 13 nM) can be rationalized based on these same arguments.  TcFPPS 

binds 14 in a manner similar to 10, suggesting that it would have a similar enthalpy of binding (not 

measured), although somewhat more unfavorable due to changes in the conformations of Gln167 and 

Tyr211 described above.  However, 14 buries a large hydrophobic surface without the loss of 

conformational entropy of the n-alkyl chain experienced by the other inhibitors: the conformational 

flexibility of the ring is highly restricted even in the unbound state.   
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Figure 6. Chemical structure of representative bisphosphonic acids derivatives. 

Furthermore, binding in the more stable chair conformation not only reduces the loss of entropy but 

also avoids the enthalpic penalty of binding the less favorable boat conformation. 

The inhibition data (IC50) of bisphosphonates 10-13 against TcFPPS are in excellent agreement with 

the Kd’s obtained in the ITC experiments (Table 2). These results and the structural data taken together 

indicate that inhibition results from binding of these inhibitors to the allylic portion of the catalytic site 

of the enzyme. It is likely that other closely related bisphosphonates that effectively inhibit the 

enzymatic activity of TcFPPS also do so by binding to the allylic site.41 The data for 13 can also be fit 

using two different sites per dimer (see figure 7 and Table 2 and their footnotes). This is similar to 

previous data on other nitrogen-containing bisphosphonates52. One reason for this behavior of 13 may be 

its size. Like some of the other large bisphosphonates, binding of 13 to one site of the dimer, modifies 

the affinity of the other monomer. 

Towards the design of new bisphosphonate TcFPPS inhibitors 

 

As mentioned above, binding of these inhibitors is enthalpically unfavorable.  The favorable entropy, 

which dominates the favorable free-energy, results from a delicate balance two opposing effects: the 

unfavorable loss of conformational entropy, due to freezing of single bond rotations of the inhibitor (and 

binding site side chains), and the favorable increase of entropy associated with burial of the hydrophobic 

alkyl chains.  With the shortest compound, n-propyl, the balance produces the tightest binding of the 
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Table 2. Isothermal Titration Calorimetry Studies on the Binding of Bisphosphonates to TcFPPS  

 

Lig 

Carbons in 

n-alkyl 

∆G 

(kcal/ mol) 

∆H 

(kcal/mol) 

∆S 

(cal/mol
/K) 

1/Ka 

(nM) 

IC*
50 

(nM) 

10  3 -10.43 6.35 ± 0.07 56.1 25.0 ± 6.3 38.0 

11  

 

5 -8.15 5.22 ± 0.11 44.7 1030 ±170 1840 

12  6 -8.72 7.87 ± 0.11 55.4 400 ± 63 490 

13  7 -9.88 5.65 ± 0.09 

†( 6.39 ± 0.36; 

 4.62 ± 0.44) 

51.9 58.8 ± 20.4 

†(10.2 ± 7.3; 

38.3 ± 11.2) 

58.0 

*IC50 were calculated before40  †Values calculated using 2-site model.
 

 

 

series.  Increasing the length of the alkyl chain to pentyl or hexyl reduces the affinity by over an order of 

magnitude.  This change seems to imply that by the addition of two or three methylenes, the increase in 

the loss of conformational entropy is greater than the additional entropy gain due to burial of the longer 

chain (more so for the pentyl than for the hexyl).  This tendency is reversed when the n-alkyl chain is 

seven carbons long (13 vs. 12, Table 2).  This observation suggests that increasing the alkyl chain 

further could generate compounds with higher affinity.  However, analysis of the structure of the 

complex of TcFPPS with the n-heptyl inhibitor shows that increasing the n-alkyl chain past seven 

carbons would result in clashes with residues of the enzyme: in any of its possible positions the eighth 

carbon would clash with either Tyr94, His93, or Ile129 of chain B. 

