Dialkylation of Diethyl Ethoxycarbonylmethylphosphonate under Microwave and Solventless Conditions

Alajos Grün,¹ Zsófia Blastik,¹ László Drahos,² and György Keglevich¹

¹Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521, Budapest, Hungary

²*Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1525, Budapest, Hungary*

Received 6 September 2013; revised 17 December 2013

ABSTRACT: To further broaden the methods for the heterogeneous phase alkylation of CH acidic compounds, the dialkylation of diethyl ethoxycarbonylmethylphosphonate was studied in the presence of Cs₂CO₃ under microwave and solvent-free conditions. It was found that after repeating the alkylations by the addition of newer portions of the alkylating agent and the base on a few occasions, the dialkylation was quite efficient. Even dialkyl derivatives with different alkyl groups could be synthesized. The presence of a phase-transfer catalyst was harmful, as prevented the formation of the dialkyl products. © 2014 Wiley Periodicals, Inc. Heteroatom Chem. 25:107–113, 2014; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21142

INTRODUCTION

The dialkylation of simple CH acidic compounds by the classical method of generating the anion with sodium ethylate in ethanol and reacting it with an alkyl halide followed by the repetition of this procedure with the same or another alkyl halide is well

© 2014 Wiley Periodicals, Inc.

known [1,2]. A more developed version is the dialkylation under the conditions of phase-transfer catalysis (PTC). The few examples described in the literature comprise liquid–liquid (L–L) and solid–liquid (S–L) accomplishments. In the L–L two-phase alkylations, aqueous sodium hydroxide was the base and dichloromethane [3] or chloroform [4], the solvent. The S–L alkylations applied K_2CO_3 base in toluene [5], acetonitrile [6], or dimethylformamide [7] as the reaction medium. In the above cases, quaternary ammonium salts (Bu₄NX and triethylbenzylammonium chloride, i.e., TEBAC) or 18-crown-6 served as the catalyst. The "homo" dialkylated products were isolated in yields of 68%–96%.

Regarding the dialkylation of P-functionalized CH acidic compounds, mostly, ethoxycarbonylmethylphosphonate was the starting material. It was dialkylated in two steps, applying potassium in xylene [8], or in benzene [9]. Using different alkyl halides, the yields were variable (54%–75%). It was also an option to use sodium hydride as the base in tetrahydrofuran [10, 11] or in 1,2-dimethoxyethane [12]. In most cases, the mixtures of the mono- and dialkylated products were formed. Only one example is known for phase-transfer catalyzed dialkylation, which is the dialkylation of ethyl cyanomethylphosphonate with methyl and ethyl iodide, as well as allyl and benzyl halides in the presence of TEBAC and aqueous NaOH to afford the dialkylphosphonate derivatives in yields of 46%-88% [13].

The combination of PTC [14] with microwave (MW) [15–17] may offer additional advantages [18].

Correspondence to: György Keglevich; e-mail: gkeglevich@ mail.bme.hu.

Contract grant sponsor: Hungarian Scientific and Research Fund.

Contract grant number: OTKA No K83118.

SCHEME 1 The ethylation of ethoxycarbonylmethylphosphonate.

This was the case also within a few alkylations of CH acidic compounds [19, 20]. Recently, we have studied the effect of MW and PTC on the alkylation of a variety of CH acidic compounds in detail [21]. We found that diethyl malonate, ethyl acetoacetate, and ethyl cianoacetate could be alkylated efficiently under MW and solvent-free conditions in the presence of K₂CO₃ and in the absence of a phase-transfer catalyst [22, 23]. It means that MW irradiation substituted the catalyst. A similar situation was experienced for the ethylation of tetraethyl methylenebisphosphonate using Cs₂CO₃ [24], for the alkylation of ethoxycarbonylmethylphosphonate [25], and for the alkylation of diethyl cyanomethylphosphonate [26]. Tetraphenylmethylene(bisphosphine oxide), which is a hindered model, underwent alkylations in the presence of 5% of TEBAC in acetonitrile solution using Cs_2CO_3 [26].

