

Home Search Collections Journals About Contact us My IOPscience

State-of-the-art coordination chemistry of radioactive elements

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2001 Russ. Chem. Rev. 70 865 (http://iopscience.iop.org/0036-021X/70/10/R03)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 149.171.67.164 This content was downloaded on 10/09/2015 at 23:10

Please note that terms and conditions apply.

State-of-the-art coordination chemistry of radioactive elements

B I Kharisov, M A Mendez-Rojas

Contents

I.	Introduction	865
II.	General notion of technetium and actinide complexes	865
III.	Actinide alkoxides and other oxygen-containing complexes and salts	867
IV.	Halide complexes of actinides	869
V.	Actinide π -complexes with allyl, cyclopolyene, arene and related ligands	870
VI.	Hydride and hydroborate complexes of actinides	873
VII.	Actinide complexes with macrocyclic ligands	874
VIII.	Actinide complexes with nitrogen-containing ligands	874
IX.	Complexes with phosphorus-containing ligands	875
Х.	Sulfur-containing actinide complexes	876
XI.	Technetium complexes	877

Abstract. Modern procedures for the synthesis of coordination and organometallic compounds of actinides and technetium and the properties of these compounds are surveyed. Experimental techniques, including methods for the synthesis of actinide and technetium complexes from elemental metals (oxidative dissolution and direct electrosynthesis), salts and halide, carbonyl and other complexes are generalised. The bibliography includes 283 references.

I. Introduction

Among compounds of natural and artificial radioactive elements (Tc, Pm, Po, Fr, Ra, Ac and actinides), only organometallic compounds and complexes of technetium and actinides (An) have been well studied. Complexes of these metals attract interest because technetium, which is available in multikilogram quantities, is widely used for medical and technical purposes and actinides find application in nuclear industry and power engineering. Over a period of the last two decades, a large number of experimental studies, reviews and monographs were devoted to Tc and An complexes.^{1–16} The aim of the present review is to give a comprehensive survey of modern synthetic procedures for the preparation of coordination and organometallic compounds of radioactive elements. The data are systematised according to the nature of the ligands in these complexes.

E-mail: bkhariss@ccr.dsi.uanl.mx

II. General notion of technetium and actinide complexes

Actinium (atomic number 89) and all elements with atomic numbers from 90 to 103 (actinides) are radioactive.¹⁷ Only four actinides (Th – Np) and actinium by itself were found in nature, whereas the remaining elements were prepared artificially by irradiation of U and other elements with neutrons or by bombardment with heavy atoms. Actinides are analogues of lanthanides. They belong to the same IIIB Group but reside in the next row.

Technetium (atomic number 43) has several isotopes two of which are characterised by large half-lifes $(2.12 \times 10^5 \text{ and } 1.5 \times 10^6 \text{ years for } ^{99}\text{mTc}$ and ^{98}Tc , respectively) and is a rhenium analogue.¹⁸

The electronic states of the actinide atoms and ions differ substantially from those of the lanthanide atoms and ions. In both series, the *f* level is successively filled up to the f^{14} configuration; however, this filling in actinides begins with Th only formally because Th does not bear *f* electrons and is an electronic analogue of hafnium.¹⁶ In contrast to lanthanides, actinides can exist in various oxidation states. Actinides in the oxidation state +3 are analogues of lanthanides, whereas actinides in the oxidation state +4 are analogues of Hf(IV) and Ce(IV).

Actinides produce the An^{m+} (m = 2-4) and AnO^{m+}₂ (m = 1or 2) ions whose highest occupied level is filled only with felectrons. In the series of the An³⁺ anions, the actinide contraction is observed, this contraction changing in parallel with the lanthanide contraction. The 5f and 6d energy levels of the An^{m+} ions correlate with each other. The difference in the correlations for the An³⁺ and Ln³⁺ ions leads to the noticeable difference in the magnetic properties and electronic spectra of their compounds.¹⁷ Technetium (the $4s^24p^64d^5s^2$ or $4s^24p^64d^65s^1$ electronic configuration) exists in the oxidation states from +1 to +7, the oxidation states from +4 to +7 being most stable.¹⁸</sup>

Spin-orbit coupling (J) in the An³⁺ ions is very strong $(2000-4000 \text{ cm}^{-1})$ and it is ~1000 cm⁻¹ stronger than J in the Ln³⁺ ions. In contrast to lanthanides, the splitting due to spin-orbit coupling in actinides is comparable with the crystal field splitting and, hence, the J value is no longer a good quantum number. Since the 5f and 6d orbitals have close energies and the

B I Kharisov Facultad de Ciencias Quimicas, Universidad Autónoma de Nuevo León, 66450 San Nicolás de los Garza 18-F, Nuevo León, México. Fax (52-8) 374 07 09. Tel. (52-8) 375 30 68.

M A Mendez-Rojas Centro de Investigaciones Quimicas, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42073 Pachuca, Hidalgo, México. Fax (52-7) 717 20 00, ext. 5075. Tel. (52-7) 717 20 00, ext. 4881. E-mail: mmendez@uaeh.reduaeh.mx

thermally accessible excited states of actinides are filled, the equation for the effective magnetic moment

$$\mu_{\rm e} = g[J(J+1)]^{1/2}$$

is less appropriate than in the case of lanthanides.^{17, 19}

Actinide organometallic complexes contain actinide–carbon π bonds, actinide–carbon σ bonds or bonds of both types. Organometallic complexes of all early actinide elements from thorium to californium are known.²⁰ However, most data have been obtained for the chemistry of organometallic compounds of Th and U due to the extremely large half-lifes of natural ²³²Th and ²³⁸U (1.41 × 10¹⁰ and 4.468 × 10⁹ years, respectively). The first actinide organometallic compound, *viz.*, Cp₃UCl, was isolated by Reynolds and Wilkinson in 1956.²¹

The actinide atoms possess rather large atomic and ionic radii and large (up to 14) coordination numbers.²² Examples of actinide compounds characterised by various coordination numbers and oxidation states are listed in Table 1.

The maximum coordination numbers were found for polymeric uranium hydroborates, whereas the presence of bulkier ligands, for example, of NPh₂, leads to a decrease of the maximum coordination number to 5 or even to 4.¹⁷ Like lanthanides, the spherical An³⁺ and An⁴⁺ ions have the highest coordination numbers (generally, 8 or 9) and often form isomorphous complexes in which the polyhedron type is determined by repulsions between the ligands (steric factors) or packing factors rather than by the electronic effects.²³ For example, the square antiprism in the rhodanide complexes Cs₄An(NCS)₈ and U(NCS)₄(Ph₃PO)₄ is transformed into the dodecahedron in the case of Th(NCS)₄[(Me₂N)₂CO]₄ or into the cube in the case of (NEt₄)₄An(NCS)₈.¹⁷

The nature of the bond between the π -donor ligand and the actinide centre has been discussed.^{24, 25} The authors emphasised that there is no simple answer to the question as to the nature of the bond in organoactinide complexes. Examples of almost completely ionic binding of the Cp⁻ anions or cyclooctatetraene (COT) with U⁴⁺ (see Ref. 26) as well as of covalent binding of the metal atom with the aromatic ring of the ligand in uranocene accompanied by essential ligand-to-metal electron transfer are available in the literature.^{24, 27, 28} It was concluded ^{24, 29} that the

Table 1. Coordination numbers (CN) and coordination polyhedra in actinide compounds.¹⁷

Oxidation state	CN	Coordination polyhedron	Examples of compounds	Oxidation state	CN	Coordination polyhedron	Examples of compounds
+7	6	octahedron	$Li_{5}(AnO_{6})$ $(An = Np, Pu)$	+4	8	cube	$(NEt_4)_4[An(NCS)_8]$ (An = Th, Pa, U, Np)
+6	6	octahedron	(NEt ₄)(PaOCl ₅), AnF ₆			bicapped trigonal prism	Th(acac) ₄
			(An = U, Np, Pu), $trans-UO_2Cl_2(OPPh_3)_2$			bicapped octahedron	$[UCl_2(Me_2SO)_6](UCl_6)$
	7	pentagonal bipyramid	$[UO_2Cl_2(acac)_2] \cdot Hacac,$ $PuO_2(C_2O_4) \cdot 3 H_2O,$ $K_3UO_2F_5$		9	tricapped trigonal prism monocapped	$(NH_4)_3(ThF_7), LiUF_5,$ Th(tta) ₄ ·TOPO Li ₃ ThF ₇ ,
	8	hexagonal bipyramid	$Cs_2[AnO_2(MeCO_2)_3]$ (An = Np, Pu, Am), (UO ₂)(NO ₃) ₂ (H ₂ O) ₂		10	square antiprism bicapped square	Th(tfa) ₄ · 2 H ₂ O, [C(NH ₂) ₃] ₅ [Th(CO ₃) ₃ F ₃] U(C ₂ H ₃ O ₂) ₄ · 2 H ₂ O,
+ 5	6 7	octahedron pentagonal	$CsAnF_6$ (An = U, Np, Pu) PaCl ₅		11	antiprism	An(MeCO ₂) ₄ (An = Th, U), Na ₆ [Th(CO ₃) ₅] \cdot 2 H ₂ O
	0	bipyramid			11	structure	(An = Th, Pu)
	8	cube	(An = Pa, U, Np)		12	icosahedron	$(PPh_4)[Th(NO_3)_5(OPMe_3)_2],$ A n(BH_4) (A n = Nn_Pu)
	9	tricapped trigonal prism	$\begin{split} M_2(PaF_7)\\ (M = NH_4, K, Rb, Cs) \end{split}$		14	bicapped hexagonal	$[An(BH_4)_4]_n$ (An = Th, U)
+4	4	tetrahedron	U(OAr)4 · [N(SiMe ₃)2]3 · THF	+3	5	antiprism trigonal	[K(THF)2]2[U(NHAr)5].
	5	trigonal bipyramid	$U_2(NEt_2)_8 \cdot [Li(THF)_4] \cdot [U(OAr)_5]$		(bipyramid	THF
	6	octahedron	Na ₂ PuCl ₆ , cis-UCl ₄ ·2 Ph ₃ PO, trans-UBr ₄ ·2 Ph ₃ PO, UCl ₄ ·2 HMPA		8	dodecahedron bicapped trigonal prism	$[UCI_6]$ $UCI_3 \cdot 3 DMSO$ $AnBr_3$ (An = Pu, Am, Cm, Bk), AnL (An = Pa, U, Nn, Pu)
	7	trigonal prism pentagonal bipyramid monocapped	U4(dmed) ₃ UBr4, K ₃ UF7 IIICI(TMPO), ICI2		9	tricapped trigonal prism	NaPuF ₄ , AnCl ₃ (An = U, Np, Pu, Am, Cm), Am(sal) ₃ ·H ₂ O
		octahedron		+2	6	framework	Th_6Br_{12}
	8	dodecahedron	$\begin{split} &Np(HCOO)_4,\\ &Th(tta)_4, An(S_2CNEt_2)_4\\ &(An = Th, U, Np, Pu) \end{split}$	0	8	cube	U(bipy) ₄
		square antiprism	$K_7 Th_6 F_3$, An(acac) ₄ (An = Th, U)				

Note: acac is acetylacetonate, Hacac is acetylacetone, HMPA is hexamethylphosphoramide, dmed is N,N'-dimethylethylenediamine, TMPO is trimethylphosphine oxide, tta is thenoyltrifluoroacetonate, TOPO is tri-n-octylphosphine oxide, tfa is trifluoroacetylacetonate, sal is salicylate, bipy is bipyridyl.

covalent binding of the metal atom with the ligand in $U(COT)_2$ involves primarily the 6*d* orbitals of uranium, while the 5*f* orbitals are of secondary importance.

As mentioned above, actinides show various oxidation states in aqueous solutions. Stable oxidation states vary from + 3 for Ac to +6 for U and Np and then gradually decrease to +3 for Am and the following elements, except for No (+2). For Ac, Th, Pa, U, Md and Lr, the maximum oxidation states are stable; Np and Pu can occur in the oxidation state +7; Am can exist in the oxidation state +6; Cm, Bk, Cf, Es and Fm can occur in the oxidation state +4; the oxidation state +3 is possible for No. In aqueous solutions, virtually all actinides can exist in the unstable oxidation state +2.¹⁷ The hydrated An²⁺, An³⁺, An⁴⁺, AnO²⁺ and AnO²⁺ ions behave as Brönsted acids.³⁰

 $\operatorname{An}^{n+} + \operatorname{H}_2 O \longrightarrow \operatorname{An}(OH)^{(n-1)+} + H^+.$

The An⁴⁺ ions are typical of actinides from thorium to californium (however, U^{4+} is readily oxidised). As for Th, only Th⁴⁺ ions exist in solutions. The acidity decreases in the series Pa⁴⁺ $\gg U^{4+} > Pu^{4+} > Np^{4+} > Th^{4+}$.¹⁷ Individual ions occur only in very dilute solutions. These ions tend to form polynuclear species as the concentration increases

$$mAn^{4+} + nH_2O \implies An_m(OH)_n^{(4m-n)+} + nH^+$$

The acidity of the An^{n+} ions depends on their charge and radius. The An^{4+} and AnO_2^{2+} ions are much stronger acids than the An^{3+} and AnO_2^{+} ions, respectively.¹⁷ The redox behaviour of actinides is complicated by their high radioactivity, which, in particular, results in the formation of hydrogen peroxide in aqueous solutions.

The data on the complex formation of the actinide ions An^{3+} , An^{4+} , AnO_2^+ and AnO_2^{2+} (An = U, Np or Pu) with chlorides were surveyed in several comprehensive reviews.^{30–32} The results of recent studies of hydrated and chloride complexes of UO_2^{2+} , NpO²⁺, NpO²⁺, Pu³⁺, *etc.* by XAFS (X-ray absorption fine structure) spectroscopy were covered in Refs 33 and 34. In particular, using hydrated ions and fluoride complexes of U(IV) and Th(IV) as examples, it was demonstrated that the coordination number of these hydrated ions is 10 and the M – O distances for U(IV) and Th(IV) are in the ranges of 2.42 ± 0.01 and 2.45 ± 0.01 Å, respectively.³⁴ The results of physical and chemical studies of hydrated complexes of uranium were published in the literature.^{35, 36}

Mössbauer spectroscopy is very convenient to use for studying the oxidation states and the symmetry of the ligand environment. The Mössbauer effect is observed for ²³²Th, ²³¹Pa, ²³⁸U, ²⁴⁰Pu, ²⁴³Am and, particularly, ²³⁷Np generated upon the ²³⁷U β^{-} -decay. The maximum isomer shifts (up to -70 mm s^{-1}) are observed for Np(VII) compounds; for Np(III) compounds, these shifts decrease to $+30 \text{ mm s}^{-1}$ (see Ref. 37).

III. Actinide alkoxides and other oxygencontaining complexes and salts

Uranium alkoxides are similar to alkoxides of transuranium elements. Their chemistry has been surveyed in the recent review. ³⁷ Homoleptic alkoxides An(OR)_n are known for n = 3 (U and Pu), 4 (Th, U, Np and Pu), 5 (Pa and U) and 6 (U). A great quantity of such U and Th compounds are available, whereas only a few Pa and Pu complexes were prepared. Alkoxides of uranium in the the oxidation states +3, +4, +5 and +6 are known. Complexes characterised by mixed oxidation states, such as [U(OPh)₃(THF)]₂[UO₂(THF)₂]₂(μ -OPh)₄(μ ₃-O)₂, were also prepared.³⁸ Compounds of U(IV) are analogous to Th(IV) compounds.

Most actinide alkoxides are oligomeric {like $[U_3O(OBu^t)_{10}]$ }. However, derivatives of bulky alcohols and 2,6-disubstituted phenols are monomeric,¹⁷ for example, U(OCHBu^t₂)₄,³⁹ U(OEt)₅,³⁷ U(OMe)₆, U₂(OEt)₁₀, U(OAr)₄ and U(OAr)₃ (Ar = 2,6-Bu^tC₆H₃).^{37,40,41} The influence of electronic factors on the structure and stability of complexes of uranium tri-*tert*-butylmethoxide was examined. 42

Monomeric alkoxides can react with each other 43

$$U(OEt)_4 + U(OEt)_6 \xrightarrow{C_6H_{14}} U_2(OEt)_{10}$$
.

Anionic alkoxide complexes, such as $(Bu_4^tN)[U_2(OBu^t)_9]$ and $[Li(THF)_4][U(OAr)_5]$, were also obtained.⁴⁴ Treatment of $[U(COT)(BH_4)_2]$ with alcohols ROH (R = Et, Prⁱ or Bu^t) afforded the alkoxide derivatives $[U(COT)(BH_4)(OR)]$.⁴⁵

In a toluene solution of the Th(OCHPr₂)₄ complex, a monomer–dimer equilibrium occurs; however, only the dimeric form crystallises (with trigonal-bipyramidal geometry).⁴⁶

Actinide alkoxides are very readily hydrolysed 17

$$3 U_2(OBu^t)_8(HOBu^t) + 2 H_2O \xrightarrow{PhMe} 2 U_3O(OBu^t)_{10} + 7 HOBu^t.$$

The actinide ions have large radii and, consequently, high coordination numbers, which are often responsible for oligomerisation of homoleptic alkoxide complexes of f metals $^{37,47-49}$ giving rise to dinuclear (1), tetranuclear (2, 3) or higher oligomers.⁴⁷

Dimeric actinide complexes are exemplified by the $\{U[O(2,6-Pr_2^iC_6H_3)]_3\}_2$ complex (4), which contains the unusual π -arene bridge and is sterically hindered due to the presence of the isopropyl groups.^{47,49} This complex is stabilised through π -arene interactions both in the solid state and in solution.

 $Ar = 2,6-Pr_2^iC_6H_3; M = La, Nd, Sm, Er, U.$

Some actinide complexes can occur both in the monomeric and dimeric forms. Thus treatment of metallacycle **5** with isopropyl alcohol afforded the homoleptic $Th_2(OCHPr_2^i)_8$ complex.

In the solid state, the latter exists as dimer **6** (the coordination number of thorium is 5) consisting of two ThO₅ fragments (with trigonal-bipyramidal geometry), which are linked *via* a shared

axial-equatorial edge.⁴⁴ At room temperature, this complex in non-coordinating solvents exists as monomer $7.^{46, 47}$

$$\Gamma h_2(OCHPr_2^i)_8 \implies 2 Th(OCHPr_2^i)_4$$

6 7

The dimeric halide-alkoxide complex Th₂I₄(OPrⁱ)₄(HOPrⁱ)₂ was prepared by the reaction of metallic thorium with 2 equivalents of iodine in isopropyl alcohol.⁵⁰ This reaction provides an example of the direct synthesis from elemental metals. The $Th_2I_4(OPr^i)_4(HOPr^i)_2$ complex (the triclinic system, space group $P_{\bar{1}}$) has a bioctahedral structure (the octahedra are linked via a shared edge), the isopropyloxy anions occupying the bridging positions. This complex is isostructural to its uranium analogue U₂I₄(OPrⁱ)₄(HOPrⁱ)₂ (see Ref. 51) and is structurally similar ⁵⁰ to a number of alkoxide and halide-alkoxide compounds of lanthanides and early transition metals, such as M₂(OPrⁱ)₈(HOPrⁱ)₂ $(M = Zr \text{ or } Ce)^{52}$ and $Ti_2Cl_4(OR)_4(HOR)_2$ $(R = CH_2CH_2Cl)^{53}$ It was assumed that the [AnI(OPri)2(HOPri)4]I intermediates (An = U or Th) were initially formed, which then underwent dimerisation.50 Other alkoxide complexes of actinides, for example Th₂(OBu^t)₈(HOBu^t),⁵⁴ (TBA)U₂(OBu^t)₉ (TBA is tetrabutylammonium) and KU₂(OBu^t)9,⁵⁵ were also characterised. It was demonstrated that the K⁺ cations in the latter complex in solutions remain associated with the dimeric anions, the structures of the molecular unit in the crystalline state and solution being, apparently, identical.