    Comparison of the structure of the 13-TcFPPS complex with the previously determined structure of 

the chicken FPPS (GgFPPS) in complex with GPP (geranyl pyrophosphate) provides crucial information 

for guiding the design of improved inhibitors: the N1 of 13 occupies the same position in the binding 

site as the C1 of the GPP (Figure 8) and the rest of the chains align up to the C6 of 13 that overlaps with 

C7 of the GPP.  C7 of GPP is a tertiary carbon with two methyl groups while the equivalent carbon of 

13 (C6) has only one methyl. The terminal methyl of 13 occupies a position  
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Figure 7. Isothermal titration calorimetry of the reaction between bisphosphonate drugs and TcFPPS. 

(a) 11. (b) 12. (c) 10. (d) 13. 13 can be fit either as two identical sites (one per monomer; red) or as two 

different sites (two per dimer; blue). 

between the positions occupied by the two GPP methyls, rendering this portion of 13 less 

complementary to the binding site.  Adding a methyl group to the C6 of 13 is likely to result in a better 

inhibitor. The same is true of the C3 methyl of GPP: adding a methyl group at the C2 of 13 can fill this 

pocket.  Furthermore, the bound conformation of 13 is compatible with the double bonds of GPP, 

suggesting that introducing double bonds at C1 and C5 of 13 will freeze the compound in the bound  
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Figure 8. Overlap of GPP and 13. a) Allylic site of 13-TcFPPS complex. 13, amino acids are shown in 

stick representation (pink). Portion of the 2mFo-DFc electron density corresponding to the inhibitor 13 is 

shown in grey color. b) Structural overlap of 13-TcFPPS complex with the chicken FPPS-GPP complex 

(PDB: 1UBW). TcFPPS is shown in ribbon model (green). The ligands 13 (pink) and GPP (blue) in 

stick representation. Only GPP of the chicken FPPS is shown in the figure. 

conformation.  This modification would reduce the loss of conformational entropy without affecting the 

binding enthalpy.  The resulting compound with a 2,6-dimethyl-1,5-diene would be an excellent mimic 

of the bound GPP; however it would contain a labile enamine functionality that renders the compound 

too unstable to be considered a useful inhibitor. These observations point to a 2-alkylaminoethyl-1,1-

bisphosphonate with an (E)-2-2,6-dimethylhepta-2,5-diene chain (compound 21, Figure 9) as a highly 

promising lead compound for the next generation of bisphosphonate TcFPPS inhibitors (Figure 8b; 

Figure 9). Molecular modeling using MOE (Molecular Operating Environment, Chemical computing 

group; Quebec, Canada) showed that the 2,5 diene chain can bind the enzyme in a conformation that still 

mimics that of the bound geranyl diphosphate. It appears that the affinity of 10 can also be improved by 

an equivalent modification. Replacement of the propyl chain by an isobutyl-2-ene (compound 20, Figure 

9) would result in a compound that binds the enzyme mimicking DMAPP. In addition, the compounds 
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equivalent to 20 and 21 but lacking the double bond at the 2- positions may also show high affinity for 

the enzyme. 

 

 

Figure 9. New proposed bisphosphonates. Compounds labeled as 20 and 21. 

EXPERIMENTAL SECTION 

Synthesis of inhibitors 

Compounds 10–14 were synthesized as reported before40. In brief; they were prepared using tetraethyl 

ethenylidene bisphosphonate (compound 15) as a Michael acceptor,53 which in turn was prepared from 

tetraethyl methylenebisphosphonate in two steps according to a slightly modified Degenhart protocol.54  

Compound 15 was reacted with the corresponding n-alkylamine via a 1,4-conjugated addition reaction 

to yield the respective Michael adducts (16–20). Once these synthetic precursors were at hand, they were 

hydrolyzed with bromotrimethylsilane in methylene chloride55 to afford the free 1,1-bisphosphonic acids 

(10–14).39 The purity of the compounds assessed by elemental analysis was greater than 98%40. 

 

Cloning, expression and purification 

TcFPPS was cloned and expressed as reported before56. Briefly, DNA coding for TcFPPS with an N-

terminal His-Tag and a thrombin cleaveage site was cloned into a pET28a vector (Novagen). 