In this paper, we wished to extend our study to the dialkylation of a P=O-functionalized CH acidic compound, that is, diethyl ethoxycarbonylmethylphosphonate, investigating the role of the MW and PTC techniques.

RESULTS AND DISCUSSION

First, we wished to study how the outcome of the ethylations of ethoxycarbonylmethylphosphonate (1) may be influenced by the molar ratios and the temperature (Scheme 1, Table 1). Working at 120° C in the presence of 1.2 equiv. of ethyl iodide and 1 equiv. of Cs₂CO₃, the conversion was 89% af-

 TABLE 1
 The Alkylation of Ethoxycarbonylmethylphosphonate (1) under Different Conditions

Entry		Т (°С)	Product Ratio (%) ^a			
	Etl (equivalent)		2a	3a	Other	
1	1.2	120 ^b	83	6	С	
2	3	120	58	42		
3	3	140	60	40		
4	5	120	52	48		

^aOn the basis GC.

^bCs₂CO₃: 1 equivalent; reaction time: 2 h. ^cStarting material (1): 11%. ter a reaction time of 2 h. The monoethylated product (**2a**) predominated over the diethyl species (**3a**) formed in 83% and 6%, respectively (Table 1, entry 1). Remaining at 120°C, but using 3 equiv. of ethyl iodide and 2 equiv. of Cs_2CO_3 , the ratio of products **2a** and **3a** was 58:42 after 3 h (Table 1, entry 2). The increase of the temperature to 140°C had practically no effect on the product ratio (Table 1, entry 3). Returning to 120°C, but measuring in 5 equiv. of ethyl iodide resulted in a slight increase in the proportion of the diethylated product (**3a**) that was found 48% (Table 1, entry 4). One can see that varying the different parameters, a maximum amount of only approximately 48% of the diethyl species (**3a**) can be attained.

Hence, in the next experiments, a multistep approach was followed as shown in Scheme 2 and Table 2. The first step was performed as shown by the experiment specified by Table 1, entry 1. The reaction mixture was then diluted with ethyl acetate, and the solid components were removed by filtration. The filtrate was concentrated and reacted further with a second portion (2 equiv.) of ethyl iodide in the presence of 1.5 equiv. of Cs_2CO_3 at 120°C for 2 h. After the second ethylation, the ratio of the monoethyl and diethyl product (3a) was 41%-59% (Table 2, entry 1, step 2). Repeating the procedure twice, the proportion of the diethyl compound (3a) was, in order, 91% and 98% (Table 2, entry 1, steps 3 and 4). Column chromatography afforded the final product (3a) in a yield of 64%.

Then, the procedure elaborated was applied for the preparation of the dipropyl product **3b** (Table 2, entries 2 and 3). Applying propyl bromide and propyl iodide, the proportion of the dipropyl species (**3b**) was 61% and 70%, respectively, after the fourth alkylation (Table 2, entry 2, step 4 and Table 2, entry 3, step 4). Chromatography furnished product **3b** in 29/41% yields.

The dibutylation was also performed (Table 2, entries 4 and 5). The final outcome was more modest with butyl bromide than with butyl iodide; in the fourth step, product **3c** was obtained in 36% and 76%, respectively (Table 2, entry 4, step 4 and Table 2, entry 5, step 4). The preparative yield of

SCHEME 2 The alkylation/dialkylation of ethoxycarbonylmethylphosphonate.

dibutyl compound **3c** was 48% in respect of the last experiment.

It can be seen that the four-step procedure is suitable to "enrich" the content of the dialkyl ethoxy-carbonylmethylphosphonate (**3a–c**) to an extent of 70%–98%.

The three products (**3a–c**) were characterized by ³¹P, ¹³C, and ¹H nuclear magnetic resonance (NMR), as well as high-resolution mass spectrometry (HR-MS).