Oxidation of the uranium(III) aryloxide complex $U(OAr)_3$ (8) (OAr is 2,6-di-*tert*-butylphenoxide) afforded various oxide and halide-oxide complexes of U(IV).⁵⁰

$$FU^{IV}(OAr)_{3} \stackrel{a}{\leftarrow} I_{2}U(OAr)_{2} \stackrel{b}{\leftarrow} U(OAr)_{3} \stackrel{e}{\leftarrow} BrU^{IV}(OAr)_{3}$$

$$CIU^{IV}(OAr)_{3} \stackrel{c}{\leftarrow} \mathbf{8} \stackrel{f}{\leftarrow} (ArO)_{3}USU(OAr)_{3} (\mathbf{10})$$

$$g \rightarrow IU^{IV}(OAr)_{3}$$

$$U(OAr)_{4} \stackrel{d}{\leftarrow} \mathbf{8} \stackrel{f}{\leftarrow} (ArO)_{3}UOU(OAr)_{3} (\mathbf{9})$$

(*a*) AgBF₄ or AgPF₆; (*b*) CI₄; (*c*) PCI₅; (*d*) O₂; (*e*) AgBr, CBr₄ or PBr₅; (*f*) COS or Ph₃P = S; (*h*) N₂O, NO, Me₃NO or pyridine *N*-oxide.

In the presence of an appropriate source of chalcogenide, oxidation gave rise to bridged binuclear uranium(IV) complexes 9 or 10.5^{0}

Alkoxide complexes of cyclooctatetraenyluranium(IV) were synthesised by the reactions of cyclooctatetraenyluranium precursors with alcohols. 56

The unusual monomeric complex U(OTeF₅)₆ can be considered as an analogue of metal alkoxides.⁵⁷ In spite of the large molecular weight, this complex sublimes at 333 K (1.3 Pa).⁵⁷

Actinide alkoxides are generally prepared from dialkylamides and alcohols.⁴⁴ The homoleptic $UX_4(MeCN)_n$ complex can serve as a precursor in the synthesis of mixed halide-alkoxide compounds of uranium. The coordination environment in the reaction product depends on the nature of the halogen. Thus the reaction of $UBr_4(MeCN)_4$ with 2 equivalents of KOAr in THF afforded the $Br_2U(OAr)_2(THF) \cdot 4THF$ complex, whereas UCl_4 produced the anionic [K(THF)_4][UCl_3(OAr)_2] complex. In solution, mixed halide-aryloxide complexes do not undergo ligand exchange. Light halides of uranium(IV) are reagents of choice in the metathesis because $UI_4(MeCN)_4$ is thermally unstable.⁵⁸ A series of aryloxides and alkoxides of (triamidoamine)uranium(IV) were described.⁵⁹

One of the approaches to the synthesis of methoxide derivatives of actinides of type **11** involves the reactions of $Cp_2^*MH_2(Cp^*$ is pentamethylcyclopentadienyl; M = U or Th) with trimethyl phosphite in pentane.⁶⁰

$$Cp_2^*ThH_2 \xrightarrow{P(OMe)_3} Cp_2^*Th(OMe)_2 + [Cp_2^*Th(OMe)_2](\mu-PH)$$
11

DOM

The corresponding thorium derivatives can also be prepared by alcoholysis of alkyl complexes, for example, of $Cp_2^*ThMe_2$, the reactions of $Cp_2^*ThCl_2$ with alkali metal hydroxides, the insertion of ketones at the Th–Alk bond (see the review ³⁷ and references cited therein)

$$Cp_2^*ThCl(Me) + Me_2CO \xrightarrow{PhMe} Cp_2^*ThCl(OCMe_3)$$

and hydrogenation of η^2 -acyl complexes ³⁷

$$Cp_2^*ThCl(\eta^2-OCCH_2Bu^t) \xrightarrow{H_2} Cp_2^*ThCl(\eta^2-OCH_2CH_2Bu^t).$$

...

Crystallisation of a Pu(IV) salt (0.15 mol litre⁻¹) from a solution of Na₂CO₃ (2.6 mol litre⁻¹) afforded single crystals of $[Na_6Pu(CO_3)_5]_2 \cdot Na_2CO_3 \cdot 33 H_2O$ (the space group is $P2_1/c$).⁶¹ In the solid state, the asymmetric unit contains a complex framework consisting of $[Pu(CO_3)_5]^{6-}$ anions and Na^+ cations linked through interactions between the CO_3^{2-} ligands and the H₂O molecules. The [Pu(CO₃)₅]⁶⁻ anion can be considered as a pseudohexagonal bipyramid with three carbonate ligands in the equatorial plane and two carbonate ligands in the axial positions. Its structural unit is very similar to that of the related [Th(CO₃)₅]⁶⁻ anion involved in the crystal structures of $Na_{6}[Th(CO_{3})_{5}] \cdot 12 H_{2}O$ and $[C(NH_{2})_{3}]_{6}[Th(CO_{3})_{5}] \cdot 4 H_{2}O$ (see Ref. 61 and references cited therein). Clark et al.⁶¹ believed that the well-known coordination polyhedron (hexagonal bipyramid) in the $[PuO_2(CO_3)_3]^{4-}$ complex (12)⁶²⁻⁶⁴ is analogous to that of the $[Pu(CO_3)_5]^{6-}$ anion (13).

The structure of yet another carbonate complex, *viz.*, $(Me_4N)_4[NpO_2(CO_3)_3] \cdot 8 H_2O$, consists of alternating anionic and cationic layers.⁶⁵ The water molecules of crystallisation are involved in the formation of the $\{[NpO_2(CO_3)_3] \cdot 8 H_2O\}_n^{4n}$ anionic layers. Analogous uranium and uranyl complex ions in carbonate,^{66,67} sulfate,⁶⁸ nitrate,⁶⁹ phosphate,⁷⁰ silicate ⁷⁰ and citrate complexes ⁷¹ as well as in other oxygen-containing compounds were also studied. In particular, the behaviour of carbonate complexes of uranium in $CO_2-HCO_3^-$ solutions of various ionic strengths (I = 0.5, 1.0, 2.0 or 3.0 mol litre⁻¹ of NaClO₄) at 25 °C was examined by UV/Vis spectrophotometry.⁶⁵ The authors believed that tetracarbonate complexes exist in an equilibrium with pentacarbonate complexes

$$[U(CO_3)_4]^{4-} + CO_3^{2-} \implies [U(CO_3)_5]^{6-}$$

Citric acid forms mixed Fe and U complexes analogous to the citrate complex of uranium. The mixed Fe-U citrate complex is stable to biodegradation.⁷¹

Among other oxygen-containing actinide compounds, uranium peroxo complexes with various ligands, *viz.*, with tri- and tetradentate Schiff's bases,⁷² amines or aminocarboxylic acids,⁷³ were described. The einsteinium(II) complexes with crown ethers $[Es(18-C-6)]L_2$ (L = ClO_4^- and BF_4^- , BPh_4^-) were prepared.⁷⁴ The behaviour of einsteinium(II) in THF was examined by co-crystallisation. It was found that the coefficients of co-crystallisation of Es(II) with solid $[Sr(18-C-6)]I_2$ in THF depend on the ClO_4^- and BF_4^- ions as additives and are independent of the presence of the BPh_4^- ions.

Very stable actinide complexes with β -diketones [for example, with An(acac)₄ or AnO₂(acac)₂] are used for isolation and separation of actinides by extraction. These complexes are prepared by the reactions of metal or actingl halides with the

complexes.			
Starting compound or metal	Reaction system	Products	Ref.
Synthesis from ele	mental metals		
U anode	Hbac, O ₂ or N ₂ (see ^a)	UO ₂ (bac) ₂ (Hbac) _{0.5} , UO ₂ (bac) ₂	84
	Hacac, O_2 or N_2 (see ^a)	U(acac)₄, UO₂(acac)₂ · Hacac	84
Synthesis from sal	ts		
UO ₂ (MeCO ₂) ₂	Hacac Hdbm HBTF in EtOH	UO ₂ (Hacac) ₂ UO ₂ (Hdbm) ₂ UO ₂ (HBTF) ₂	75–77, 85
ThCl ₄	NaOPr ⁱ , HOPr ⁱ	$Th(OPr^i)_4(HOPr^i)_x$	37, 38, 86
PaCl ₅	NaOEt, EtOH	Pa(OEt) ₅	37, 87
NpCl ₄	LiOR, ROH (R = Me, Et)	Np(OR) ₄	37, 88
Synthesis from ha	lide complexes		
UBr ₄ (MeCN) ₄	KOAr	Br ₂ U(OAr)(THF) · (THF)₄	89
ThBr ₄ (THF) ₄	2,6-Bu ^t ₂ C ₆ H ₃ OK (see ^b)	ThBr ₂ (OAr) ₂ (THF) ₂	44, 90
Py ₂ PuCl ₆	NH3, PhH, Pr ⁱ OH °	$Pu(OPr^i)_4,$ $Pu(OPr^i)_4(Py)$	91
Synthesis from β-	diketonates or alko	xides	
U(OCHBu ₂ ^t) ₄	MeLi	$\begin{array}{c} \text{Me} \\ \text{Bu}_{2}^{t}\text{HCO}_{\text{I}_{1}_{1}_{\text{I}_{1}_{1}_{1}_{1}_{1}_{1}}}}}}}}}}}}}}$	92
Th(acac) ₄	electrochemical reduction ^d	[Th(acac) ₄] ⁻	93
Synthesis from π -o	complexes		
(MeCp) ₃ U(THF)	alcohols or thiols	$(MeCp)_{3}UR$ $(R = OMe, OPr^{i}, OPh, SPr^{i})$	94, 95
Cp ₃ [*] UH	EtOH	Cp ₃ [*] UOEt	96
HU(C5H4But)3	EtOH	(C5H4But)3UOEt	96

 Table 2. Preparation of actinide alkoxides and related oxygen-containing complexes.

^a Direct electrochemical synthesis; ^b alkylation of the product afforded Th(OAr)₂(CH₂SiMe₃)₂; ^c recrystallisation from hot isopropyl alcohol gave rise to Pu(OPrⁱ)₄(HOPrⁱ); ^d the product lost acac⁷ to form Th(acac)₃; the known Th(III) complexes are few in number.

(C₅H₄SiMe₃)₃UOEt

96

HU(C5H4SiMe3)3 EtOH

corresponding diketone in the presence of a base. In the case of An(IV) actinides, only fluorine-containing diketonates form complexes with Lewis bases; diketonates of actinyls AnO₂ (An = Np or Pu) generally exhibit the Lewis acid properties and are stabilised through the formation of adducts. The fluorinated complex UO₂(hfa)₂ (hfa is hexafluoroacetylacetonate) exhibits pronounced acidic properties and its adducts with water and alcohols can be sublimed without decomposition.¹⁷

Uranyl acetylacetonate,^{75,76} other actinide β -diketonates,⁷⁷ and uranyl complexes with 2-hydroxy-1-naphthaldehyde (14),⁷⁸ and 2-hydroxybenzaldehyde,⁷⁹ were studied in detail by spectroscopic methods. These investigations made it possible to establish the structure of the complex 14 synthesised previously.⁸⁰

Based on the data on the electronegativities obtained earlier (see references cited in the study ⁷⁸), the U–O bond orders in the complexes 14, UO₂(acac)₂, UO₂(Hdbm)₂ and UO₂(HBTF)₂ (Hdbm is dibenzoylmethane, HBTF is 1,1,1-trifluoropentane-2,4-dione) were calculated. The results of the calculations indicated that the equatorially coordinated 2-hydroxy-1-naphthaldehyde ligand exerts a pronounced effect on the oxygen atoms of the UO_2^{2+} anion.⁷⁸

Based on the spectra of neptunium β -diketonates,⁷⁷ the Np(IV) complexes with acetylacetonate, dibenzoylmethane, benzoylacetone (Hbac), benzoyltrifluoroacetone (Hbtfa) and the noyltrifluoroacetone (Htta) can be divided into two groups according to the type of coordination polyhedron about the central atom. In Np(acac)₄, Np(dbm)₄ and Np(tta)₄, the coordination polyhedron is a tetragonal antiprism, whereas Np(bac)₄ and Np(btfa)₄ (dbm is dibenzoylmethanate, bac is benzoylacetonate and btfa is benzoyltrifluoroacetonate) have bitetrahedral structures. Apparently, when Np(IV) β -diketonates are dissolved in benzene, the bidentate ligands are oriented about the central atom so that the oxygen atoms form the tetragonal-pyramidal coordination.⁷⁷

It should be noted that uranium β -diketonates were also prepared by direct electrochemical synthesis using a dissolving anode. Thus electrochemical oxidation of uranium in the presence of β -diketones afforded chelate complexes of the UL₄ or UO₂L₂ type (L is diketonate).^{81–83} The reaction with benzoylacetone gave rise to a compound with composition UO₂(bac)₂(Hbac)_{0.5} along with the above-mentioned complexes.⁸² In our opinion, the structure **15**, which was assigned to this compound on the basis of the IR spectroscopic data, needs further investigation.

Selected methods for the synthesis of actinide alkoxides are listed in Table 2.

IV. Halide complexes of actinides

Light actinides (U, Np and Pu) react with iodine or bromine in donor solvents 97,98 to give complexes of trivalent actinides AnX₃L₄ (X = Br or I).

$$\mathbf{U} + 1.5 \,\mathbf{I}_2 + n \,\mathbf{L} \xrightarrow{\mathbf{0} \,\,^{\circ}\mathbf{C}} \quad \mathbf{U}\mathbf{I}_3\mathbf{L}_n \\ \mathbf{16a-c}$$

$$n = 2, L = DME(\mathbf{a}); n = 4, L = THF(\mathbf{b}), Py(\mathbf{c}).$$

This reaction is a convenient and highly efficient procedure for the preparation of halide complexes of actinides in quantitative yields, which does not require special equipment.

Complexes of uranium triiodide with Lewis bases are used as intermediates in the synthesis of other trivalent uranium compounds. For example, the $UI_3(THF)_4$ adduct (**16b**), which can be prepared in large amounts, is a soluble form of UI_3 convenient for subsequent use in synthesis.⁹⁸ Reactions involving solvate complexes of other uranium halides or alkoxides can be complicated, for example, by the formation of mixtures of products.

The mononuclear complex UI₃(THF)₄ (16b) crystallises in the space group $P2_1/c$. The coordination environment about the central U atom is a pentagonal prism. The complex 16b is stable up to 75 °C. At a higher temperature, the THF molecules are successively eliminated; at 162 °C, UI₃ is finally formed.

Other adducts of uranium halides UX₃ were also described.99-103

Actinide tetrahalides readily react with Lewis bases to give complexes containing two or four donor atoms. The compositions of some resulting products differ from usual AnCl₄·2L or AnCl₄·4L. For example, the AnCl₄·nL complexes, where n = 2.5, 5 [L is N,N-dimethylacetamide (DMA)] or 6 (L = DMSO or TMPO), were prepared. Complexes with composition $AnCl_4 \cdot 2 HMPA$ (An = Th or U) are extremely volatile.¹⁷ The coordination polyhedron typical of the AnCl₄ · 2 L complexes is a trans-octahedron.17

The cationic uranium(IV) complexes $UX_2L_4Y_2$ [X = Cl, Br or I; L is a bulky neutral O-donor ligand, such as tris(pyrrolidin-1yl)phosphine oxide; $Y = ClO_4$ or BPh₄] were described.¹⁰²

The reactions of UI₄ with a series of sulfoxide donor ligands in non-aqueous media were investigated. The behaviour of UI4 was compared with that of UCl₄ and UBr₄ in the presence of the same ligands. It was demonstrated that UI4 was readily oxidised with dimethyl or diisobutyl sulfoxide at ~ 20 °C. Only complexes with compositions UI₄(DMSO)₈ and UI₄(DIBSO)₆ (DIBSO is diisobutyl sulfoxide) appeared to be stable and were isolated.¹⁰⁴

All actinide halides tend to accept Hal- ions to form anionic complexes. The stability of the complexes decreases in the series $F \gg Cl > Br \gg I$. Adducts of actinide trihalides are ionised to a large extent. Thus uranium trichloride crystallises from dimethyl sulfoxide as the solvate UCl₃·3 DMSO. Its structure consists of the dodecahedral $[U(OSMe_2)_8]^+$ cations and the octahedral [UCl₆]⁻ anions. X-ray diffraction study demonstrated that americium chloride hexahydrate has an ionic structure built of the $[AmCl_2(H_2O)_6]^+$ cations and $[Cl(H_2O)_6]^-$ anions, which are linked via hydrogen bridges.17

Uranium and protactinium pentahalides generate complexes of the AnX₅·L type (X = Cl or Br; L = R_3PO or HMPA). Dissolution of UO₃ in thionyl chloride afforded the UCl₅ · SOCl₂ adduct, whereas dissolution of Pa(V) hydroxide gave rise to the ionic complex (SO)(PaCl₆)₂. Generally, actinide hexahalides do not react with Lewis bases (except for the $UCl_6 \cdot bipy$ complex), whereas actinyl halides readily form complexes with composition AnO₂X₂ · *n* L (n = 1, 1.5, 2, 3 or 4).¹⁷

Uranium fluorides UF5 and UF6 give complexes with 2-fluoropyridine (F-Py) or bipy.¹⁰⁵ Thus UF₆ in CH₂Cl₂ produced the $UF_4 \cdot (F-Py)$ and $U_2F_{12} \cdot bipy$ complexes, respectively. However, in the case of the UF_6 -bipy system, reduction of UF_6 was the predominating process and the formation of U_2F_{12} bipy {the authors believed that this complex has the structure $[UF_4(bipy)_2]^{2+}\cdot [UF_7]_2^-\cdot UF_6\}$ can be considered as the first stage of this reduction.

In the case of UF₅, two products were obtained and structurally characterised. These are the extremely moisture-sensitive UF_5 · bipy and the ionic derivative $[(bipy)_2H]^+[UF_6]^-$.

