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Abstract—This work describes the reactivity of 2-alkyl thioisomünchnones, exemplified here by the 2-methyl derivative, which
behaves as nucleophile in the presence of both aliphatic and aromatic acid chlorides to give 2-heteroaryl ketones or 2-heteroaryl-
1,3-diketones, respectively. However, 2-alkyl thioisomünchnones exhibit its characteristic 1,3-dipole behavior toward unsaturated
systems. © 2003 Elsevier Science Ltd. All rights reserved.

The cycloaddition reactions with mesoionic compounds
have stirred enormous interest and progress in the last
decades.1 These substances constitute a synthetically
useful family of masked 1,3-dipoles and not only offer
a potential for natural product syntheses, but also the
possibility of constructing a series of uniquely different
heterocycles from cycloadduct fragmentation. The
anhydro-4-hydroxy-1,3-thiazolium hydroxides (thioiso-
münchnones), which contain a thiocarbonyl ylide
dipole, can easily be prepared from thioamides and
undergo [3+2] cycloadditions with reactive dipolar-
ophiles.1b The ability to synthesize diverse heterocycles
by this strategy is largely dependent on the substitution
pattern of the parent thioisomünchnone. We have
shown the profound stereodirecting effect exerted by a
dialkylamino residue on the 2-position of the mesoionic
ring leading to a wide range of heterocyclic systems,
hitherto inaccessible by 1,3-dipolar cycloadditions such
as dihydrothiophenes,2 1,2,3-triazin-4-ones,3 azetidin-2-
ones,4 or thiiranes.5

It has long been thought that thioisomünchnones and
their cousins the anhydro-4-hydroxy-1,3-oxazolium
hydroxides (isomünchnones) exist in equilibrium with
their neutral tautomeric form, although most experi-
mental evidences suggest that only the zwitterionic
form actually undergoes a 1,3-dipolar cycloaddition. In
the early 1970s, Potts and Marshall reported the tau-

tomerization of oxazol-4(5H)-ones to isomünchnones
which readily react with acetylenes to afford the corre-
sponding cycloadducts. These substances subsequently
underwent a retro-Diels–Alder reaction with loss of
isocyanic acid to give furans.6 These authors also con-
sidered an alternative Diels–Alder pathway via an enol
tautomer.7 Nevertheless, this surmise was ruled out as
other oxazol-4(5H)-ones and thiazol-4(5H)-ones did
not undergo this transformation.

Apparently, only Baudy and co-workers were able to
characterize spectroscopically the equilibrium between
a 2-methyl thioisomünchnone derivative and its non-
mesoionic tautomer 2-methylenethiazol-4(5H)-one.8

Still, the latter compound did react as thioisomünch-
none to produce cycloadducts or heterocycles derived
thereof.9

To shed light into this class of tautomeric equilibria
and their synthetic utility, as well as to develop a
general synthesis of 2-alkyl thioisomünchnones, herein
we describe a detailed exploration of their reactivity
with acid chlorides. 3,5-Diphenyl-2-methyl thioiso-
münchnone (1a) was prepared by treatment of the
commercially available thioacetanilide and 2-chloro-2-
phenylacetyl chloride,10 according to the improved pro-
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tocol reported by Potts et al.11 This sequence is more
advantageous than that of Baudy and associates who
employed the condensation of thioamides with gem-
dicyano epoxides.8 Both such a dicyano epoxide and
the �-halo-�-phenylacetyl chloride provide the same
heterocyclic fragment: the C-4 and C-5 atoms and their
substituents. IR and 1H NMR spectra of 1 reveal that
this substance does exist in a tautomeric equilibrium
(1a:1b=1:3.8, Scheme 1).

We have computed the energy difference between these
tautomers and found that they have approximately the
same stability (�E<0.02 kcal/mol at the PM3 or
B3LYP/6-31G* levels of theory).12 An analysis of Mul-
liken charges at the B3LYP/6-31G* level evidences the
nucleophilic character of the exocyclic carbon and,
therefore we did envisage the possibility of trapping the
2-methylenethiazol-4(5H)-one (1b) tautomer with reac-
tive electrophiles. To this end, reactions of 1 with acid
chlorides were conducted under mild conditions in the
presence of triethylamine to capture the hydrogen chlo-
ride released.13