Comparative thermal experiments were also carried out for the four-step alkylation with propyl iodide. It can be seen that after the fourth step, the proportion of the dialkylated product (3b) was somewhat lower and, at the same time, that of the byproducts was somewhat higher as compared with the MW variation (Table 2, entries 6 vs. 3 in respect of step 4).

In the next part of our work, we investigated the effect of a phase-transfer catalyst, such as TEBAC or tetrabutylammonium bromide (TBAB) (Scheme 3, Table 3). Using 10% of TEBAC, the relative proportion of the monoethyl product (**2a**) decreased from 83% to 75%, while that of the starting material (**1**) and diethyl product (**3a**) remained almost unchanged (11/8% and 6/7%, respectively). A total of 10% of unidentified by-products also appeared in the mixture (Table 2, entry 1, step 1 vs. Table 3, entry 1, step 1). After the second ethylation, the ratio of **2a** and **3a** was 62:21 (Table 3, entry 1,

TABLE 2 MW-Assisted Dialkylation of Ethoxycarbonylmethylphosphonate 1 by a Four-Step Alkylation Fashion

	Step	RX	Equivalent			Compo			
Entry				Cs_2CO_3 (equivalent)	1	2	3	Other	Yield of 3 (%)
1	1	Etl	1.2	1	11	83 (2a)	6 (3a)		64 (3a)
	2	Etl	2	1.5	_	41 (2a)	59 (3a)		. ,
	3	Etl	2	1.5	_	9 (2a)	91 (3a)		
	4	Etl	2	1.5	-	2 (2a)	98 (3a)		
2	1	PrBr	1.2	1	10	81 (2b)	4 (3b)	5	29 (3b)
	2	PrBr	2	1.5	_	62 (2b)	33 (3b)	5	· · ·
	3	PrBr	2	1.5	_	41 (2b)	51 (3b)	8	
	4	PrBr	2	1.5	_	29 (2b)	61 (3b)	10	
3	1	Prl	1.2	1	12	77 (2b)	3 (3b)	8	41 (3b)
	2	Prl	2	1.5	_	64 (2b)	27 (3b)	9	()
	3	Prl	2	1.5	_	32 (2b)	55 (3b)	13	
	4	Prl	2	1.5	_	16 (2b)	70 (3b)	14	
4	1	BuBr	1.2	1	14	79 (2c)	3 (3c)	4	
	2	BuBr	2	1.5	_	73 (2c)	19 (3c)	8	
	3	BuBr	2	1.5	_	66 (2c)	26 (3c)	8	
	4	BuBr	2	1.5	-	55 (2c)	36 (3c)	9	
5	1	Bul	1.2	1	14	77 (2c)	5 (3c)	4	48 (3c)
	2	Bul	2	1.5	_	67 (2c)	27 (3c)	6	()
	3	Bul	2	1.5	_	29 (2c)	62 (3c)	9	
	4	Bul	2	1.5	-	13 (2c)	76 (3c)	11	
6 ^b	1	Prl	1.2	1	12	72 (2b)	3 (3b)	13	
	2	Prl	2	1.5	_	62 (2b)	20 (3b)	18	
	3	Prl	2	1.5	_	28 (2b)	49 (3b)	23	
	4	Prl	2	1.5	-	17 (2b)	59 (3b)	24	

^aOn the basis GC.

^bComparative thermal experiments.

SCHEME 3 The ethylation of ethoxycarbonylmethylphosphonate in the presence of a phase transfer catalyst.

step 2), while in the absence of TEBAC, this ratio was 41:59 (Table 2, entry 1, step 2). Moreover, the proportion of the by-products amounted to 17% when TEBAC was used (Table 3, entry 1, step 2). It can be concluded that the presence of the phase-transfer catalyst disfavored the formation of the monoethyl compound 2a in the first step and that of the diethyl species 3a, to a higher extent, in the second step. The by-products were identified as the benzyl, benzyl-ethyl, and the dibenzyl compounds formulated as 4, 5d, and 6, respectively. Their formation suggested that TEBAC also took part in the reaction as an alkylating agent. Quaternary onium salts may act, or may be used as alkylating agents [27]. Structure of the C-benzyl by-products (4, 5d, and 6) was supported by ³¹P NMR and HR-MS.