The AnX₃(THF)₄ complexes serve as synthetic precursors of a number of inorganic and organometallic complexes due, in particular, to their high solubility in toluene and THF. The use of UI₃(THF)₄ can also provide a convenient approach to the synthesis of many other compounds of trivalent uranium.97

Salts of organic ligands with alkali metals react with AnX₃(THF)₄ to give the corresponding aryloxides, amides, etc. This reaction can serve as a highly efficient procedure for the preparation both of the known and new complexes of trivalent actinides. Thus reduction of uranium tetrachloride with NaH or Na/Hg in THF afforded poorly soluble UCl₃(THF)_n.¹⁰⁶ This compound is sometimes used for the synthesis of other uranium complexes. However, this procedure is of limited application due to the formation of by-products. For example, the synthesis of U[N(SiMe₃)₂]₃ from UCl₃(THF)_n and NaN(SiMe₃)₂ often give rises 97 to a mixture of a U(III) complex and uranium(IV) derivative, the metallacycle viz.,

[(Me₃Si)₂N]₂U(CH₂SiMe₂NSiMe₃).¹⁰⁷

а

Selected procedures for the synthesis of halide complexes of actinides are listed in Table 3.

Table 3. Synthesis of halide complexes of actinides.

Starting compound or metal	Reaction system	Products	Ref.
Synthesis from ele	emental metals		
U	$\begin{aligned} X_2 (X = Cl, Br, I), \\ THF \end{aligned}$	UX ₃ (THF) ₄	97, 98
Th	$\begin{array}{l} X_{2}(X=Br,I),\\ THF \end{array}$	ThX4(THF)4	44
Th anode ^a	Br ₂ , MeCN	ThBr ₄ (MeCN) ₄	108
U	HgCl ₂ , THF	UCl ₄ (THF) ₃ (see ^b)	109
An (U, Np, Pu)	Br ₂ or I ₂ , THF	AnX ₃ (THF) ₄ (see ^c)	97
Synthesis from sa	lts or halide complex	es	
UI4	DMSO	UI4(DMSO)n	104
	DIBSO	(n = 6, 8) UI ₄ (DIBSO) _n (n = 6, 8)	104
UCl ₄	NaH	UCl ₃ ·nTHF	44
ThBr ₄ (THF) ₄	KNPh2, THF KNMePh, THF	Th(NPh₂)₄∙THF K[Th(NMePh)₅]	110
ThBr ₄ (THF) ₄	Cp*MgBr(THF)	Cp*ThBr ₃ (THF) ₃	111
UI ₃ (THF) ₄	KCp*, THF	Cp*UI ₂ (THF) ₃	20, 98
$AnI_{3}(THF)_{4}$ $(An = U,$ $Np, Pu)$	NaN(SiMe ₃) ₂ , THF	An[N(SiMe ₃) ₂] ₃	97, 112

^a Direct electrochemical synthesis; ^b a large amount of a uranium amalgam was obtained as a by-product; c air-sensitive.

V. Actinide π -complexes with allyl, cyclopolyene, arene and related ligands

Considerable recent attention has been given to actinide complexes with allyl, cyclopolyene and arene ligands, particularly, with cyclopentadiene and its derivatives (see review ²⁰).

Allyl complexes can be synthesised from AnCl₄ and the Grignard reagent 44

AnCl₄ + AllMgCl $\xrightarrow{Et_2O}$ An(η^3 -All)₄.

According to the data of low-temperature NMR spectroscopy,²⁰ the allyl groups in these complexes are η^3 -coordinated and can be replaced under the action of HX or alcohols to produce, for example, U(C₃H₅)₃X or [U(C₃H₅)₃(OR)]₂.⁴⁴ Thus the dimeric tert-butyloxyallyl complex [U(C₃H₅)₃(OR)]₂ (17) was synthesised.20

Bu 17

Of actinide π -complexes, the uranium(III, IV) and thorium(III, IV) complexes with cyclopentadiene and its derivatives were obtained in the widest range.

Uranium(V, VI) complexes ²⁰ and neptunium(VI) and californium(III) sandwich complexes were also prepared.⁴⁴ These complexes can be compositionally divided into the following groups: $Cp_nAn (n = 3 \text{ or } 4)$, $Cp_nAnX (n = 2 \text{ or } 3)$, $Cp_2AnX_n (n = 1 \text{ or } 2)$ and $CpAnX_n (n = 2 \text{ or } 3)$, X being generally Hal. The corresponding cyclopentadienyl alkyls, carbonyls, alkoxides, *etc.* are also known.²⁰ All Cp_4An complexes are poorly soluble in organic solvents. The U – C distances in the Cp_4U complex are 2.81(2) Å. The bonds between the An atom and the ligand are covalent in character.^{20,44}

The Cp_3An complexes are strong Lewis acids and form complexes with various Lewis bases (see Ref. 24 and references cited therein).

The Cp₃UCl complex, which was the first synthesised organoactinide compound,^{21,44} serves as a precursor of compounds containing the non-bridging metal-metal bond between, for example, uranium and iron or ruthenium [Cp₃U-MCp(CO)₂, M = Fe or Ru] or between uranium and germanium (Cp₃UGePh₃).^{20,113} The first organouranium(III) complexes,^{24,114,115} viz., tris[(cyclopentadienyl)uranium] and some its derivatives of the Cp₃UL type, are also used for the synthesis of bimetallic compounds.²⁴

(a) $1,4-(N_3)_2C_6H_4$; (b) $1,3-(N_3)_2C_6H_4$ (c) PhNCO; (d) CS_2 ; (e) TePBu₃; (f) COS or Ph₃P = S; (g) Ph₃P = Se; (h) Cp₃U = NR; R = Ph, SiMe₃.

Voltammetric studies¹¹⁶ demonstrated that oxidation of $(RC_5H_4)_3UCl \ (R = H, Me, Bu^t or Me_3Si)$ was accompanied by disproportionation. NMR studies revealed electron transfer and ligand exchange in Cp₃UX (X = Hal, BH₄ or Alk).^{24,117}

 $\begin{array}{l} Cp_{3}UX \stackrel{e^{-}}{\longrightarrow} Cp_{3}UX^{-},\\ Cp_{3}UX + Cp_{3}U^{*}(THF) \stackrel{\longrightarrow}{\longrightarrow} Cp_{3}U^{*}(THF) + Cp_{3}U^{*}X,\\ Cp_{3}UX^{-} + Cp_{3}U^{*}(THF) \stackrel{\longrightarrow}{\longrightarrow} Cp_{3}U^{*}(THF) + Cp_{3}U^{*}X^{-}. \end{array}$

The equilibrium constants of the ligand exchange in complexes with substituted cyclopentadienyl ligands were determined.^{24, 118} It was found that binding of ligands with (MeCp)₃U is reduced in the series of the ligands PMe₃ > P(OMe)₃ > Py > tetrahydrothiophene > THF > quinuclidine > CO, whereas binding of (Me₃SiC₅H₄)₃U with the EtNC ligand is stronger than with the EtCN ligand, which is indicative of substantial π -back bonding with uranium in the case of π -acceptor ligands.²⁴ The results of calculations of the electronic structure of the model Cp₃U(CO) complex showed substantial back bonding between the 5*f* orbitals of U and the 2π orbitals of CO, which leads to stabilisation of the 5*f* atomic orbitals of uranium.^{20, 119} Some uranium complexes containing carbonyl ligands were described in the study.¹²⁰ The relativistic effective core potentials of tris(cyclopentadienyl) actinide complexes were calculated by the *ab initio* quantum-chemical method. These complexes were examined also by gas-phase UV photoelectron spectroscopy.^{121, 122}

The Cp₃AnR¹ complexes tend to incorporate the CO, CO₂ and CNR² ligands to form η^2 -acyl (18), η^2 -carboxylate (19) and η^2 -iminoalkyl (20) complexes, respectively.²⁰

The Cp₃UX compounds containing the U–P, U–N, U–Si, U-Sn or U-Ge bonds were prepared from Cp₃UCl by the replacement of the chloride ligand.²⁴ In the crystal structures of Cp₃U(OPh) and Cp₃U(OSiPh₃), which were established by X-ray diffraction analysis, the U–O distances are shortened [2.119(7)]and 2.135(8) Å, respectively] and the U-O-C and U-O-Si angles are 159.4(5)° and 172.6(6)°, respectively. These geometric parameters are indicative of strong π -bonding between the U and O atoms in oxygen-containing uranium complexes.²⁴ The bimetallic oxygen-bridged complex, viz., µ-O-bis[tris(cyclopentadienyl)uranium(IV)] was investigated.¹²³ The absolute enthalpies of the cleavage of the uranium-ligand bonds in complexes containing the U-S bonds of the L_3U -SR type (L = $C_5H_4Bu^n$, $C_5H_4SiMe_3$ or $C_9H_6SiMe_3$; R = Et or Bu) were determined.¹²⁴ The heteroatomic compound $UCp_2(\mu-Cl)_2Li[(Me_2NCH_2CH_2)_2]$. .NMe] containing two chloride bridges provides yet another example of bimetallic complexes.125

The electronic structure and configuration of the ground state monomeric of the alkvl uranium(III) complex η^{5} -Cp^{*}₂UCH(SiMe₃)₂ were studied.¹²⁶ The ground state of the molecule is $4A''[(a')^1(a'')^1(a'')^1]$, which corresponds to the $5f^3$ configuration of the uranium atom; its energy is close to that of the higher-lying $4A''(5f^{2}6d^{1})$ state. The uranium(III) ions free of ligands can adopt two different electronic configurations, viz, $5f^3$ and $5f^2d^1$ (see Ref. 126 and references cited therein). The ground state of the U^{3+} ions in the gaseous phase has the $5f^3$ configuration. According to the results of an EPR study of the $Th[\eta^5-C_5H_3(SiMe_3)_2]_3$ complex in the gaseous state, Th(III) in the ground state adopts the $6d^1$ configuration, whereas the free ion has the $5f^1$ configuration.¹²⁷

The insertion of CO or CO₂ into the An–R bond in the Cp₂^{*}AnR₂ complexes gave rise to complexes **21**–**23** or carbene-like η^2 -acyl complexes Cp₂^{*}An(COR)₂ (**24**, R = Alk).^{20, 128–130}

The dynamic behaviour of $CpUCl_3L_2$ in solutions was examined.^{24, 131} In toluene, rapid isomerisation and the ligand exchange were observed.²⁴

The tribromide complex Cp*ThBr₃(THF)₃ (see Ref. 111 and Table 3) is a convenient compound for studying the chemistry of mono(pentamethylcyclopentadienyl) derivatives of thorium. Treatment of this complex with bases or Grignard reagents afforded aryloxide or alkyl derivatives.¹¹¹

$$Cp*ThBr_{3}(THF)_{3} + KOAr \xrightarrow{THF} Cp*ThBr_{2}(OAr)(THF) + KBr,$$

$$Cp*ThBr_{3}(THF)_{3} + 2KOAr \xrightarrow{THF} Cp*ThBr_{2}(OAr)_{2} + 2KBr,$$

 $Cp*ThBr_2(OAr)_2 + MeMgBr \longrightarrow Cp*MeTh(OAr)_2 + MgBr_2.$

In 1971, the first indenyl derivative of actinides was prepared upon treatment of uranium tetrachloride with indenyl anions.¹³² The indenyl uranium(III) complex $U(C_9H_7)_3$ was synthesised from UCl₃ and indenylsodium.¹³³ Indenyl actinide(IV) complexes **25** were prepared from the corresponding halides and indenylpotassium.²⁰

An = Th, U, Np; X = Hal.

Uranium complexes 26-28 containing phosphacyclopentadienyl ligands were described.^{24, 134}

 $Nu = THF, OPPh_3.$

The structure of the first cycloheptatrienyl sandwich complex [K(18-C-6)][U(η -C₇H₇)₂] was established.¹³⁵ The authors believed that the cycloheptatrienyl ligand can be formally considered as C₇H₇³⁻ and the uranium atom occurs in the oxidation state + 5.^{135,136} It was demonstrated that the C₇H₇ ligands in this compound are planar and are located parallel to each other and perpendicular to the axis passing through the uranium atom and the centres of the rings.¹³⁵

Generally, cyclooctatetraene complexes of actinides have the composition $(COT)_2An$ or $(COT)AnX_2$ (X = Hal). Compounds of the mixed type (COT)AnCp can also be obtained. Some of these complexes contain solvent molecules, for example, THF.²⁰ Compounds of this type can be prepared, for example, according to the following procedures:

$$\begin{aligned} &\text{AnCl}_4 + 2 \, \text{K}_2(\text{COT}) \longrightarrow \text{An}(\text{COT})_2 + 4 \, \text{KCl} \,, \\ &\text{An} = \text{Th}, \text{Pa}, \text{U}, \text{Np}; \\ & (\text{PyH})_2 \text{PuCl}_6 + 2 \, \text{K}_2(\text{COT}) \longrightarrow \text{Pu}(\text{COT})_2 + 4 \, \text{KCl} + 2 \, \text{PyHCl} \,, \\ & \text{ThCl}_4 + \text{Th}(\text{COT})_2 \longrightarrow 2 \, (\text{COT}) \text{ThCl}_2(\text{THF})_2 \,, \end{aligned}$$

 $UCl_4 + COT + 2 NaH \longrightarrow (COT)UCl_2(THF)_2 + 2 NaCl + H_2.$

Cyclooctatetraene complexes of uranium, thorium, protactinium, neptunium and plutonium $[(\eta$ -COT)An(μ -SPr)₂]₂ with

Table 4. Selected actinide complexes with allyl, cyclopolyene, arene, alkyl and carbonyl ligands.

	-						
Starting compound	Reagent	Reaction product	Ref.	Starting compound	Reagent	Reaction product	Ref.
Allyl complexes				Cyclopentadienyl com	plexes		
AnCl ₄	C ₃ H ₅ MgCl, Et ₂ O	$An(C_3H_5)_4$	20, 44	(MeCp) ₃ U(THF)	Me ₃ SiN ₃ or PhN ₃	$(MeCp)_3U = NR$ $(R = Me_3Si, Ph)$	20
$U(C_{3}H_{5})_{4}$	HOR, Et ₂ O	$[U(C_3H_5)_2(OR)_2]_2$	20	L ₃ UH,	I_2	L ₃ UI	96
Cyclopentadienyl com	plexes			$(\mathbf{L} = \mathbf{C}\mathbf{p}^*, \mathbf{C}_5\mathbf{H}_4\mathbf{B}\mathbf{u}^t,$,		
Cp ₃ AnCl	NaC ₁₀ H ₈ , THF or Na/Hg, THF	Cp ₃ An(THF)	24, 140	$C_5H_4SiMe_3)$ Cp_3AnCl (Ar = Th U Mr)	RMgX in THF	Cp ₃ AnR	20
MX_4 $(M = Th, U, Np;$ $X = Cl, Br, I)$	M'Cp, DME (M' = Na, K, Tl)	Cp ₃ AnX	20, 44, 141	$(An = Tn, U, Np)$ Cp_4U, Cp_3UBu^n $or Cp_3UBu^i$	Bu ⁿ Cl, Bu ^t Cl, BnCl	Cp3UBu ⁿ , Cp3UCH2CMe2Cl, Cp3UBn, Cp3UCl	147
$(MeC_5H_4)_3 \cup Bu^4$	C_2H_4 or CO in PhMe	$(MeC_5H_4)_3U(Bu^2)L$ $(L = C_2H_4, CO)$	142			or CpUBn ₃	
Cp ₃ UCl	$LiL (L = PPh_2,$ NFt ₂ SiPh ₂)	Cp ₃ UL	143 – 145	$Cp_2^*ThX_2$ (X = Cl, Br)	CpRu(CO) ₂ Na	$Cp_2^*(X)Th \cdot Ru(Cp)(CO)_2$	24
Cp ₃ UX	$2,6-Me_2C_6H_3NC$	Cp_3U	20,	Cp ₂ *AnCl ₂	LiR, Et ₂ O	$Cp_2^*AnR_2$ $(R = Alk)$	20
$(X = NEt_2, PPh_2, SiPh_3)$		$[\eta^2 - C(X) = N^2$ $C_6 H_3 Me_2 - 2,6]$	145, 146	$(Me_3Si)_2C_5H_3UX_2$	Na/Hg, THF	$(Me_3Si)_2C_5H_3$ · UX(THF)	20
Cp ₃ U(NEt ₂)	HSnPh ₃	Cp ₃ U(SnPh ₃)	24	BbCl	CnaBe	[CnoBkCl]	20
$Cp_3U = C(H)PPh_2Me$	$HC \equiv CPh$	$Cp_3UC \equiv CPh$	24	DKC13	Cp ₂ bc		20

Å

Table 4 (continued).

Starting compound	Reagent	Reaction product	Ref.	Starting compound	Reagent	Reaction product	Ref.
Arene complexes				Cyclooctatetraene cor	nplexes		
UCl ₄	C ₆ Me ₆ , AlCl ₃ , Al	$\begin{array}{l} [U_{3}(\mu_{3}\text{-}Cl)_{2}(\mu_{2}\text{-}Cl)_{3} \\ (\mu_{1},\eta^{2}\text{-}AlCl_{4})_{3} \\ (\eta^{6}\text{-}C_{6}Me_{6})_{3}](AlCl_{4}) \end{array}$	24	$\begin{array}{l} AnX_{3} \\ (An = U, Np, \\ Pu, Am) \end{array}$	K ₂ (COT), solvent (solv)	[K(solv)][An(COT)2]	152, 153
	Al, AlCl ₃ , PhH	(PhH)U(AlCl ₄) ₃	98	AnCl ₄	COT, NaH	(COT)AnCl ₂ (THF) ₂	24
	Zn, AlCl ₃ , C ₆ Me ₆	$[(C_6Me_6)_2U_2Cl_7]^+$ ·	98	(An = U, Th)			
		[AlCl4] ⁻		$U(BH_4)_4$	COT	$(COT)U(BH_4)_2$	24
Alkyl complexes				(PyH) ₂ PuCl ₆	K ₂ (COT), THF	Pu(COT) ₂	20
UCl ₄	LiR, L $(L = THF, Et_2O)$	$Li_2UR_6L_8$	20	(COT)ThCl ₂ (THF) ₂	Cp*MgCl(THF), PhMe	(COT)ThCp*Cl(THF)	154
ThCl ₄	LiMe, TMEDA, Et ₂ O	[Li(TMEDA)] ₃ · ThMe ₇ ·TMEDA ^a	148	UI ₃ (THF) ₄	1) KCp*, THF 2) K ₂ (COT)	Cp*U(COT)(THF)	155
Cycloheptatriene com	plexes			Carbonyl complexes			
UCl ₄	C7H8, THF	$[U(\eta - C_7 H_7)_2]^-$	96	U (vapour)	CO, Ar (4 K)	$U(CO)_x$	156
UX_4	$K(C_7H_9)$	$K[X_3U \cdot$	149	$[(Me_3Si)_2C_5H_3]U$	СО	[(Me ₃ Si) ₂ C ₅ H ₃]U(CO)	20
$(X = NEt_2, BH_4)$		$(\mu - \eta^7 : \eta^7 - C_7 H_7) UX_5]$		Cp ₃ MR	СО	Cp ₃ M(CO)R	44,
Cyclooctatetraene con	Cyclooctatetraene complexes			(M = U, Th, Np)			157
UCl ₄	K ₂ (COT)	U(COT) ₂	150, 151				

^a In this complex, six of seven CH_3 groups are involved in coordination to the Li(TMEDA)⁺ cations, two groups being coordinated to each of the cations; TMEDA is tetramethylenediamine.

mixed ligands were prepared by treatment of An(COT)(BH₄) with thiol.¹³⁷ Mono(cyclooctatetraene) amide uranium complexes $K[U(COT)(NEt_2)_2]$ and $U(COT)(NEt_2)_2(THF)$ were synthesised from tetrakis(diethylamine)uranium and bis(cyclooctatetraene)uranium, respectively. Oxidation of these complexes afforded a series of uranium(V) derivatives.¹³⁸

As can be seen from Table 4, actinide π -complexes containing the cyclopolyene or arene ligands (see also Ref. 139) are more abundant than actinide complexes with other ligands.