BL21(DE3) E. coli cells transformed with this plasmid were grown in LB medium until they reached an 

OD600 of 0.8 and induced with 0.1 mM IPTG at 37.0 oC. The cells were harvested 3h after induction, 
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washed in buffer A (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 10 mM imidazole, 1 mM TCEP; TCEP: 

tris(2-carboxyethyl) phosphine hydrochloride), and broken with a microfluidizer.  The lysate was 

centrifuged for 30 mins at 12000 rpm and the supernatant was loaded onto a HisTrap Ni2+ chelate 

affinity column equilibrated with buffer A. The protein was eluted using a linear gradient of 0-100% of 

buffer B (50 mM NaH2PO4 pH 8.0 300 mM NaCl, 500 mM Imidazole, 1 mM TCEP). The His-tag was 

cleaved by digestion with thrombin and the sample was loaded into an anion exchange column (binding 

buffer: 20 mM Tris pH 8.2, 20 mM NaCl, 1 mM TCEP) and eluted with 20 mM Tris pH 8.2, 1 M NaCl, 

1 mM TCEP. The protein, which was more than 95% pure as seen by SDS page gel, was dialyzed 

against 20 mM Tris pH 8.2, 150 mM NaCl, 1 mM TCEP and concentrated to 12 mg mL-1.  

Crystallization 

Crystals used for data collection were grown by vapor diffusion with the protein and the mother liquor 

in a 1:1 ratio. The reservoir consisted of 100 mM sodium acetate, pH 4.6–5.2, 200 mM ammonium 

sulfate, and 2–10% PEG 4K. Crystals, which appear within 1-2 days, belong to the hexagonal space 

group P6122. The protein (12.5 mg/ml) inhibitor solution used for co-crystallization contained 250 µM 

inhibitor, 250 µM IPP and 1 mM MgCl2. 

Data Collection 

Diffraction data of all the TcFPPS complexes were collected at beamline X6A of the NSLS, 

Brookhaven National Laboratory. Diffraction data collected from a single frozen crystal (100 K) were 

processed and scaled using the HKL 2000 suite57 (Table 1).  

Structure Determination 

The structures of the complexes of TcFPPS with compounds 11-14 were determined by direct 

refinement of the coordinates of the FPPS from Trypanosoma cruzi (1YHM)48 with the program 

REFMAC558-60 of CCP4 suite.  The structure of 10 was determined by molecular replacement using the 

program AMoRe61 (search molecule PDB id 1YHM). 
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Model Building and Refinement 

The initial model was refined using REFMAC5 and rebuilding during refinement was carried out with 

the program COOT62.  Following the R-value monitored progress of the refinement and an R-free 

calculated with a cross validation set containing 5% of the reflections. The overall quality of the final 

model was assessed using the programs PROCHECK63 and WHATIF64, 65.  Atomic coordinates and 

structure factors for the complexes TcFPPS+10, TcFPPS+11, TcFPPS+12, TcFPPS+13 and TcFPPS+14 

have been deposited in the Protein Data Bank with accession codes 4DWB, 4DXJ, 4DWG, 4EIE and 

4DZW respectively. Structure figures were generated using molscript66 and pymol (The PyMOL 

Molecular Graphics System, Version 1.5.0.1 Schrödinger, LLC). Models of the proposed new inhibitors 

were built using MOE (Molecular Operating Environment, Quebec, Canada). 

Isothermal Calorimetry 

ITC experiments were performed with TcFPPS and each of five ligands: 10-14. The protein was 

diluted to a concentration of 29 µM (in monomers) in a buffer containing 25 mM Hepes pH 7.5, 1 mM 

TCEP, 300 mM NaCl, 2 mM MgCl2. The ligands were prepared in the same buffer at a concentration of 

250 µM. 1.3 mL of protein in the sample cell were titrated with twenty five 10 µl injections. The data 

were analyzed with the Origin-5.0 software and fitted to a single binding site per monomer. 
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Abbreviations. FPPS: Farnesyl pyrophosphate synthase; FPP: Farnesyl pyrophosphate, GPP: Geranyl 

pyrophosphate, BPs: Bisphosphonates, TcFPPS: Trypanosoma cruzi Farnesyl pyrophosphate synthase, 

IPP: Isopentanyl pyrophosphate, DMAPP: Dimethylallyl pyrophosphate. 
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