Carrying out the two-step ethylation in the presence of K_2CO_3 as the base, proportion of the diethyl product (**3a**) was even lower (10%) and proportion of the by-products was 20% (Table 3, entry 2, step 2). It is confirmed that the presence of TEBAC as a phasetransfer catalyst is harmful in the MW-assisted diethylation of ethoxycarbonylmethylphosphonate **1**.

However the use of 10% of TBAB did not prevent so much the formation of the diethyl compound (**3a**), as, in this case, after the second ethylation, the proportion of **3a** was 43% (Table 3, entry 3, step 2).

Finally, we aimed at the synthesis dialkylated ethoxycarbonylmethylphosphonates with two different alkyl groups. Our previous protocol was followed as shown in Scheme 2 and Table 2, with the difference that in the first step, propyl iodide, butyl iodide, or benzyl bromide was used, while, in all cases, ethyl iodide was applied in the second, third, and fourth alkylation steps (Scheme 4, Table 4). In all instances, by-products up to 26% appeared in the mixtures. Proportion of the ethyl-propyl product (5b) was 74% after the fourth alkylation step, which was isolated in a yield of 39% by column chromatography (Table 4, entry 1, step 4). The ethyl-butyl and ethyl-benzyl compounds (5c and 5d) were obtained in similar proportions and yields (Table 4, entry 2 step 4 and entry 3 step 3).

5b, **5c**, and **5d** are new compounds that were characterized by ³¹P, ¹³C, and ¹H NMR, as well as HR-MS.

It can be said that mixed dialkylated products (**5b–d**) could also be prepared by the three- or fourstep MW-assisted, solvent-free alkylation.

In summary, a multistep MW-assisted, solventand catalyst-free method was elaborated for the synthesis of dialkyl ethoxycarbonylmethylphosphonates with identical or mixed alkyl groups. The products with two different alkyl groups are of special importance. The method developed completes well

TABLE 3 Two-Step Ethylation of Ethoxycarbonylmethylphosphonate 1 under MW Conditions in the Presence of a Phase-Transfer Catalyst

Entry	Step	PTC	<i>M</i> ₂ <i>CO</i> ₃	Equivalent	Composition (%) ^a				
					1	2a	3a	Other ^b	
1	1 2	TEBAC TEBAC	Cs_2CO_3 Cs_2CO_3	1 1.5	8 -	75 62	7 21	10 17	
2	1 2	TEBAC TEBAC	K_2CO_3 K_2CO_3	1 1.5	21 _	68 70	1 10	9 20	
3	1 2	TBAB TBAB	Cs_2CO_3 Cs_2CO_3	1 1.5	_	75 57	25 43	_	

^aOn the basis of GC.

^bC-benzyl- product (4, 5d, and 6).

SCHEME 4

the earlier procedures and offers the advantage of using an up-to-date approach comprising MW irradiation without a solvent and phase-transfer catalyst.

EXPERIMENTAL

General

The ³¹P, ¹³C, and ¹H NMR spectra were obtained on a Bruker DRX-500 spectrometer (Bruker Corp. Billerica, MA, USA) operating at 202.4, 125.7, and 500 MHz, respectively. Chemical shifts are downfield relative to 85% H₃PO₄ or tetramethylsilane. The couplings are given in Hz. Mass spectrometry was performed on a Q-TOF Premier mass spectrometer (Waters Corp., Milford, MA, USA) in positive electrospray mode. The MW-assisted reactions were carried out in a CEM Discover MW reactor (CEM, Microwave Technology Ltd., Buckingham, UK) equipped with a pressure controller using *ca*. 50 W irradiation.