VI. Hydride and hydroborate complexes of actinides

The first organoactinide hydrides were prepared by hydrogenation of $Cp_2^*AnR_2$.²⁰

 $Cp_2^*AnR_2 + H_2 \longrightarrow Cp_2^*AnH_2 + 2RH$

Both monomeric and oligomeric hydride complexes of actinides are available. Generally, these complexes contain OAlk, 1,2bis(dimethylphosphino)ethane (dmpe) or cyclopentadienyl as additional ligands. Thus uranium and thorium tetrahydroborates are polymeric compounds, whereas neptunium and plutonium tetrahydroborates are monomeric. Methyltrihydroborate derivatives An(MeBH₃)₄ always occur as monomers.

 $AnF_4 + 2 Al(BH_4)_3 \xrightarrow{0 \ ^\circ C} An(BH_4)_4 + 2 AlF_2(BH_4)$

The volatility of the complexes increases and their stability decreases on going from thorium to plutonium.¹⁷

Thorium, neptunium, plutonium and protactinium hydroborates and uranium tris(tetrahydroborate) possess similar properties. However, Th, Np, Pu and Pa hydroborates have a number of characteristic structural features.⁴⁴ The UH(BH₄)₃(DME) complex contains the U–H bond. The U(BH₄)₃[Ph₂P(Py)]₂ complex was also described in the cited study.⁴⁴

Trimeric thorium complex **29** provides a rare example of hydride complexes of early actinides, which are stabilised only by the aryloxide ligands.⁹⁰

 $Ar = C_6 H_3 B u_2^t - 2,6$

The complex **29** exhibits moderate catalytic activity in hydrogenation of hex-1-ene.¹⁵⁸ Alkoxide tetrahydroborate complexes of uranium(IV) were also described.¹⁵⁹

Organoactinide hydrides are formed from the Ar_nAnR complexes through metathesis of σ -bonds.²⁰

$$\operatorname{Ar}_{n}\operatorname{AnR} + \operatorname{H}_{2} \longrightarrow \left| \begin{array}{c} \overset{\delta^{-}}{\operatorname{H}} & \overset{\delta^{+}}{\operatorname{H}} \\ & \overset{}{\operatorname{H}} & \overset{}{\operatorname{H}} \\ & \overset{}{\operatorname{Ar}_{n}\operatorname{An}} & \overset{}{\operatorname{Ar}_{n}} \\ & \overset{}{\operatorname{Ar}_{n}\operatorname{An}} \\ & \overset{}{\operatorname{Ar}_{n}} \\ & \overset{}{\operatorname{An}} \\ & \overset{}{\operatorname{An}} \\ \end{array} \right| \xrightarrow{\delta^{-}} \operatorname{Ar}_{n}\operatorname{AnH} + \operatorname{RH}$$

The structure of complex **30** was established.²⁰ The geometric parameters [the H–Th–Th and Th–H–Th angles are $58(1)^{\circ}$ and $122(4)^{\circ}$, respectively; the distance between the thorium atoms is 4.007(8) Å] indicate that the metal–metal interaction in this complex is weak.

The unusual electron-deficient cyclopentadienyl complexes $(C_5H_4PPh_2)_2U(BH_4)_2$ and $(C_5H_4BH_3)_2U(BH_4)_2$ were described.¹⁶⁰

Other cyclopentadienyl and related hydroborate complexes, for example, $[Na(THF)_6][Cp*U(BH_4)_3]_2$,¹⁶¹ were also synthesised.^{161, 162}

Selected examples of hydride and hydroborate complexes of actinides are listed in Table 5.

Table 5. Selected hydride and hydroborate complexes of actinides.

Starting compound	Reagent	Reaction product	Ref.
UH3 U(BH4)4	B ₂ H ₆ , THF thermal decom- position in solution	$U(BH_4)_3(THF)_3$ $U(BH_4)_3$	44 44
	THF	U(BH ₄) ₄ (THF) ₂	44
	Et ₂ O	$[U(BH_4)_4(Et_2O)]_\infty$	44
ThX_4 (X = Cl, Br)	$Li_2C_2B_9H_{11}$	$\begin{array}{l} [Li(THF)_{4}]_{2} \cdot \\ Th(\eta^{5} \! - \! C_{2}B_{9}H_{11})_{2}X_{2} \end{array}$	163
ThBr ₄ (THF) ₄	CpMgBr(THF)	CpThBr ₃ (THF) ₃	164
Th(OAr) ₂ · (CH ₂ SiMe ₃) ₂	H ₂	$\begin{array}{l} Th_{3}(\mu_{3}\text{-}H)_{2}(\mu_{2}\text{-}H)_{4} \cdot \\ (OAr)_{6} \end{array}$	90
UBr ₄ (MeCN) ₂	Li ₂ C ₂ B ₉ H ₁₁ , MeCN	$\begin{array}{l} Li_{2}[U^{IV}(\eta^{5}\text{-}C_{2}B_{9}H_{11})_{2}\cdot\\ Br_{2}]\end{array}$	165
UI ₃ (THF) ₄	$\begin{array}{l} Li_2C_2B_9H_{11},\\ TMEDA \end{array}$	$\begin{split} & [\text{Li}(\text{TMEDA})] \cdot \\ & [\text{U}(\text{C}_2\text{B}_9\text{H}_{11})\text{I}_2(\text{THF})_2] \end{split}$	165
$Cp_2^*UH_2$	dmpe	$Cp_2^*U(H)Cl$	20
$(Me_3XC_5H_4)_3UCl (X = C, Si)$	KHBEt ₃	$(Me_3XC_5H_4)_3UH$	166
Cp_3^*UH	Ph ₃ PBH ₃	$Cp_3^*UBH_4$	96
(C5H4But)3UH	Ph ₃ PBH ₃	$(C_5H_4Bu^t)_3UBH_4$	96
(C5H4SiMe3)3UH	Ph ₃ PBH ₃	$(C_5H_4SiMe_3)_3UBH_4$	96
$\begin{split} & [U(\eta\text{-}C_5Me_5)_2 \cdot \\ & Cl(THF)] \text{ or } \\ & [U(\eta\text{-}C_5H_4R)_3Cl] \\ & (R = H, Bu, \\ & SiMe_3) \end{split}$	[K(THF) ₂]∙ [ReH ₆ (PPh ₃) ₂]]	$\begin{array}{l} K[Cl(\eta - C_5 Me_5)_2 UH_6 \cdot \\ Re(PPh_3)_2] \ or \\ [U(\eta - C_5 H_4 R)_3 UH_6 \cdot \\ Re(PPh_3)_2] \end{array}$	167
Cp_2MR_2 (M = U, Th)	H ₂	$Cp_2M(H)(\mu-H)_2 \cdot M(H)Cp_2$	44
$[(\eta^{5}-C_{2}B_{9}H_{11})_{2} \cdot U^{IV}Br_{2}] \cdot 2[Li(THF)_{4}]$	electrochemical reduction and reduction with Na/Hg	$[(\eta^{5}-C_{2}B_{9}H_{11})_{2}U^{III}Br \cdot (THF)] \cdot 2[Li(THF)_{x}]$ (x = 2-4)	168

VII. Actinide complexes with macrocyclic ligands

Data on several actinide complexes with crown ethers and other macrocyclic ligands were published in the literature. Thus treatment of uranium and thorium tetrakis(diethylamides) [An(NEt₂)₄] with free porphyrin (TPP) afforded the diporphyrin non-planar sandwich complexes An(TPP)₂.¹⁷ Ultrafast electronic deactivation and the vibrational dynamics for the excited states of the uranium(IV) porphyrin sandwich complexes were examined.¹⁶⁹

General procedures for the preparation of actinide complexes with macrocyclic Schiff's bases involve direct binding of the metal ion with the corresponding ligand and cyclisation in the presence of the metal ion. Thus phthalodinitrile reacted with anhydrous uranyl dichloride in DMF to give a 'superphthalocyanine' uranyl complex. Condensation of ethylenediamine with 2,6-dicarbonylpyridine in the presence of $UO_2^{2^+}$ gave rise to a hexaazamacrocyclic complex.¹⁷ When irradiated with neutrons, the phthalocyanine complex ThPc₂ (Pc is phthalocyanine) entered into the nuclear reaction to give the corresponding protactinium(IV) complex.¹⁷

232 ThPc₂(n, γ) 233 ThPc₂ \longrightarrow 233 PaPc₂

The phthalocyanine complexes $AnPc_2$ were described in detail in a number of publications.^{170–173}

Complexes with other polydentate ligands, for example, with chelating agents, can be used for efficient binding of actinide ions. These complexes are soluble both in water and organic solvents.¹⁷ The higher the dentation of the ligand the more stable the complex. In the An⁴⁺ (EDTA) complexes (EDTA is ethylenedia-minetetraacetic acid), the ligand is hexadentate and adopts a twist conformation.¹⁷ Binding of plutonium and other radionuclides can be carried out with the use of cyclic and linear catechol-amines.¹⁷⁴

Actinide complexes with crown ethers are generally prepared from actinide salts. Complexes only with tri- and tetravalent actinide ions are known {for example, $[UCl_3(18-C-6)]_2$ · $[UO_2Cl_3(OH)H_2O]$ }. The hydrogen bonds between the oxygen atoms of the ether and the water molecules of coordination were found in the UO_2^{2+} complexes.¹⁷ The IR spectra and the isotope effects for uranium complexes with crown ethers and the crystal structures of some of these compounds were published in the literature.¹⁷⁵

Actinide complexes with crown ethers can be prepared also from organometallic compounds. Thus Cp_3UCl reacted with 18-C-6 in the presence of a sodium amalgam in THF to yield (Cp_3UCl)[Na(18-C-6)] (see Ref. 24 and references cited therein).

VIII. Actinide complexes with nitrogen-containing ligands

Most of N-donor bases possess low affinity for actinides and act predominantly as proton acceptors. The An–N bonds with mono- and even bidentate N-donor ligands are rather weak.¹⁷ The complex $UO_2(hfa)_2$ exhibiting high acidity forms a 1:1 complex only with ammonia. Like actinide alkoxides, actinide amides occur generally in the associated form. For example, these compounds react with chelating *N*,*N*'-dimethylethylenediamine to give the linear trimeric [U(dmed)₂]₃ complex and the square tetrameric [U(dmed)₂]₄ complex.^{17, 176} Dialkylamide and related complexes, such as U[N(SiMe₃)₂]₃, [U(NEt₂)₃]BF₄, U(NPh₂)₄, UO₂[N(SiMe₃)₂]₂ · (OPPh₃)₂ and UO₂CrO₄ · 2 MeCONEt₂, were described in the literature.^{97, 177–182}

The structure of the U[N(SiMe₃)₂{N(SiMe₃)[SiMe₂-CH₂B(C₆F₅)₃]}] complex was established by X-ray and neutron diffraction analysis. It was demonstrated that the electron deficiency on the uranium atom is effectively compensated by the formation of multicentre bonds between the U atom and the SiCH₂ groups of the amine ligands. The X-ray diffraction data are unambiguously indicative of μ^3 -coordination of the BH₄ groups.¹⁸³ The structure of the unusual uranium(III) complex with a tripodal aromatic amine, *viz.*, tris[(2,2'-bipyridin-6yl)]amine, was established by X-ray diffraction analysis.¹⁸⁴

Protolysis of the U-N bond in amide complexes of uranium affords cationic complexes. This procedure was used for the of compounds containing the synthesis cations $[U(\eta-Cp)_3(THF)]^+$, $[U(\eta-Cp^*)(NEt_2)_2(THF)_2]^+$, $[(U-\eta-C_5R_5)_2$. $(NEt_2)(THF)]^+$, $[U(\eta-C_5R_5)(\eta-COT)(THF)_2]^+$ (R = H, Me),¹⁸⁵ $[U(NEt_2)_3]^+$, $[U(NEt_2)_2(THF)_3]^{2+}$, *etc.*¹⁷⁷ The resulting Th and U complexes with the silvlated N(CH₂CH₂NSiMe₃)₃ ligand contain bonds between the metal atoms and the chlorine, carbon, hydrogen or oxygen atoms.¹⁸⁶ Chloro, pentamethylcyclopentadienyl and tetrahydroborate complexes of uranium containing the N(CH₂CH₂NSiMe₃)₃ ligand were characterised by the X-ray diffraction method.¹⁸⁶ The reactions of actinide amides were surveyed in a recent review.187

Only several imide complexes of actinides are known: $Me_3SiN = U^V[N(SiMe_3)_2]_3$, $Me_3SiN = U^{VI}F[N(SiMe_3)_2]_3$, Cp_2 . $U(NC_6H_2Bu_3^t-2,4,6)$ and $U[N(CHMeCH = PPh_2Me)]Cp_3$.^{188,189} In complexes of the $(C_5H_4Me)_3U = NR$ type (R = Ph or SiMe_3), both lone electron pairs of nitrogen are involved in binding with uranium.^{24,190} Of the simplest nitrogen-containing ligands, the azide anion gives very stable complexes with uranium $(K_{diss} = 5 \times 10^{-3})$. The stabilities of the latter complexes are comparable with those of fluoride complexes.¹⁷ The binuclear (U - Mo) heterocomplexes with N₂ were prepared.¹⁹¹ IR spectroscopic and quasirelativistic theoretical studies of the coordination and activation of N₂ with the uranium and thorium atoms were carried out virtually at the same time.¹⁹²

The mononuclear UCp₂^{*}(NHR)₂ complexes (R = 2,6-Me₂C₆H₃, Et or Bu) were synthesised, their structures were established and these complexes were demonstrated to catalyse hydroamination of terminal alkynes with ammonia.¹⁹³ The data on complex formation of uranium(VI) with neutral N-donors in DMSO were reported.¹⁹⁴

An analogue of the uranyl ion was found in the crystal structure of the red complex $PPh_4^+ \{UOCl_4[NP(C_6H_4Me-3)_3]\}^-$ (31).¹⁹⁵ The air-stable complex 31 was prepared from compound 32 by the replacement of the chloride ligand in the $[UOCl_5]^-$ anion accompanied by elimination of Me₃SiCl.

$$\begin{array}{rcl} PPh_{4}^{+}[UOCl_{5}]^{-} &+ &Me_{3}Si[NP(C_{6}H_{4}Me-3)_{3}] & \underbrace{CH_{2}Cl_{2}}_{-Me_{3}SiCl} \\ & & 32 \\ & \longrightarrow &PPh_{4}^{+}\{UOCl_{4}[NP(C_{6}H_{4}Me-3)_{3}]\}^{-} \\ & & 31 \end{array}$$

According to the data of X-ray diffraction analysis, the $\{UOCl_4[NP(C_6H_4Me-3)_3]\}^-$ ion contains the linear O=U=N group coordinated by four chlorine atoms.¹⁹⁵ The U–O distance (1.76 Å) is typical of the uranyl ion (see Ref. 195 and references cited therein). The U–N distance (1.90 Å) indicates that the bond order is no less than 2. The U–N–P group is nearly linear (171.9°), which suggests that the π electrons of the nitrogen atom are completely involved in bonding with uranium. The orders of the bonds between the uranium atom and each of the oxygen atoms in the uranyl ion can be equal to 3 due to the fact that the uranium atom bears simultaneously f and dvalence orbitals.^{195, 196}

Other anionic actinide complexes can be prepared immediately from salts. For example, UF₅ and UF₆ react with nitrogen bases to give molecular or ionic compounds, such as $[(bipy)_2H]^+[UF_6]^-$, UF₄(2-FC₅H₄N) and U₂F₁₂(bipy).¹⁹⁷

Thermolysis of the thorium derivative $Th(OSO_2CF_3)$. [N(SiMe_3)_2]_3 in the presence of 1 equiv. of pentamethylcyclopentadiene afforded binuclear complex **33**.¹¹¹

The actinide complex with 1,4-di-*tert*-butyl-1,4-diazabutadiene (DAB) **34** was prepared for the first time from the complex containing $N(CH_2CH_2NHSiMe_3)_3$ (tren) as a ligand.¹⁹⁸

$$(\text{tren})\text{ThCl}_{2} + 2 \text{Li}[\text{Bu}_{2}^{t}(\text{DAB})_{2}] \xrightarrow{\text{THF}} -80 \text{°C}$$

$$\longrightarrow 2 (\text{tren})\text{Th}[\text{Bu}_{2}^{t}(\text{DAB})] + 2 \{\text{Li}[\text{Bu}_{2}^{t}(\text{DAB})]\}\text{Cl}$$

$$34$$

ſ

The complex **34** was obtained as red paramagnetic crystals (monoclinic, the space group is $P2_1/n$). The N(CH₂CH₂NHSiMe₃)₃ ligand ensures the optimum spatial environment for stabilisation of this complex. Since thorium(IV) compounds are diamagnetic, the diazabutadiene ligand in the paramagnetic complex **34** is subjected to one-electron reduction, *i.e.*, this ligand is present as the [Bu¹₂DAB]⁻ radical anion.

The complex formation of neptunium(VI) with 3,3'-bis(diaziridine) derivatives ¹⁹⁹ and of uranium(VI) with 8-hydroxyquinoline and its 5-halogen derivatives was studied.²⁰⁰ In the latter case, the UO₂L and UO₂L₂ complexes (where L is a 8-hydroxyquinoline derivative) were obtained.²⁰⁰

Considerable recent attention has been given to uranium complexes with Schiff's bases (see, for example, the review²⁰¹). Uranium(VI) complexes with Schiff's bases are used as organic oxidants (the catalytic modifications of these reactions were also developed).²⁰² Polystyrene-supported chelating resins incorporating U(VI) complexes with Schiff's bases are available.^{203,204} Salicylaldehyde ²⁰⁵ and triethylenetetramine,²⁰³ 3-formylsalicylic acid and *o*-hydroxybenzylamine²⁰⁴ or salicylaldehyde and 1-amino-2-hydroxynaphthalene-4-sulfonic acid ²⁰⁶ were used as precursors of Schiff's bases. Uranium(VI) complexes with Schiff's bases are the mechanisms of photochromic conversions were examined.²⁰⁷

Examples of actinide complexes with nitrogen-containing ligands are given in Table 6.

 Table 6. Selected actinide complexes with nitrogen-containing ligands.