With acetyl, propanoyl and butanoyl chlorides, the
monosubstituted derivatives 2b–4b were obtained.
NMR spectra showed that only the thiazol-4(5H)-ones
(2b–4b) form exist. The cis relationship between the
sulfur atom and the side chain acyl substituent could be
unequivocally determined by X-ray diffraction analysis
of 2b (Fig. 1).14 Remarkably both phenyl groups adopt
an orthogonal disposition with respect to the hetero-
cyclic ring, to presumably alleviate the steric conges-
tion. It is equally interesting worth noting that the
solid-state conformation found for the acyl group
should be attributed to the intramolecular non-bonded
interaction S···O (1,5-intra mode), which has its origin
in n(C�O)–�*(C�S) orbital overlap effect.15

On the other hand, reactions of 1 with benzoyl, 4-
methoxybenzoyl, 4-chlorobenzoyl, 2-fluorobenzoyl, or
4-nitrobenzoyl chlorides produced the corresponding
2-heteroaryl-1,3-diketones 5–9. In this case, however,
NMR spectra of compounds 5, 6, and 8 suggest the
exclusive existence of their thioisomünchnone tau-

Figure 1.

Scheme 2.

tomers, whereas 7 and 9 appear to be equilibrated
between both forms (Scheme 2, Table 1).

Data collected in Table 1 also evidence that the forma-
tion of mono or diacylated derivatives invariably occurs
regardless of the amount of acid chloride employed
(entries 1–6, 9). Moreover, attempts to introduce a
third acyl group by using a large excess of benzoyl or
4-chlorobenzoyl chlorides failed as well (entries 6 and
9).

Table 1. Reactions of 1 with acyl chlorides and triethylamine

R RCOCl (equiv.)Entry Et3N (equiv.) Product (%)a Tautomeric ratiob

2 >99:1Me 2b (52)1 2
Et 22 3b (46) >99:12

>99:122 4b (70)Prop3
C6H5 2 2 5a (36) >99:14

1 1 5a (76)c5 >99:1C6H5

C6H56 4 4 5a (40) >99:1
4-MeOC6H47 2 2 6a (72) >99:1

2.5:17a+7b (55)28 24-ClC6H4

9 44-ClC6H4 4 7a+7b (70) 2.5:1
8a (50)222-FC6H410 >99:1

211 2:19a+9b (78)24-NO2C6H4

a Yields refer to isolated, crystalline compounds.
b Determined by 1H NMR integration at 400 MHz in CDCl3.
c Calculated with respect to the limiting amount of PhCOCl.
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With carbon�carbon unsaturated functionalities, com-
pound 1 exhibits the typical dipole character of thioiso-
münchnones.1–3,9 Reactions of 1 with acryloyl chloride
in CH2Cl2 at room temperature gave the corresponding
2-aza-3-oxo-7-thiabicycle 10 in moderate yield (60%)
and with complete regioselectivity (Scheme 3). The
stereochemical outcome arises from an exo approach of
the dipolarophile facing its C-2 and C-3 atoms to C-5
and C-2 positions respectively, of 1. It is also remark-
able the strong bias to favor a cycloaddition pathway in
the case of acryloyl chloride, even though it is a good
electrophile. Compound 10 was isolated as its acid
derivative after chromatographic purification (Scheme
3). Crystals of 10 suitable for X-ray diffraction could
not be obtained. However, its stereochemistry was
established by comparison with the spectroscopic data
of the cycloadduct 11 arising from reaction of 1 with
methyl vinyl ketone, whose regiochemistry was deter-
mined by X-ray diffractometry (Fig. 2).16

To sum up, we have demonstrated that 2-methyl
thioisomünchnones are in equilibrium with their 2-
methylenethiazol-4(5H)-ones. This feature can be har-
nessed to develop a novel synthesis of 2-heteroaryl
ketones and 2-heteroaryl-1,3-diketones by reaction with
alkanoyl or aroyl chlorides, respectively. Moreover, the
resulting substances contain a functionalized heteroaro-
matic ring, which can undergo further synthetic explo-
ration en route to fused heterocycles. Within this
context it should also be pointed out the facile incorpo-
ration of the 1,3-dicarbonyl moiety into the heterocyclic
fragment, while other classical procedures possess
important drawbacks. Thus, esters of aromatic acids
are used rather less frequently in cross-Claisen reactions

because they are considerably less reactive than carbon-
ates or formates. Likewise, Lewis acid-catalyzed
acylation of enols is often hampered by other func-
tional groups susceptible of undergoing complexation.17

In addition, aldol, Claisen and related reactions are
prone to give self-condensation products, although the
problem can be circumvented by immobilization tech-
niques.18 Further studies with the present protocol
along with extensions to other electrophiles are cur-
rently under way.
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