Starting compound	Reagents	Reaction products	Ref.
UO ₂ Cl ₂	KN(SiMe ₃) ₂ , THF	UO ₂ [N(SiMe ₃) ₂] ₂ . (THF) ₂	208
ThBr ₄ (THF) ₄	KNR ₂	Th(NPh ₂) ₄ (THF) or K[Th(NMePh ₅)]	44, 110
UCl ₃ (THF) ₃	NaN(SiMe ₃) ₂ , THF	U[N(SiMe ₃) ₂] ₃	112
U(NPh ₂) ₄	$\label{eq:L} \begin{split} L & \\ (L = Py, Et_2O, \\ THF, (EtO)_3PO) \end{split}$	$U(NPh_2)_4 \cdot L$	180
(NSiMe ₂) ₂ U · CH ₂ SiMe ₂ NSiMe ₃	Ph ₂ NH	U(NPh ₂) ₄	44
UCl ₄	LiNEt ₂	U(NEt ₂) ₄	44
HMe ₂ Si NSiMe ₃ (Me ₃ Si) ₂ N N(SiMe ₃)	HNMePh 2	Th[N(SiMe ₃) ₂] ₂ · (NMePh) ₂	110
$\begin{array}{l} (Me_3Si)_2N[ThN \cdot \\ (SiMe_3) \cdot \\ (SiHMe_2CH)] \end{array}$	1) CF ₃ SO ₃ H 2) CpH	$\begin{array}{l} Cp[(Me_{3}Si)_{2}N]Th \cdot \\ (\mu_{2}\text{-}OSO_{2}CF_{3})_{3} \cdot \\ Th[N(SiMe)_{3} \cdot \\ (SiHMe_{2}CH)]Cp \end{array}$	208
$Cp_3U = C(H)PPh_2Me$	HNPh ₂	Cp ₃ UNPh ₂	24
(C ₅ H ₄ Me) ₃ U(THF)	RN_3 $(R = Me_3Si,$ Ph)	$(C_5H_4Me)_3U = NR$ NEt ₂	190
Cp ₂ U(NEt ₂) ₂	RNC	$Cp_2U \longrightarrow NR$ NEt_2	44

IX. Complexes with phosphorus-containing ligands

A large number of actinide complexes, which bear oxygencontaining phosphorus ligands and in which the metal atom is coordinated by the oxygen atom, are available.¹⁷ Examples of phosphine complexes containing the An-P bond are few in number.²⁰⁹ Thus thorium(IV) and uranium(IV) tetrahalides react with trimethylphosphine to give the 1:2 complexes $MCl_4(PMe_3)_2$ (M = U or Th).^{17,210} The U[Me₂PCH₂CH₂PMe₂]₄ complex containing an eight-coordinate uranium atom, which is isostructural to the thorium analogue, was described.²¹¹ Uranium complexes with phosphorus donor ligands, procedures for their synthesis, structures and properties were considered in the study.²¹²

Ligands of the phosphacyclopentadienyl type serve as bridges, for example, in the dimeric uranium(III) complex **27**.^{24, 134, 213}

The reactions of lithium salts of the potentially tridentate diphosphinoamide ligands $N(CH_2CH_2PR_2)^{2-}$ (R = Et or Prⁱ) with uranium or thorium tetrachlorides afforded diphosphinoamide complexes of actinides. Ligands of this type are suitable for the preparation of various complexes of uranium(IV) (for example, {UCl₂[N(CH₂CH₂PEt₂)₂]₂), uranium(V) and thorium(IV). Depending on the reaction conditions, these ligands can be mono-, bi- and tridentate. The character of the coordination compounds can be radically changed by varying the substituents at the neutral phosphine centre.²¹⁴

Thorium and uranium complexes with diphosphazane dioxides were synthesised.²¹⁵ The crystal structure of the $UO_2(NO_3)_2[Ph_2P(O)N(Ph)P(O)Ph_2]$ complex was established. It was demonstrated that the metal atom is coordinated by diphosphazane dioxide in a bidentate fashion. Some other organophosphorus and related compounds of uranium were described in the studies.^{216–219}

Actinide complexes containing simultaneously the phosphine and cyclopentadienyl ligands are few in number. Only the Cp₂ThX₂(Me₂PCH₂CH₂PMe₂) complexes (X = Cl, Me or Bn)¹⁷⁹ and monomeric hydride complex of uranium(III) **35** were prepared.²²⁰

$$Cp_{2}^{*}UR_{2} + Me_{2}PCH_{2}CH_{2}PMe_{2} \xrightarrow{PhMe, H_{2}} utoclave, -20 \ ^{\circ}C \xrightarrow{P} Me_{2}$$

$$R = Me, CH_{2}SiMe_{3}.$$
35

The reactions of $U(BH_4)_3(THF)_x$ with some diphosphine ligands afforded the $U(BH_4)_3(L)_2$ complexes [L is dimethylphosphinoethane²²¹ or 2-(diphenylphosphino)pyridine²²²]. In these compounds, dynamic transformations are observed within the NMR time scale even at low temperature.

Table 7. Selected actinide complexes with phosphorus-containing ligands.

Substrate	Reagent	Product	Ref.
AnCl ₄	$MP(CH_2CH_2PMe_2)_2$ $M = Li, K$	$An[P(CH_2CH_2PMe_2)_2]_4$ An = Th, U	211, 214
ThCl ₄	$ [N(CH_2CH_2PPr_2^i]^{2-} \cdot Li_2^+]$	$ThCl_2[NCH_2CH_2PPr_{0.5}^i]_2$	211, 214
UCl ₄	$ \begin{bmatrix} N(CH_2CH_2PEt_2]^{2-} \\ Li_2^+ \end{bmatrix} $	$\begin{aligned} & \{UCl_2[N(CH_2 \cdot \\ CH_2PEt_2)_2]_2\}_2 \end{aligned}$	211, 214
[UOCl ₅] ⁻	Me ₃ Si[NP · (C ₆ H ₄ Me-3) ₃]	$[\text{UOCl}_4\text{NP} \cdot (\text{C}_6\text{H}_4\text{Me-3})_3]^- \text{ (see a)}$	189
$UO_2Cl_2 \cdot (Ph_3PO)_2$	KOBu ^t	$UO_2(OBu^t)_2$ · (Ph ₃ PO) ₂	181
	NaN(SiMe ₃) ₂	$UO_{2}[N(SiMe_{3})_{2}]_{2} \cdot (Ph_{3}PO)_{2}$	181
$Cp_2^*UCl_2$	HNPPh ₃	Cp2*UCl2(HNPPh3)b	223

^a The red salt containing the Ph_4P^+ cation is air-stable and is soluble in CH_2Cl_2 and MeCN; ^b the first complex of the *f* element with the phosphineimino ligand.

Examples of actinide complexes with phosphorus-containing ligands are given in Table 7.

X. Sulfur-containing actinide complexes

Being hard acids, actinides usually do not form stable complexes with S-donor ligands, which are soft bases. Only a few examples of complexes with sulfur-containing ligands are available in the literature, *viz.*, UCl₄(dmte)₂ (dmte is 1,2-dimethylthioethane), An(S₂CNEt₂)₄ (An = Th, U, Np or Pu), (NEt₄)[Np(S₂CNEt₂)₄], (NMe₄)[UO₂(S₂CNEt₂)₃],¹⁷ U(SBuⁿ)₄, [U(SBuⁿ)₆]²⁻ and [U(SPh)₆]²⁻;²²⁴ [Na(18-C-6) · (THF)][U(COT)(C₄H₄S₄)₂] is the only known uranium(V) complex containing the metal-sulfur bond.²²⁵ The reaction of UCl₄ with Li₂(SCH₂CH₂S) in dimethoxyethane afforded ²²⁶ the first homoleptic dithiolate complex of an *f* element (**36**; the space group is *P*2₁/*n*).

$UCl_4 + 4 Li_2(SCH_2CH_2S) \xrightarrow{DME} [Li(DME)]_4[U(SCH_2CH_2S)_4] \cdot DME$ 36

The nature of the U–S bond in the complex **36** was estimated by the semiempirical Hückel method. It was found that the 6*d*, 7*s* and 7*p* orbitals of uranium are responsible for interactions with sulfur-containing ligands. The involvement of 5*f* orbitals is insignificant, and hence, the π interaction between uranium and sulfur is weak.²²⁶ The authors also gave a brief review of the state of the art in the chemistry of actinide ions with sulfur-containing ligands.²²⁶

Derivatives of uranium(IV) tetrathiolate were prepared by treatment of U(NEt₂)₄, U(BH₄)₄ or U(SBuⁿ)₄ with thiols and by oxidation of metallic uranium with disulfides.²²⁷ It was found that the reactions of the U(SBuⁱ)₄ complex with acids, I₂ and CS₂ proceeded at the U-S bond.²²⁷

The neptunium(V) complex with DMSO with composition $[(NpO_2)_2(DMSO)_7(H_2O)_2](ClO_4)_2 \cdot H_2O$ was structurally characterised.²²⁸ The structure contains the dimeric complex $[(NpO_2)_2(DMSO)_7(H_2O)_2]^+$ cations, perchlorate anions, coordinated water molecules and water molecules of crystallisation. The IR and electronic spectra are indicative of the non-equivalence of the dioxo cations. Thus $Np(1)O_2^+$ acts as a monodentate ligand, whereas $Np(2)O_2^+$ serves as the coordination centre.²²⁸

Treatment of the U(COT)(BH₄)₂ complex with thiols or sodium thiolates (RSH or RSNa, where R = Buⁿ, Prⁱ or Bu^t) afforded first organouranium compounds containing the bridging disulfide {[U(COT)(μ -SP₂]₂} and thiolate {[U(COT)(μ -SR)₂]₂} groups. The structures of these compounds differ from those of their alkoxide analogues, which contain only two bridging OR groups.²²⁹

The reaction of U(NEt₂)₄ with PrⁱSH and OP(NMe₂)₃ gave rise to the first structurally characterised tetrathiolate complex of uranium U(SPrⁱ)₄[OP(NMe₂)₃]₂.²²⁹ The uranium sulfur cluster U₃(μ_3 -SB(μ_3 -SBu¹)(μ_2 -SBu¹)₃(SBu¹)₆ was also described.²³⁰

The Cp₂^{*}U(dddt) complex (dddt is 5,6-dihydro-1,4-dithiin-2,3-dithiolate)²³¹ and the homoleptic uranium(IV) complexes (THF)₃Na(μ -SR)₃U(μ -SR)₃Na(THF)₃ (R = Bu^t or Ph) were synthesised.²³²

Recently, the first heteroleptic uranium(V) complex 38 was prepared by oxidation of complex 37 with AgBPh₄ in THF.²³³

Notwithstanding the fact that the available sulfur-containing actinide complexes are few in number, these compounds are of great interest in the coordination chemistry ²³⁰ and can find use for extraction of actinides.²³²

Examples of sulfur-containing uranium complexes are given in Table 8.

Table 8. Selected sulfur-containing uranium complexes.

Starting compound	Reagents	Product	Ref.
UCl ₄ or U(BH ₄) ₄	NaSR (R = Bu ^t , Ph), THF	(THF) ₃ Na(μ-SR) ₃ U · (μ-SR) ₃ Na(THF) ₃	232
UI4	DMSO DIBSO	$UI_4(DMSO)_n (n = 6, 8)$ $UI_4(DIBSO)_n (n = 6, 8)$	104
$Cp_2^*UCl_2 \\$	Na ₂ (dddt)	$Cp_2^*U(dddt)$	230
U(NEt ₂) ₄	Pr ⁱ SH, (Me ₂ N) ₃ PO	$U(SPr^i)_4[OP(NMe_2)_3]_2$	233

XI. Technetium complexes

The chemistry of technetium becomes increasingly important, particularly, due to the fact that the short-lived ($T_{1/2}$ 6.015 h, γ irradiator) nuclide ^{99m}Tc is used in diagnostic medicine. This nuclide has been used over many years in bone scanning. Recently, ^{99m}Tc has found use in the treatment of various diseases of the heart, brain, kidney, liver and other organs as well as of tumour tissues. Technetium complexes are also of interest in the radio-pharmaceutical industry.²³⁴ Owing to the ideal energy of γ radiation (140 keV), lack of particulate radiation dose, the small half-life $T_{1/2}$ and the fact that ^{99m}Tc is readily accessible, this isotope is a radionuclide of choice for obtaining images in diagnostic nuclear medicine.^{235, 236}

1. Complexes with nitrogen-containing ligands

Complexes of Tc(III), Tc(II) and Tc(I) with pyridine ligands were prepared.²³⁷ The authors were interested to prepare a coordinatively unsaturated low-valence electron-rich Tc metal centre surrounded by very weak π -donor ligands.

 $\begin{array}{c|c} & PPh_{3} & \xrightarrow{TI^{+}, Py, \Delta} & trans-[TcCl_{2}(Py)_{4}]^{+} \\ \hline \\ MeCN & \xrightarrow{Tc_{unit}Cl} & \underbrace{TI^{+}, Py}_{PPh_{3}} & trans-[TcCl_{2}(Py)_{3}(PPh_{3})]^{+} \\ \hline \\ & try, DME, 20 \ ^{\circ}C & mer-TcCl(tpy) \end{array}$

tpy is terpyridine.

The TcCl₂(Py)₄, TcCl₃(PPh₃)₂(TMEDA), TcCl₃[Bu¹₃(tpy)] and [Tc(tpy)(Py)₃]Cl compounds were characterised by electrochemical and spectroscopic methods and by X-ray diffraction analysis.²³⁷ According to the data of this investigation, π -back bonding is observed in the Tc(II) and Tc(I) complexes, unlike the Tc(III) complexes. In particular, the Tc-N bonds in pyridine complexes of Tc(II) are shortened by 0.04–0.06 Å and the Tc-N(internal) bonds in terpyridine complexes of Tc(I) are shortened by 0.09 Å compared to those in the analogous Tc(III) complexes.²³⁷ These effects are favourable for stabilisation of low oxidation states of the metal atoms. The pyridine Tc(III) complexes give Knight-shifted ¹H NMR spectra. The visible regions of the spectra show transitions, which were empirically assigned to ligand-to-metal charge transfer transitions; multiple reversible electrochemical redox couples were found.²³⁷

Reduction of pertechnates (as well as perrhenates or permolybdates) with 2-hydrazinopyridine hydrochloride in methanol afforded complexes containing the $M(\eta^1-NNC_5H_4NH_x)(\eta^2-HNNH_yC_5H_4N)$ core (M = Tc, Re or Mo).²³⁸ In particular, the TcCl₃(NNC₅H₄NH)(HNNC₅H₄N) complex was prepared. The latter was used for the synthesis of the $Tc(C_5H_4NS)_2$. .(NNC₅H₄N)(HNNC₅H₄N) complex (C₅H₄NS is pyridine-2-thiolate), which is a precursor of ^{99m}Tc-containing peptide reagents for medical investigations. The bifunctional hydrazine ligands used in the study ²³⁸ are efficient and versatile linkers for labelling antibodies and protein fragments. Other organic hydrazine complexes of ^{99m}Tc were also prepared. The reactions of [TcOCl₄]⁻ with hydrazine hydrochloride (PhMe, 20 °C or CH₂Cl₂, 36 °C) gave rise to [TcCl₂(C₈H₅N₄)(PPh₃)₂]·0.75 PhMe and [TcNCl₂(PPh₃)₂]·0.25 CH₂Cl₂, respectively.²³⁹ The exchange reaction of Tc(MeCN)(PPh₃)₂Cl₃ with 2-hydrazinopyridine afforded Tc(III) complex **39**.²⁴⁰

Complexes with compositions mer-[Cl₃(pic)₃Tc] and mer-[Cl₃(pic)(PMe₂Ph)₂Tc] (pic is 4-picoline) were prepared by the reactions of [TcOCl₄]⁻ with a series of phosphine ligands in 4-picoline. The process was accompanied by the oxygen atom migration. The resulting compounds were characterised by spectroscopic methods and X-ray diffraction analysis.²⁴¹

Complexes of high oxidation state technetium containing the $[Tc \equiv N]^{2+}$ core are more stable than the corresponding complexes of technecyl $[Tc=O]^{3+}$ and their properties resemble those of technecyl derivatives.

The technetium(V) complex $[TcN(L)(H_2O)] \cdot 2 H_2O$ (L is the tetraazamacrocycle) was prepared by the reaction of $TcNCl_2(PPh_3)_2$ with the tetraazamacrocycle.²⁴² A complex with the $[Tc \equiv N]^{2+}$ core was synthesised using ancillary polydentate phosphorus- and nitrogen-containing ligands. The reaction of $[TcNBr_4]^-$ with 2,2'-bipyridyl in ethanol afforded the *cis*-octahedral $[TcNBr(bipy)_2]_2(TcBr_4)$ complex with the $[Tc \equiv N]^{2+}$ core containing the tetrahedral tetrabromo technetate(II) cation.²⁴³

Other chelate nitride complexes of technetium(V) with the N_2S_2 ligand and the $[Tc \equiv N]^{2+}$ core were prepared by the reactions of $TcNCl_2(PPh_3)_2$ with $(HSCR_2CH_2NRCH_2)_2$ (R = Me or Et).²⁴⁴

Since the chemical behaviour of the Mo^VO complexes is similar to that of the Tc^{VI}N complexes, pertechnate complexes can be synthesised according to the procedure developed for the preparation of analogous Mo^VO complexes. Thus chelate nitride complexes of technetium(V) with ligands of the N₂S₂ type and the [Tc \equiv N]²⁺ core, *viz.*, [TcN(S₂CNEt₂)]₂(µ-O)₂, [TcN. .(S₂CNC₄H₈)]₂(µ-O)₂, (AsPh₄)₂{[TcN(CN)]₂(µ-O)₂} and (AsPh₄)₂. .{[TcN(edt)]₂(µ-O)₂} [edt = S(CH₂)₂S], were prepared by the reactions of {[TcN(OH₂)₃]₂(µ-O)₂²⁺ or Cs₂(TcNCl₅) with precursors of the corresponding ligands in solutions of Na₄P₂O₇.²⁴⁵

The reaction of TcNCl₂(PPh₃)₂ with the piperidinium ferrocenyldithiocarboxylate gave rise to nitride complex **40**. According to the data of cyclic voltammetry,²⁴⁶ two iron(II) atoms in the complex **40** act as independent redox centres linked through the [Tc \equiv N] core. Chelate complexes **41** and **42** containing the same [Tc \equiv N] core were also synthesised.²⁴⁷

The possibility of radiopharmaceutical application of nitride technetium complexes with nitrogen-substituted amino acids, *viz.*, derivatives of 2,5-dimethyldithiocarbamic acid, was reported.²⁴⁸ Complexes with composition TcN(Lⁿ)(PPh₃), where Lⁿ = Z-Gly-dtc (n = 1), Z-Ala-dtc (n = 2), Z-Phe-dtc (n = 3), Z-Val-dtc (n = 4) or Z-Leu-dtc (n = 5), were synthesised. All these complexes were characterised by spectral methods and X-ray diffraction analysis.

Binuclear complexes of Tc(VII) **43** and Tc(VI) **44** were synthesised by reduction of complexes **45** and **46**, respectively, with sodium.²⁴⁹

$$\begin{array}{cccc} Tc(NC_{6}H_{3}Me_{2}\text{-}2,6)_{3}I & \xrightarrow{INa} Tc_{2}(NC_{6}H_{3}Me_{2}\text{-}2,6)_{4}(\mu\text{-}NC_{6}H_{3}Me_{2}\text{-}2,6)_{2} \\ & \textbf{45} & \textbf{43} \\ Tc(NC_{6}H_{3}Pr_{2}^{i}\text{-}2,6)_{3}I & \xrightarrow{Na} Tc(NC_{6}H_{3}Pr_{2}^{i}\text{-}2,6)_{6} \\ & \textbf{46} & \textbf{44} \end{array}$$

The crystal structure of the complex **43** consists of tetrahedra linked *via* shared edges, whereas the complex **44** has an 'ethylenelike' structure.²⁴⁹ The reaction of the pertechnate ion with the salt of 3,6-bis(2'-pyridyl-1,2,4,5-tetrazine) (bptz · 2 HCl) in methanol or ethanol afforded binuclear complexes of the general formula (μ -bptz)(TcO₃X)₂ (X = Cl, OMe or OEt) containing Tc(VII), Tc(V) and the bridging bptz ligand. 4-Phenyl-3,6-bis(2'-pyridyl)pyridazine (pppz) was used as a ligand for the preparation of mononuclear complexes from pertechnate and TcOCl₄ in an aqueous-ethanolic solution of HCl.²⁵⁰ The binuclear polypyridyl oxo-bridged technetium(III) complex {(tpy)[Me₂(bipy)]]Cc-O-Tc(tpy)[Me₂(bipy)]}(OTf)₄ was prepared by the reaction of TcCl₃(tpy) with thallium triflate in the presence of water.²⁵¹

The synthesis of diazene technetium complexes was described.²⁵² Thus the $TcCl(NNR)_2(PPh_3)_2$ complex (R = C₆H₄Cl-4), which was prepared from $TcOCl_4^-$ and monosubstituted hydrazine RNHNH₂ in methanol, reacted with the bidentate S₂CNR₂ ligand and maltol to give $Tc(NNR)L_2(PPh_3)$ and $TcCl(NNR)L(PPh_3)$ (L = S₂CNR₂) in high yields.²⁵²

The template synthesis from tetrabutylammonium pertechnate (NBu₄)(TcOCl₄) or (NH₄)₂(TcXO) (X = Cl or Br) followed by reduction by divalent tin afforded seven-coordinate Tc(III) complexes, for example, such as the monocapped adduct of boric acid with technetium(III) trisdioximate or TcX(dioxime)₃BR (X = Cl or Br; dioxime = dimethylglyoxime or cyclohexanone dioxime; R = Me or Bu).²⁵³

A technetium(III) complex containing acetonitrile, *viz.*, TcCl₃(MeCN)(PR₃)₂ (R = Ph or C₆H₄Me-3), was prepared by reduction of TcCl₄(PPh₃)₂ with zinc in acetonitrile in the presence of PPh₃. This complex is a convenient intermediate in the synthesis of other Tc(III) compounds. Its reactions with bipy, 1,10-phenanthroline (phen) and tpy afforded dicationic Tc(III) complexes, *viz.*, [Tc(bipy)₃]²⁺, [Tc(phen)₃]²⁺ and [Tc(tpy)₃]²⁺, respectively, as salts with BPh₄⁻ or PF₆^{-.254}

2. Complexes with sulfur- and oxygen-containing ligands

Reduction of $[Tc(OH)O(dmpe)_2]^{2+}$ in the presence of an excess of toluene-3,4-dithiol (H₂tdt) gave rise to the thiolate Tc(IV) complex $[Tc(tdt)(dmpe)_2](PF_6)$ (tdt = MeC₆H₃S₂-3,4).²⁵⁵ Its structure was established by spectroscopic methods and X-ray diffraction analysis. The coordination polyhedron about technetium is intermediate between the octahedron and the trigonal prism [the Tc – S

and Tc - P distances are 2.318(6) Å and 2.902(7) Å, respectively; the S - Tc - S angle is 84.49(4) °].

Refluxing of the salt (NBu₄)(TcOCl₄) in alcoholic solution with dihydrooxazoles and dihydrothiazoles, for example, with 2-(2-hydroxyphenyl)-4,5-dihydrooxazole, 2-(2-hydroxy-3-meth-ylphenyl)-4,5-dihydrooxazole or 2-(2-hydroxyphenyl)-4,5-dihydrothiazole, yielded the six-coordinate complexes TcOClL₂ (L is the corresponding (hydroxyphenyl)dihydrooxazole or -thiazole).²⁵⁶

The reaction of ammonium pertechnate with 3,5-di-*tert*butylpyrocatechol (DBCat) in methanol afforded a mixture of the Tc^{VI}(DBCat)₃ and Tc^{VI}(DBCat)₂(DBAP) complexes (DBAP is the amidophenoxide ligand).²⁵⁷ The amidophenoxide ligand is formed through condensation of ammonia (from ammonium pertechnate) with pyrocatechol to give the Schiff's base. According to the data of EPR spectroscopy and X-ray diffraction analysis, technetium in the complex exists in oxidation state + 6, which is very untypical. The DBCat ligand serves both as a reducing and chelating agent.

3. Complexes with nitrogen- and sulfur-containing ligands

The HTcO(cysteine)₂ complex (**47**) and its barium salt $Ba[TcO(cysteine)_2]_2$ were synthesised.²⁵⁸ These compounds are of importance in biology and medicine. The properties of these complexes were studied.

The complex **47** can be synthesised starting from ammonium pertechnate and cysteine. All previous attempts to prepare technetium complexes with cysteine afforded products contaminated by polymeric compounds.²⁵⁸ It was also reported ^{259–263} that chelation of technetium with polyfunctional ligands was accompanied by the formation of polymeric by-products. It is believed that an excess of the ligand causes decomposition of the initially formed chelate. The use of S-protective groups (for example, benzyl, acetylaminomethyl or benzoylaminomethyl) prevents the formation of undesirable polymeric products.²⁵⁸

The technetium (^{99m}Tc) analogue of oxorhenium bis-cysteinate possesses valuable biological properties. In particular, it is accumulated in kidneys,²⁶⁴ which is useful in diagnostics of the morphological status of this organ.²⁵⁸

Potential radiopharmaceuticals for diagnostics of the renal function were synthesised with the use of chelating carboxylcontaining ligands bearing N- and S-centres . The carboxyl groups favour the renal uptake of these compounds.²⁶⁴ The ⁹⁹TcO(ECH₃) complex was prepared based on the ammonium salt NH₄(TcOX₄) (X = Hal) and (2*R*,7*R*)-2,7-dicarboxy-3,6-diaza-1,8-octanedithiol (ECH₃). In the isostructural rhenium(V) complex, one of the carboxyl groups in the *trans* position with respect to the oxo ligand is coordinated in an unexpected fashion.²⁶⁵

The choice of other ligands, *viz.*, Schiff's bases, was governed by their tendency to be coordinated to technetium in various unusual oxidation states. The chemistry of technetium(I) complexes is poorly known. Only a few compounds were identified and characterised. The reaction of $(PPh_3)_2(CO)_3CI$ with the lithium salt of Schiff's base, *viz.*, *N-ortho*-hydroxybenzylidene-2thiazolylimine, in boiling THF gave rise to the Tc(I) complex with composition Tc(PPh_3)_2(CO)_2[(C_3H_2NS)N = CHC_6H_4O]. This six-coordinate complex has a distorted octahedral structure with *trans*-PPh₃ and *cis*-CO groups and one chelating bidentate anion.²⁶⁶

Complexes containing biologically active molecules, such as peptides, proteins or antibodies, as ligands can be used as unique target-specific radiopharmaceuticals in diagnostics. The reaction of $[TcO_4]^-$ with SnCl₂, sodium gluconate and RP 294 produced the ⁹⁹Tc(V) oxo complex with RP 294, which exists as the *syn* and *anti* isomers. The study of the crystal structure of the isostructural rhenium(V) complex demonstrated that the isomerism results from the positions of the CH₂OH groups in the serine residues. At room temperature, the isomers in solution undergo interconversion. The ^{99m}Tc and rhenium complexes with RP 294 exhibit similar chemical properties.²⁶⁷

The ⁹⁹Tc and ^{99m}Tc complexes with new tetradentate N_2S_2 and NS_2 ligands were prepared by refluxing a methanolic solution of (TcOCl₄)(NBu₄) with the corresponding NS_3H_3 proligands. The technetium(V) complex [TcO(NS₃)](NBu₄) (**48**) was obtained in high yield. However, compounds of this type are unstable and decompose in a matter of several hours or days. By analogy with the crystal structure of the related rhenium oxo complex, these compounds can be considered as square-pyramidal complexes containing the oxygen atom in the apical position.²⁶⁸

4. Complexes with phosphorus-containing ligands

Phosphine ^{99m}Tc-labelled derivatives can be used for obtaining images of internal organs, for example, heart images. Complexes of the $[TcO_2(PR_3)_3](BPh_4)$ (R = Et or Pr) type ²³⁴ have distorted trigonal-bipyramidal structures with two oxo ligands located in a single plane. Salts of the $[TcO_2(PR_3)_3]^+$ cations are convenient starting compounds for the synthesis of other complexes with mixed ligands.

$$[TcO_2(PR_3)_2]^+ \xrightarrow{Py} [TcO_2(PR_3)_2(Py)_2]^+$$

The trimethylphosphine derivative $[TcO_2(PMe_3)_2(Py)_2]^+$ can be prepared according to a one-pot procedure directly from pertechnates $[TcO_4]^-$. Apparently, this procedure can be adapted for the preparation of ^{99m}Tc radiopharmaceuticals in hospitals.

$$NH_4(TcO_4) \xrightarrow{Py, PMe_3} [TcO_2(PMe_3)_2(Py)_2]^+$$

The $[TcO_2(PR_3)_2(Py)_2]^+$ derivatives are diamagnetic, which is indicative of a noticeable deviation of their geometry from the ideal octahedron.²³⁴

The reactions of pertechnate with derivatives of phosphinocarboxylic acids afforded the TcL₃ complexes [L is 2-(diphenylphosphino)benzoic acid, 3-(diphenylphosphino)propionic acid or (diphenylphosphino)acetic acid]. According to the results of spectroscopic studies and X-ray diffraction analysis, these complexes possess a distorted octahedral geometry with the *mer* configuration in which the donor atoms of the same type are in *trans* positions with respect to each other and the phosphorus atom is in the *trans* position with respect to the oxygen atom.²⁶⁹

Complexes of the short-lived ^{99m}Tc isotope were prepared analogously. Their physical and chemical properties are similar to those of ⁹⁹Tc complexes. Biological assays revealed significant brain uptake of these compounds.

Chelate technetium(V) complexes with bis(*o*-hydroxyphenyl)phenylphosphine and (*o*-hydroxyphenyl)diphenylphosphine were prepared by metathesis of the corresponding Tc(V) precursors or by reduction–ligand exchange with ammonium pertechnate.²⁷⁰ These complexes combine a soft phosphine donor site and two hard phenoxide centres. It was expected that this fact would stabilise technetium in intermediate oxidation states. The $[Tc(tu-S)_6]Cl_3 \cdot 4 H_2O$ complex (tu-S is thiourea) was used as the precursor of $[Tc(dppe)_2(Bu^tNC)_2](PF_6)$ (dppe is diphenylphosphinoethane).²⁷¹ This complex can be prepared by mixing both ligands and a source of technetium(III) in ethanol followed by refluxing of the reaction mixture. This procedure is more convenient than the method involving a sodium amalgam, dppe and $TcCl_4(PPh_3)_2$. In the $[Tc(tu-S)_6]Cl_3 \cdot 4 H_2O$ complex, the coordination polyhedron about the technetium atom is a distorted tetrahedron, the isocyanide ligands being in *trans* positions with respect to each other.

Treatment of $[TcO_4]^-$ with an excess of the corresponding S,P-bidentate phosphinothiolate ligands, such as 2-(diphenylphosphino)ethanedithiolate, 2-(diphenylphosphino)propanethiolate or 2-(diphenylphosphino)thiophenoxide, yielded neutral technetium(III) complexes.²⁷² These complexes have a trigonalbipyramidal geometry, two phosphorus donor centres (consisting of two chelate rings) occupying axial positions and being in *trans* positions with respect to each other.

5. Complexes with the metal – metal bond, carbonyl complexes

The data on complexes containing multiple Tc-Tc bonds are scarce. Thus several diamagnetic phosphine ditechnetium(II) complexes of the $Tc_2Cl_4(PR_3)_4$ type (**49**) were described.¹⁶⁰ These complexes contain a triple bond between the metal atoms and provide the first examples of phosphine complexes possessing a multiple technetium–technetium bond.

$$TcCl_4(PR_3)_2 \xrightarrow{PhMe, 50-55 \ \circ C \ or} PhH, PhH, utrasonics Cl \xrightarrow{PK3} Cl PR_3$$

 $PR_3 = PEt_3, PPr_3^n, PMePh_2, PMe_2Ph.$

The polymeric chain structure of $[Tc_2Cl_6]_n^{2n-}$ also contains triple metal – metal bonds.²⁷³ The triple $Tc \equiv Tc$ bond was found in the α and β forms of the $Tc_2Cl_4(dppe)_2$ complex.²⁷⁴ The α isomer **50** adopts an eclipsed conformation; the Tc - Tc distance is 2.15(1) Å. In the β isomer **51**, the twist angle is 35(2)° and the Tc - Tc distance is 2.117(1) Å. These isomeric complexes were prepared by refluxing $Tc_2Cl_4(PR_3)_4$ (PR₃ = PEt₃ or PMe₂Ph) in toluene in the presence or in the absence of an excess of dppe, respectively.

49 (>90%)

Complexes containing the multiple Tc - Tc bond of order 3.5 were synthesised in high yields by one-electron chemical oxidation of the Tc₂Cl₄(PMe₂Ph)₄ complex with ferrocenium hexafluorophosphate in acetonitrile.²⁷⁵ In this study, the cationic [Tc₂Cl₄(PMe₂Ph)₄](PF₆) complex was prepared. ²⁷⁵ Oxidation in the presence of bis(triphenylphosphine)iminium produced the $Tc_2Cl_5(PMe_2Ph)_3$ complex.²⁷⁵ neutral The complexes $Tc_2Cl_4(PR_3)_4$ 49 (PR₃ = PEt₃, PMePh₂ or PMe₂Ph) reacted with molten diphenyl- or di-p-tolylformamidine to give mixtures of formamidine-bridged complexes of the general formula $Tc_2(L)_4Cl_n$ (n = 1 or 2) in moderate yields.²⁷⁶ Complexes with the triple $Tc \equiv Tc$ bond, for example $[Tc_2(MeCN)_{10}](BF_4)_4$,²⁷⁷ in an acetonitrile solution can undergo photodissociation to give the [Tc(MeCN)₆]²⁺ ions in almost quantitative yields.²⁷⁸ A decaacetonitrile binuclear complex with the triple $Tc \equiv Tc$ bond was obtained in good yield by acidification of a solution of Tc₂Cl₄(PR₃)₄ in a mixture of acetonitrile and dichloromethane using $HBF_4 \cdot Et_2O^{277}$ The $[Tc_2Cl_8]^{n-}$ (n = 2, 3 or 4) and $[{\rm Mo_2Cl_8}]^{m-}$ (m = 4 or 5) clusters were studied by theoretical methods. 279

Of other types of Tc complexes, noteworthy are Tc carbonyl derivatives.^{280–282} The Tc(CO)₅I complex, which is isostructural to the Mn(CO)₅I complex, exists as orthorhombic crystals. Its crystal structure consists of Tc(CO)₅I molecules. The crystals of [Tc(CO)₄I]₂ are monoclinic and are also built of individual [Tc(CO)₄I]₂ molecules. Complexes with composition [M(CO)₄X]₂ (M = Mn, Tc or Re; X = Cl, Br or I) are isostructural. The main types of technetium complexes are given in Table 9.

* * *

In spite of the difficulties associated with operations with radioactive elements, their complexes are being studied intensively. The development of the coordination chemistry of these compounds, particularly, of those containing radioactive elements in unusual oxidation states,²⁴ is dictated both by the possibility of their practical use and theoretical interest. Thus considerable recent attention has been given to bimetallic complexes of 5*f* elements in connection with a search for new unusual properties and molecular structures. Investigations and a search for new uranium(V) complexes remain to be of great importance. Information ^{166, 167} on the unique activities of alkylcyclopentadienyl derivatives $Cp_2^*AnR_2$ (An = Th or U; R = H or Alk) as catalysts of alkene hydrogenation and polymerisation gave impetus to studies in this field of chemistry. These compounds proved to be ten times more active than traditional Pt/SiO₂ catalysts. Hence, actinide complexes are of interest from the viewpoint of extension of the scope of their use in catalysis, as the starting compounds in organometallic synthesis ^{17, 24} and for separation and extraction of actinides.²⁸³

We are grateful to Professor M Ephritikhine (Service de Chimie Moleculaire, France) for permission to reproduce schemes from his articles and Professors A D Garnovskii (Rostov State University, Russia) and S S Berdonosov (Moscow State University, Russian Federation) for valuable advice.

Table 9. Synthesis of technetium complexes with oxygen-, sulfur-, nitrogen- and phosphorus-containing ligands.

Starting compound	Reagent and reaction conditions	Products	Ref.
Complexes with oxygen- and s	sulfur-containing ligands		
KTcO4	Bu ^t OH, MeOH	Tc(DBCat) ₃ , Tc(DBCat) ₂ (DBAP)	257
Tc(PPh ₃) ₂ (CO) ₃ Cl	$LiOC_6H_4CH = N(CSNC_3H_2), THF$	$Tc(PPh_3)_2(CO)_2 \cdot \\ [(C_3H_2NSC)N = CHC_6H_4O]$	266
$Tc(CO)_5 X$ $(X = Cl, Br, I)$	H_2O	$[Tc(CO)_3(H_2O)_3]^+$	282
Complexes with nitrogen-cont	taining ligands		
$Tc_2Cl_4(PR_3)_4$ (PR_3 = PEt_3, PMe_2Ph, PMePh_2)	 Bu₃SnH or Zn MeCN, HBF₄ 	$[Tc_2^{II}(MeCN)_{10}](BF_4)_4$ (see ^a)	277
[TcCl ₆] ²⁻	 (1) Bu₃SnH or Zn (2) MeCN, HBF₄ 	$[Tc_2^{II}(MeCN)_{10}](BF_4)_4$	277
(Bu ₄ N)(TcOCl ₄)	Cys ^b	HTcO(Cys) ₂	258
TcCl ₃ (PPh ₃) ₂ (MeCN)	Bu ^t ₃ (tpy), DME	TcCl ₃ [Bu ^t ₃ (tpy)]	237
NH ₄ TcO ₄	N NHNH ₂ ·HCl , MeOH	$TcCl_3(\eta^1\text{-}NNC_5H_4NH)(\eta^2\text{-}HNNC_5H_4N)$	238
Complexes with phosphorus-c	containing ligands		
$Tc_2Cl_4(PMe_2Ph)_4$	$(Cp_2Fe)(PF_6)$	$[Tc_2Cl_4(PMe_2Ph)_4](PF_6)^{c}$	275
NH ₄ (TcO ₄)	$PR_{3}, MeOH$ $(R = Et, Pr) (see^{d})$	$[TcO_2(PR_3)_3]^+$	234
$[TcO_2(PR_3)_3]^+$ (R = Et, Pr)	$PR_{3}, MeOH, Py$ $(R = Et, Pr)$	$[TcO_2(PR_3)_3(Py)_2]^+$	234
TcCl ₃ (PPh ₃) ₂ (MeCN)	TMEDA, PhMe, DME	TcCl ₃ (PPh ₃) ₂ (TMEDA)	237
	Py	mer-TcCl ₃ (Py) ₂	241
TcCl ₄ (PPh ₃) ₂	PR_3 (R = Et, Pr ⁿ), THF	$TcCl_4(PR_3)_2$	160
TcCl ₄ (PEt ₃) ₂	Zn, PhH, utrasonics	$Tc_2Cl_4(PEt_3)_4$	160

^a The yield was 50%, the Tc – Tc multiple bond is present; ^b Cys is an aqueous solution of cysteine chloride monohydrate; ^c the multiple Tc – Tc bond is present; ^d the yield was 60% - 70%; a ~10-fold excess of the ligand was used; there was no need for the use of reducing agents; the reaction was accompanied by the formation of NH₃.

References

- Metody Elementoorganicheskoi Khimii. Lantanidy i Aktinidy (Methods of Organoelement Chemistry. Lanthanides and Actinides) (Eds N A Nesmeyanov, K A Kocheshkov) (Moscow: Khimiya, 1974)
- T J Marks, R D Ernst, in *Comprehensive Organometallic Chemistry* Vol. 3 (Eds D Wilkinson, F G Stone, E W Abel) (Oxford: Pergamon Press, 1982) p. 173
- T J Marks, V W Day, in Fundamental and Technological Aspects of Organo-f Element Chemistry (Eds T J Marks, I L Fragala) (Dordrecht: Reidel, 1985) p. 115
- 4. J Takats, in Fundamental and Technological Aspects of Organo-f Element Chemistry (Eds T J Marks, I L Fragala) (Dordrecht: Reidel, 1985) p. 159
- I Santos, A Pires de Matos, A G Maddock Adv. Organomet. Chem. 34 65 (1989)
- B E Bursten, R J Strittmatter Angew. Chem., Int. Ed. Engl. 30 1069 (1991)
- 7. NATO ASI Ser., Partnership Sub-Ser. 2, Environ. 41 (1998)
- D J Cardin (Ed.) Organometallic Compounds of the Lanthanides, Actinides, and Early Transition Metals (London: Chapman and Hall, 1985)
- D N Suglobov, G V Sidorenko, E K Legin, in *Letuchie Organicheskie i Kompleksnye Soedineniya f-Elementov* (Volatile Organic and Complex Compounds of the f Elements) (Moscow: Energoatomizdat, 1987) p. 208
- 10. K Schwochau, U Pleger Radiochim. Acta 63 103 (1993)
- 11. C E Housecroft Coord. Chem. Rev. 162 305 (1997)
- 12. F S Schoster, S K Zeisler J. Rad. Nucl. Chem. 220 149 (1997)
- N M Vanlic-Razumenic, T N Maksin, L P Vuksanovic J. Serb. Chem. Soc. 60 641 (1995)
- 14. C E Housecroft Coord. Chem. Rev. 142 21 (1995)
- 15. E C Constable, C E Housecroft Coord. Chem. Rev. 131 153 (1994)
- 16. U Mazzi Polyhedron 8 1683 (1989)
- G L Soloveichik, in *Encyclopedia of Inorganic Chemistry* Vol. 1 (Ed. R B King) (New York: Wiley, 1994) p. 2
- An N Nesmeyanov Radiokhimiya (Radiation Chemistry) (Moscow: Khimiya, 1978)
- M S S Brooks, B Johansson, H L Skriver, in *Handbook on the Physics and Chemistry of the Actinides* Vol. 1 (Eds A J Freeman, G H Lander) (Amsterdam: North-Holland, 1984) Pt. 3, p. 153
- D L Clark, A P Sattelberger, in *Encyclopedia of Inorganic* Chemistry Vol. 1 (Ed. R B King) (New York: Wiley, 1994) p. 19
- 21. L T Reynolds, G Wilkinson J. Inorg. Nucl. Chem. 2 246 (1956)
- 22. J H Burns, in *The Chemistry of Actinide Elements* Vol. 2 (Eds J J Katz, G T Seaborg, L R Morris) (London: Chapman and Hall, 1986) p. 1417
- 23. D Kepert Inorganic Stereochemistry (Berlin: Springer, 1982)
- 24. M Ephritikhine New J. Chem. 16 451 (1992)
- 25. C J Burns, B E Bursten Comments Inorg. Chem. 9 61 (1989)
- 26. P Pyykkoe, L L Lohr Jr Inorg. Chem. 20 1950 (1981)
- 27. N Rösch, A Streitwieser Jr J. Am. Chem. Soc. 105 7237 (1983)
- 28. N Rösch Inorg. Chim. Acta. 94 297 (1984)
- 29. A H H Chang, R M Pitzer J. Am. Chem. Soc. 111 2500 (1989)
- 30. S Ahrland, in The Chemistry of Actinide Elements Vol. 2
- (Eds J J Katz, G T Seaborg, L R Morris) (London: Chapman and Hall, 1986) p. 1480
- 31. I Grenthe, J Fuger, R J M Konings, R J Lemire, A B Muller, C Nguyen-Trung, H Wanner, H Forest, in *Chemical Thermodynamics of Uranium* (Eds H Wanner, I Forest) (Amsterdam: Elsevier, 1992) p. 193
- 32. J Fuger, in *Plutonium Chemistry (American Chemical Society, Symposium Series)* (Eds W T Carnall, G R Choppin) Vol. 216; (Washington, DC: American Chemical Society, 1983) p. 74
- P G Allen, J J Bucher, D K Shuh, N M Edelstein, T Reich Inorg. Chem. 36 4676 (1997)
- H Moll, M A Denecke, F Jalilehvand, M Sanström, I Grenthe Inorg. Chem. 38 1795 (1999)
- A Plyasunov, T Fanghanel, I Grenthe Acta Chem. Scand. 52 250 (1998)
- 36. S Basak, D Banerjea Indian J. Chem., Sect. A 32 129 (1993)
- 37. W G van der Sluys, A P Sattelberger Chem. Rev. 90 1027 (1990)

- 38. A J Zozulin, D C Moody, R R Ryan Inorg. Chem. 21 3083 (1981)
- J L Stewart, R A Andersen J. Chem. Soc., Chem. Commun. 1846 (1987)
- L R Avens, D M Barnhart, C J Burns, S D McKee, W H Smith, Inorg. Chem. 33 4245 (1994)
- 41. N Edelstein J. Less-Common Met. 133 39 (1987)
- C Baudin, D Baudry, M Ephritikhine J. Organomet. Chem. 415 59 (1991)
- 43. R G Jones, E Bindschadler, D Blume, G Karmas, G A Martin Jr, J R Thirtle, F A Yeoman, H Gilman J. Am. Chem. Soc. 78 6030 (1956)
- F A Cotton, G Wilkinson, C A Murillo, M Bochmann Advanced Inorganic Chemistry (New York: Wiley, 1999)
- T Arliguie, D Baudry, M Ephritikhine, M Nierlich, M Lance, J Vigner J. Chem. Soc., Dalton Trans. 1019 (1992)
- D L Clark, J C Huffman, J G Watkin J. Chem. Soc., Chem. Commun. 266 (1992)
- 47. D M Barnhart, D L Clark, J C Gordon, J C Huffman, J G Watkin, B D Zwick Inorg. Chem. 34 5416 (1995)
- 48. R C Mehrotra, A Singh, U M Tripathi Chem. Rev. 91 1287 (1991)
- W G van der Sluys, C J Burns, J C Huffman, A P Sattelberger, J. Am. Chem. Soc. 110 5924 (1988)
- D M Barnhart, T M Frankcom, P L Gordon, N N Sauer, J A Thompson, J G Watkin *Inorg. Chem.* 34 4862 (1995)
- 51. W G van der Sluys, J C Huffman, D S Ehler, N N Sauer Inorg. Chem. **31** 1316 (1992)
- B A Vaartstra, J C Huffman, P S Gradeff, L G Hubert-Pfalzgraf, J-C Daran, S Parraud, K Yunlu, K G Caulton *Inorg. Chem.* 29 3126 (1990)
- 53. C H Winter, P H Sheridan, M J Heeg Inorg. Chem. 30 1962 (1991)
- 54. D L Clark, J G Watkin Inorg. Chem. 32 1766 (1993)
- 55. J M Berg, A P Sattelberger, D E Morris, W G van der Sluys, P Fleig *Inorg. Chem.* **32** 647 (1993)
- 56. T Arliguie, D Baudry, J C Berthet New J. Chem. 15 569 (1991)
- L K Templeton, D H Templeton, N Bartlett, K Seppelt Inorg. Chem. 15 2720 (1976)
- 58. S D McKee, C J Burns, L R Avens Inorg. Chem. 37 4040 (1998)
- 59. P Roussel, P B Hitchcock, N D Tinker, P Scott Inorg. Chem. 36 5716 (1997)
- M R Duttera, V W Day, T J Marks J. Am. Chem. Soc. 106 2907 (1984)
- D L Clark, S D Conradson, D W Keogh, P D Palmer, B L Scott, C D Tait *Inorg. Chem.* 37 2893 (1998)
- A Anderson, C Chieh, D E Irish, J P K Tong Can. J. Chem. 58 1651 (1980)
- A Coda, A Dell Giusta, V Tazzoli Acta Crystallogr., Sect. B 37 1496 (1981)
- R Graziani, G Bombieri, E Forsellini J. Chem. Soc., Dalton Trans. 2059 (1972)
- 65. M S Grigor'ev, I G Tananaev, N N Krot, A I Yanovskii, Yu T Struchkov *Radiokhimiya* 39 325 (1997)^a
- 66. J Bruno, I Grenthe, P Robouch Inorg. Chim. Acta. 158 221 (1989)
- 67. L B Serezhkina, V N Serezhkin Radiokhimiya 38 117 (1996)^a
- 68. L B Serezhkina, V N Serezhkin Zh. Neorg. Khim. 41 427 (1996)^b
- 69. L B Serezhkina, V N Serezhkin Zh. Neorg. Khim. 41 438 (1996) b
- 70. L B Serezhkina, V N Serezhkin Koord. Khim. 22 786 (1996) °
- 71. C J Dodge, A J Francis Environ. Sci. Technol. 31 3062 (1997)
- 72. M T H Tarafder, A R Khan J. Indian Chem. Soc. 74 489 (1997)
- M Bhattacharjee, M K Chaudhuri, R N D Purkoyastha J. Chem. Soc., Dalton Trans. 2883 (1990)
- 74. S A Kulyukhin, N B Mikheev Radiokhimiya 39 127; 130 (1997) a
- 75. C S Tellez, J Gomez-Lara Spectrochim. Acta. 51A 395 (1995)
- 76. C S Tellez, J Gomez-Lara, M A Mondragdn, V M CastaKho, G R Mena Vib. Spectrosc. 9 279 (1995)
- 77. I A Charushnikova, A Yu Garnov, V P Perminov, A A Bessonov, N N Krot *Radiokhimiya* 40 302 (1998)^a
- C A Tellez-Sara, J Gomez-Lara J. Braz. Chem. Soc. 7 505 (1996)
 C A Tellez-Sara, M Arissawa, J Gomez-Lara, M A Mondragdn
- Polyhedron 19 2353 (2000)
- 80. J Gomez-Lara, Bol. Inst. Quim. UNAM 16 27 (1964)
- 81. L Matassa, N Kumar, D G Tuck Inorg. Chim. Acta. 109 19 (1985)
- N N Kostyuk, T A Kolevich, V L Shirokii, D S Umreiko Koord. Khim. 15 1704 (1989)^c

- N N Kostyuk, V L Shirokii, I I Vinokurov, N A Maier Zh. Obshch. Khim. 64 1432 (1994)^d
- Direct Synthesis of Coordination and Organometallic Compounds. (Eds A D Garnovskii, B I Kharisov) (Amsterdam: Elsevier, 1999)
- R L Belford, A E Martell, M Calvin J. Inorg. Nucl. Chem. 14 169 (1960)
- 86. D C Bradley, M A Saad, W Wardlaw J. Chem. Soc. 1091 (1954)
- 87. A G Maddock, A Pires de Matos Radiochim. Acta. 18 71 (1972)
- 88. E T Samulski, D G Karraker J. Inorg. Nucl. Chem. 29 993 (1967)
- 89. S D McKee, C J Burns, L R Avens Inorg. Chem. 37 4040 (1998)
- D L Clark, S K Grumbine, B L Scott, J G Watkin Organometallics 15 949 (1996)
- 91. D C Bradley, B Harder, F Hudswell J. Chem. Soc. 3318 (1957)
- W G van der Sluys, C J Burns, A P Sattelberger Organometallics 8 855 (1989)
- 93. A Vallat, E Laviron, A Dormond J. Chem. Soc., Dalton Trans. 921 (1990)
- 94. J G Brennan, R A Andersen, A Zalkin Inorg. Chem. 25 1756 (1986)
- 95. S D Stults, R A Andersen, A Zalkin *Organometallics* **9** 1623 (1990) 96. J-C J Berthet, J F Le Maréchal, M Lance, M Nierlich, J Vigner,
- M Ephritikhine J. Chem. Soc., Dalton Trans. 1573 (1992) 97. L A Avens, S G Bott, D L Clark, A P Sattelberger, J G Watkin,
- B D Zwick Inorg. Chem. 33 2248 (1994)
- 98. D L Clark, A P Sattelberger, S G Bott, R N Vrtis Inorg. Chem. 28 1771 (1989)
- 99. J Drozdzyuski, J G H Du Preez Inorg. Chim. Acta. 218 203 (1994)
- 100. L R Avens, D M Barnhart, C J Burns, S D McKee Inorg. Chem. 35 537 (1996)
- W G van der Sluys, J M Berg, D Barnhardt Inorg. Chim. Acta. 204 251 (1993)
- 102. J G H Du Preez, L Gouws, H Rohwer, B J A M van Brecht, B Zeelie, U Casellato, R Graziani J. Chem. Soc., Dalton Trans. 2585 (1991)
- 103. J G H Du Preez, H E Rohwer, B J A M van Brecht, H Zeelve, U Casellato, R Graziani *Inorg. Chim. Acta.* 189 67 (1991)
- J G H Du Preez, B Zeelie Inorg. Chim. Acta. 161 187 (1989)
 L Arnaudet, R Bougon, B Buu, M Lance, M Nierlich, J Vinger
- Inorg. Chem. 33 4510 (1994)
- 106. D C Moody, J D Odom J. Inorg. Nucl. Chem. 41 533 (1979)
- 107. S J Simpson, R A Andersen J. Am. Chem. Soc. 103 4063 (1981)
- 108. N Kumar, D G Tuck Inorg. Chem. 22 1951 (1983)
- 109. G B Deacon, T D Tuong *Polyhedron* 7 249 (1988)
- D M Barnhart, D L Clark, S K Grumbine, J G Watkin Inorg. Chem. 34 1695 (1995)
- 111. R J Butcher, D L Clark, S K Grumbine, B L Scott, J G Watkin Organometallics 15 1488 (1996)
- 112. R A Andersen Inorg. Chem. 18 1507 (1979)
- 113. R S Sternal, T J Marks Organometallics 6 2621 (1987)
- B Kanellokopulos, E O Fischer, E Dornberger, F Baumgartner J. Organomet. Chem. 24 507 (1970)
- D Baudry, E Bulot, M Ephritikhine J. Chem. Soc., Chem. Commun. 1316 (1989)
- C Clappe, D Hauchard, G Durand J. Electroanal. Chem. 448 95 (1998)
- 117. J-F Le Maréchal, C Villers, P Charpin, M Lance, M Nierlich, J Vigner, M Ephritikhine J. Chem. Soc., Chem. Commun. 308 (1989)
- 118. J G Brennan, S D Stults, R A Andersen, A Zalkin Inorg. Chim. Acta. 139 201 (1987)
- 119. B E Bursten, R J Strittmatter J. Am. Chem. Soc. 109 6606 (1987)
- 120. J E Ellis, W Beck Angew. Chem. 34 2489 (1995)
- 121. S Di Bella, A Gulino, G Lanza, I L Fragala J. Phys. Chem. 97 11673 (1993)
- 122. A C Gulina, S Di Bella Organometallics 11 3248 (1992)
- M Spirlet, J Rebizant, C Apostolidis, E Dornberger, B Kanellakopulos, B Powietzka *Polyhedron* 15 1503 (1996)
- 124. X Jemine, J Goffart, P C Leverd J. Organomet. Chem. 469 55 (1994)
- 125. P C Blake, M F Lappert, J L Atwood, H Zhang J. Chem. Soc., Chem. Commun. 1436 (1988)
- 126. S Di Bella, G Lanza, I L Fragala, T J Marks Organometallics 15 205 (1996)
- 127. W K Kot, G V Shalimov, N M Edelshtein, M A Edelman, M F Lappert J. Am. Chem. Soc. 110 986 (1988)

- 128. K G Moloy, T J Marks J. Am. Chem. Soc. 106 7051 (1984)
- 129. K G Moloy, T J Marks Inorg. Chim. Acta. 110 127 (1985)
- 130. K Tatsumi, A Nakamura, P Hoffman, P Stauffert, R Hoffmann J. Am. Chem. Soc. 107 4440 (1985)
- 131. J-F Le Marechal, M Ephritikhine, G Folcher J. Organomet. Chem. 299 85 (1986)
- 132. J H Burns, P G Laubereau Inorg. Chem. 10 2789 (1971)
- 133. J Goffart, S Bettonville J. Organomet. Chem. 361 17 (1989)
- 134. D Baudry, M Ephritikhine, F Nief, L Ricard, F Mathey Angew. Chem., Int. Ed. Engl. 29 1485 (1990)
- 135. T Arliguie, M Lance, M Nierlich, J Vigner, M Ephritikhine J. Chem. Soc., Chem. Commun. 183 (1995)
- 136. J C Green, N Kaltsoyannis, K H Sze, M MacDonald J. Am. Chem. Soc. 116 1994 (1994)
- 137. A R Schake, L R Avens, C J Burns, D L Clark, A P Sattelberger, W H Smith Organometallics, 12 1497 (1993)
- C Boisson, J C Berthet, M Ephritikhine J. Chem. Soc., Dalton Trans. 947 (1996)
- A F England, C J Burns, S L Buchwald Organometallics 13 3491 (1994)
- 140. B Kanellakopulos, E Dornberger, F Baumgarther Inorg. Nucl. Chem. Lett. 10 155 (1974)
- 141. C-H Wong, T Yen, T Lee Acta Crystallogr. 18 340 (1965)
- 142. M Weydert, J G Brennan, R A Andersen, R G Bergman Organometallics 14 3942 (1995)
- 143. G Paolucci, G Rosserto, P Zanella, R G Fischer J. Organomet. Chem. 284 213 (1985)
- 144. F Ossola, G Rosserto, P Zanella, G Paolucci J. Organomet. Chem. 309 55 (1986)
- M Porchia, N Brianese, U Casellato, F Ossola, G Rosserto, P Zanella, R Graziani J. Chem. Soc., Dalton Trans. 677 (1989)
- 146. P Zanella, N Brianese, U Casellato, F Ossola, M Porchia, G Rossetto, R Graziani J. Chem. Soc., Dalton Trans. 2039 (1987)
- 147. M R Leonov, N I Gramoteeva, V A II'yushenkov, L A Pogodina *Radiokhimiya* 42 210 (2000)^a
- 148. H Lauke, P N Swepston, T J Marks J. Am. Chem. Soc. 106 6841 (1984)
- 149. T Arliguie, M Lance, M Ephritikhine J. Chem. Soc., Dalton Trans. 2501 (1997)
- T R Boussie, D C Eisenberg, J Rigsbee, A Streitwieser, A Zalkin Organometallics 10 1922 (1991)
- 151. A Streitwieser, M T Barros, H K Wang, T R Boussie Organometallics 12 5023 (1993)
- 152. D G Karraker, A Stone J. Am. Chem. Soc. 96 6885 (1974)
- 153. D G Karraker J. Inorg. Nucl. Chem. 39 87 (1977)
- 154. T M Gilbert, R R Ryan, A P Sattelberger Organometallics 8 857 (1989)
- 155. A R Achake, L R Avens, C J Burns, D L Clark, A P Sattelberger, W H Smith Organometallics 12 1497 (1993)
- 156. J Ogden, in Cryochemistry (Eds M Moskovitz, G A Ozin) (New York: Wiley, 1976) Ch. 7, p. 146
- 157. C Villiers, M Ephritikhine J. Chem. Soc., Dalton Trans. 3397 (1994)
- 158. B C Ankianies, P E Fanwick, I P Rothwell J. Am. Chem. Soc. 113 4710 (1991)
- 159. R Adam, C Villiers, M Ephritikhine New J. Chem. 17 455 (1993)
- 160. A Hafid, A Dormond, D Baudry New J. Chem. 18 557 (1994)
- 161. R R Ryan Inorg. Chim. Acta. 162 221 (1989)
- 162. D Baudry, E Bulot, M Ephritikhine J. Chem. Soc., Chem. Commun. 1369 (1988)
- 163. D Rabinovich, R M Chamberlin, B L Scott, J B Nielsen, K D Abney Inorg. Chem. 36 4216 (1997)
- 164. D L Clark, J G Watkin, S K Grumbine J. Am. Chem. Soc. 117 9089 (1995)
- 165. D Rabinovitch, C M Haswell, B L Scott, R L Miller, J B Nielsen, K D Abney Inorg. Chem. 35 1425 (1996)
- 166. J-C Berthet, J-F Le Marcchal, M Ephritikhine J. Chem. Soc., Chem. Commun. 360 (1991)
- 167. S M Cendrowski-Guillaume, M Ephritikhine J. Chem. Soc., Dalton Trans. 1487 (1996)
- F M De Rege, W H Smith, B L Scott, J B Nielsen, K D Abney Inorg. Chem. 37 3664 (1998)
- O Bilsel, S N Milam, G S Girolami, K S Suslick, D Holten J. Phys. Chem. 97 7216 (1993)

- 170. B I Kharisov, M A Mendes-Roias, F A Ganich Koord. Khim. 26 323 (2000)^c
- 171. M K Engel Rep. Nakamura Inst. Chem. Res., Vol. Date 1996 8 11 (1997)
- 172. B Nartsissov, US Department of Commerce, Aerospace Technology Division, Library of Congress, Washington, DC, Rep. No AD 629515 (Microfilm) (1966)
- 173. A L Thomas *Phthalocyanines. Research and Application* (Boca Raton, FL: CRC Press, 1990)
- 174. K L Raymond, G E Freeman, M J Kappel Inorg. Chim. Acta 94 193 (1984)
- 175. Y-D Z Han, S-Y Ying-Jie Niu Sci. China., Ser. B, Chem., Life Sci. 36 1061 (1993)
- M G Lappert, P P Power, A R Sanger, R C Srivastava Metal and Metalloid Amides (New York: Wiley, 1980)
- 177. J C Berthet, C Boisson, M Lance, J Viegner, M Nierlich, M Ephritikhine J. Chem. Soc., Dalton Trans. 3019 (1995)
- 178. P Roussel, P Hitchcock, B P Scott *Inorg. Chem.* **36** 5716 (1997) 179. A Zalkin, J G Brennan, R A Andersen *Acta Crystallogr., Sect. C.*
- **43** 418; 421 (1987)
- 180. S E Turman, W G van der Sluys *Polyhedron* 11 3139 (1992)
 181. C J Burns, D C Smith, A P Sattelberger, H B Gray *Inorg. Chem.*
- 31 3724 (1992)182. Yu N Mikhailov, Yu E Gorbunova, V N Serezhkin *Dokl. Akad.*
- Nauk, Ser. Khim. **358** 360 (1998) 183. M Müller, V C Williams, L H Doerrer, M A Leech, S A Mason,
- M L H Green, K Prout Inorg. Chem. **37** 1315 (1998) 184. R Wietzke, M Mazzanti, J Pecaut J. Chem. Soc., Dalton Trans.
- 4087 (1998) 185. J-C Berthet, Ch Boisson, M Ephritikhine J. Chem. Soc., Dalton
- Trans. 3027 (1995)
- 186. P Scott, P B Hitchcock J. Chem. Soc., Dalton Trans. 603 (1995)
- 187. J-C Berthet, M Ephritikhine Coord. Chem. Rev. 178 83 (1998)
- 188. D S J Arney, C J Burns J. Am. Chem. Soc. **117** 9448 (1995)
- 189. R E Cramer, K Panchanatheswaran, J W Gilje J. Am. Chem. Soc. 106 1853 (1984)
- 190. J G Brennan, R A Andersen J. Am. Chem. Soc. 107 514 (1985)
- 191. A L Odom, P L Arnold, C C Cummins J. Am. Chem. Soc. 120 5836 (1998)
- 192. G P Kushto, P F Souter, L Andrews J. Chem. Phys. 108 7121 (1998)
- 193. T Straub, W Frank, M S Eisen J. Chem. Soc., Dalton Trans. 2541 (1996)
- 194. A Cassol, P Di Bernardo, R Portanova, M Tolazzi, G Tomat, P Zanonato *Inorg. Chem.* 29 1079 (1990)
- 195. D R Brown, R G Denning, R H Jones J. Chem. Soc., Chem. Commun. 2601 (1994)
- 196. R G Denning Struct. Bond. 79 215 (1992)
- 197. L R Morss, W T Carnall, C W Williams J. Less-Common Met. 169 1 (1991)
- 198. P Scott, P B Hitchcock J. Chem. Soc., Chem. Commun. 579 (1995)
- 199. V S Koltunov, E A Mezhov, S M Baranov *Radiokhimiya* **42** 65 (2000)^a
- 200. O V Mikhailov Radiokhimiya 40 316 (1998) a
- 201. M R Maurya, R C Maurya Rev. Inorg. Chem. 15 1 (1995)
- A M El-Hendawy, A El-Kourashy, M M El-Ghany Shanab Polyhedron 11 523 (1992)
- 203. A Syamal, M M Singh Indian J. Chem., Sect. A, Inorg. 37 350 (1998)
- 204. A Syamal, M M Singh Indian J. Chem., Sect. A, Inorg. 31 110 (1992)
- 205. A H Amrallah Pak. J. Sci. Ind. Res. 37 231 (1994)
- 206. A Syamal, M M Singh React. Polym. 21 149 (1993)
- 207. I V Khudyakov, N J Turro, I K Yakushenko J. Photochem. Photobiol. 63 25 (1992)
- 208. D L Clark, J G Watkin, R J Butcher Organometallics, 14 2799 (1995)
- 209. M D Fryzuk, T S Haddad, D J Berg Coord. Chem. Rev. 99 137 (1990)
- 210. P G Edwards, P A Andersen, A Zalkin J. Am. Chem. Soc. 103 7792 (1981)
- 211. P G Edwards, J S Parry, P W Reed Organometallics 14 3649 (1995)
- 212. S G Deshpande, S C Jain Indian J. Chem., Sect. A, Inorg. 30 549 (1991)
- 213. M Nierlich, P Gradoz, M Ephritikhine J. Organometal. Chem. 481 69 (1994)

- 214. S J Coles, A A Danopoulos, P W Read J. Chem. Soc., Dalton Trans. 3401 (1995)
- 215. K Aparna, S S Krishnamurthy, M Nethaji J. Chem. Soc., Dalton Trans. 2991 (1995)
- A Vasilescu-Saidel, C N Turcanu, R Grosescu J. Radioanal. Nucl. Chem. 203 177 (1996)
- 217. A Vasilescu-Saidel, C N Turcanu, R Grosescu J. Radioanal. Nucl. Chem. 203 189 (1996)
- R Arad-Yellin, M Zangen, H Gottlieb J. Chem. Soc., Dalton Trans. 2081 (1990)
- 219. T L Novoderezhkina, A F Borina, B N Kulikovskii Koord. Khim. 22 797 (1996)^c
- 220. M R Duttera, P J Fagan, T J Marks, V W Day J. Am. Chem. Soc. 104 865 (1982)
- 221. H J Wasserman, D C Moody, R R Ryan J. Chem. Soc., Chem. Commun. 532 (1984)
- 222. H J Wasserman, D C Moody, R T Paine, R R Ryan, K V Salazar J. Chem. Soc., Chem. Commun. 533 (1984)
- 223. R E Cramer, S Roth, J W Gilje Organometallics 8 2327 (1989)
- 224. P C Leverd, M Lance, M Ephritikhine J. Chem. Soc., Dalton Trans. 3563 (1994)
- 225. T Arliguie, M Fourmique, M Ephritikhine Organometallics 19 109 (2000)
- 226. K Tatsumi, I Matsubara, Y Inoue, A Nakamura, R E Cramer, G J Tagoshi, J A Golen, J W Gilje *Inorg. Chem.* 29 4928 (1990)
- 227. P C Leverd, M Lance, M Ephritikhine J. Chem. Soc., Dalton Trans. 237 (1995)
- 228. I A Charushnikova, N N Krot, Z A Starikova Radiokhimiya 42 397 (2000)^a
- 229. P C Leverd, T Arliguie, M Lance J. Chem. Soc., Dalton Trans. 501 (1994)
- 230. P C Leverd, T Arliguie, M Ephritikhine New J. Chem. 17 769 (1993)
- 231. T Arliguie, M Fourmigue, M Ephritikhine Organometallics 19 109 (2000)
- 232. L Bahadur, J P Pandey J. Electrochem. Soc. 137 3755 (1990)
- P C Leverd, M Lance, M Nierlich, J Viegner, M Ephritikhine J. Chem. Soc., Dalton Trans. 2251 (1993)
- 234. F D Rochon, R Melanson, P-C Kong Inorg. Chem. 37 87 (1998)
- 235. S Baum, R Bramlet *Basic Nuclear Medicine* (New York: Appleton-Century-Crofts, 1975)
- Radiopharmaceuticals (Eds G Subramanian, B A Rhodes, J F Cooper, V J Sodd) (New York: The Society of Nuclear Medicine, 1975)
- 237. J Barrera, A K Burrel, J C Bryan Inorg. Chem. 35 335 (1996)
- D J Rose, K P Maresca, T Nicholson, A Davison, A G Jones, J Babich, A Fischman, W Graham, J R D DeBord, J Zubieta *Inorg. Chem.* 37 2701 (1998)
- M J Abrams, S K Larsen, S N Shalkh, J Zubieta Inorg. Chim. Acta 185 7 (1991)
- 240. M Hirsch-Kuchma, T Nicholson, A Davison, W M Davis, A G Jones Inorg. Chem. 36 3237 (1997)
- 241. J Lu, A Yamano, M J Clarke Inorg. Chem. 29 3483 (1990)
- 242. A Marchi, R Rossi, L Magon, A Duatti, U Casellato, R Graziani, M Vidal, F Riche J. Chem. Soc., Dalton Trans. 1935 (1990)
- 243. C M Archer, J R Dilworth, D V Griffiths, M McPartlin, J D Kelly J. Chem. Soc., Dalton Trans. 183 (1992)
- 244. A Marchi, L Marvelli, R Rossi, L Magon, V Bertolasi, V Ferretti, P Gilli J. Chem. Soc., Dalton Trans. 1485 (1992)
- 245. J Baldas, J F Boas, S F Colmanet, G A Williams J. Chem. Soc., Dalton Trans. 2845 (1992)
- 246. C Bolzati, L Uccelli, A Duatti, M Venturini, C Morin, S Chéradame, F Refosco, F Ossola, F Tisato *Inorg. Chem.* 36 3582 (1997)
- 247. U Abram, E S Lang, S Aram, J Wegmann, J R Dilworth, R Kirmse, J D Woollins J. Chem. Soc., Dalton Trans. 623 (1997)
- 248. M Cattabriga, A Marchi, L Marvelli, R Rossi, G Vertuani, R Pecoraro, A Scattarin, V Bertolasi, V Ferretti J. Chem. Soc., Dalton Trans. 1453 (1998)
- 249. A K Burrell, D L Clark, P L Gordon, A P Sattelberger, J C Bryan J. Am. Chem. Soc. 116 3813 (1994)
- J G Du Preez, T I A Gerber, M L Gibson J. Coord. Chem. 22 33 (1990)
- 251. J Barrera, J C Bryan Inorg. Chem. 35 1825 (1996)

- 252. C M Archer, J R Dilworth, P Jobanputra, R M Thompson, M McPartlin, W Hiller J. Chem. Soc., Dalton Trans. 897 (1999)
- 253. E N Treher, L C Francesconi, J Z Gougoutas, M F Malley, A D Nunn *Inorg. Chem.* **28** 3411 (1989)
- 254. C M Archer, J R Dilworth, R M Thompson, M McPartlin, D C Povey, J D Kelly J. Chem. Soc., Dalton Trans. 461 (1993)
- 255. T Konno, J R Kirchhoff, M J Heeg, W R Heineman, E Deutsch J. Chem. Soc., Dalton Trans. 3069 (1992)
- 256. E Shuter, H R Hoveyda, V Karunaratne, S J Rettig, C Orvig Inorg. Chem. 33 368 (1996)
- 257. L A de Learie, R C Haltiwangen, C G Pierpont J. Am. Chem. Soc. 111 4324 (1989)
- M Chatterjee, B Achari, S Das, R Banerjee, C Chakrabarti, J K Dattagupta, S Banerjee *Inorg. Chem.* 37 5424 (1998)
- N Bryson, J C Dewan, J Lister-James, A G Jones, A Davison Inorg. Chem. 27 2154 (1988)
- N Bryson, J Lister-James, A G Jones, W M Davis, A Davison Inorg. Chem. 29 2948 (1990)
- 261. A Yokoyama, H Saji, H Tanaka, T Odori, R Morita, T Mori, K Torizuka J. Nucl. Med. 17 810 (1976)
- 262. I Ikeda, O Inoue, K Kurata J. Nucl. Med. 18 1223 (1977)
- 263. W Brandau, B Bubeck, M Eisenhut, D M Taylor Appl. Radiat. Isot. 39 121 (1988)
- 264. M Chattopadhyay, K N Jalan, A K Pal, S N Benerjee Nucl. Med. Biol. 15 535 (1988)
- 265. L G Marzilli, M G Banaszcyk, L Hansen, Z Kuklenyik, R Cini, A Taylor *Inorg. Chem.* 33 4850 (1994)
- R Rossi, A Marchi, L Magon, A Duatti, V Casellato, R Graziani Inorg. Chim. Acta 160 23 (1989)
- 267. E Wong, T Fauconnier, S Bennett, J Valliant, T Nguyen, F Lau, L F L Lu, A Pollak, R A Bell, J R Thornback *Inorg. Chem.* 36 5799 (1997)
- 268. C M Archer, J R Dilworth, D V Griffithi, M J Al-Jebbori, J D Kelly, C Lu, M J Rosser, Y Zheng J. Chem. Soc., Dalton Trans. 1403 (1997)
- F Refosco, F Tisato, G Bandoli, E Deutsch J. Chem. Soc., Dalton Trans. 2901 (1993)
- 270. H Luo, I Setyawati, S J Rettig, C Orvig Inorg. Chem. 34 2287 (1995)
- 271. L Kaden, A J L Pombeiro, Y Wang, U Abram Inorg. Chim. Acta 230 189 (1995)
- 272. F Tisato, F Refosco, G Bandoli, C Bolzati, A Moresco J. Chem. Soc., Dalton Trans. 1453 (1994)
- 273. F A Cotton, L M Daniels, L R Falvello, M S Grigoriev, S V Kryuchkov Inorg. Chim. Acta 189 53 (1991)
- 274. F A Cotton, L M Daniels, S C Haefner, A P Sattelberger *Inorg. Chim. Acta* **288** 69 (1999)
- 275. F A Cotton, S C Haefner, A P Sattelberger Inorg. Chem. 35 1831 (1996)
- 276. F A Cotton, S C Haefner, A P Sattelberger Inorg. Chem. 35 7350 (1996)
- 277. J C Bryan, F A Cotton, L M Daniels, S C Haefner, A P Sattelberger *Inorg. Chem.* 34 1875 (1995)
- 278. F A Cotton, S C Haefner, A P Sattelberger J. Am. Chem. Soc. 118 5486 (1996)
- 279. Yu V Plekhanov, S V Kryuchkov Radiokhimiya 39 210 (1997)^a
- 280. M S Grigor'ev, A E Miroslavov, G V Sidorenko, D N Suglobov *Radiokhimiya* **39** 204 (1997)^a
- 281. M S Grigor'ev, A E Miroslavov, G V Sidorenko, D N Suglobov *Radiokhimiya* **39** 207 (1997)^a
- N I Gorshkov, A A Lumpov, A E Miroslavov, D N Suglobov Radiokhimiya 42 213 (2000)^a
- 283. S S Travnikov, E V Fedoseev, A V Davydov, B F Myasoedov, in *Teoreticheskaya i Prikladnaya Khimiya β-Diketonatov Metallov* (Theoretical and Applied Chemistry of Metal β-Diketonates) (Eds V I Spitsyn, L I Martynenko) (Moscow: Nauka, 1985) p. 224
 - ^a Radiochemistry (Engl. Transl.)
 - ^b Russ. J. Inorg. Chem. (Engl. Transl.)
 - ^c Russ. J. Coord. Chem. (Engl. Transl.)
 - ^d Russ. J. Gen. Chem. (Engl. Transl.)
 - ^e Dokl. Chem. (Engl. Transl.)