One-Step Diethylation of Diethyl Ethoxycarbonylmethylphosphonate (1) *under MW Conditions (Table 1, entry 4)*

Ethoxycarbonylmethylphosphonate 1, (0.20 g; 0.89 mmol), ethyl iodide (0.36 mL; 4.5 mmol), and ce-

sium carbonate (0.65 g; 1.8 mmol) were measured in a tube that was placed in the MW reactor and was irradiated under pressure control at 50 W at 120° C for 3 h. Then the mixture was taken up in 10 mL of ethyl acetate, the resulting suspension was filtered, and the filtrate was concentrated in vacuum. The residue so obtained contained 52% of the monoethyl compound (**2a**) and 48% of the diethyl species (**3a**) according to gas chromatography (GC).

General Procedure for the Multiple-Step Dialkylation of Diethyl Ethoxycarbonylmethylphosphonate under MW Conditions

First step: 0.20 g (0.89 mmol) of ethoxycarbonylmethylphosphonate **1**, 1.1 mmol of alkyl halide (ethyl iodide: 0.09 mL, *n*-propyl bromide: 0.10 mL, *n*propyl iodide: 0.10 mL, *n*-butyl bromide: 0.12 mL, *n*butyl iodide: 0.12 mL, benzyl chloride: 0.13 mL, and benzyl bromide: 0.13 mL), and 0.32 g (0.89 mmol) of Cs₂CO₃ were measured in a tube that was placed in the MW reactor and was irradiated under pressure control at 50 W at 120°C for 2 h. Then the mixture was taken up in 10 mL of ethyl acetate, the resulting suspension was filtered, and the filtrate was

		RX	Equivalent	Cs₂CO₃ (Equivalent)	Composition (%) ^a				
Entry	Step				1	2	5	Other	Yield of 5 (%)
1	1	Prl	1.2	1	12	77 (2b)	_	11	39 (5b)
	2	Etl	2	1.5	_	37 (2b)	43 (5b)	20	. ,
	3	Etl	2	1.5	_	16 (2b)	59 (5b)	25	
	4	Etl	2	1.5	-	1 (2b)	74 (5b)	25	
2	1	BuBr	1.2	1	14	79 (2c)	_	7	36 (5c)
	2	Etl	2	1.5	_	51 (2c)	26 (5c)	23	
	3	Etl	2	1.5	_	25 (2c)	50 (5c)	25	
	4	Etl	2	1.5	-	6 (2c)	71 (5c)	23	
3	1 ^b	BnBr	1.2	1	_	75 (2d)	_	25	40 (5d)
	2	Etl	2	1.5	_	21 (2d)	53 (5d)	26	. ,
	3	Etl	2	1.5	-	_	74 (5d)	26	

TABLE 4 MW-Assisted Dialkylation of Ethoxycarbonylmethylphosphonate 1 in a Four-Step Fashion

^aOn the basis of GC.

^bPurified by column chromatography.

concentrated in vacuum. The residue so obtained was analyzed by GC.

Next steps: According to the quantity of the product of previous step, 2 equiv. alkyl halide (ethyl iodide, *n*-propyl bromide, *n*-propyl iodide, *n*-butyl bromide, *n*-butyl iodide, and 1.5 equiv. Cs_2CO_3 were measured in a tube that was irradiated as in the previous case. Then the mixture was taken up in 10 mL of ethyl acetate, the resulting suspension was filtered, and the filtrate was concentrated in vacuum. The residue so obtained was analyzed by GC. The residue of the last step was purified by column chromatography (hexane–ethyl acetate 6:4, silica gel) to give the products as colorless oils (see Table 2).

Diethyl 1-ethyl-1-(ethoxycarbonyl)propylphosphonate (**3a**). Yield: 64%, ³¹P NMR (CDCl₃) δ : 27.3; ¹³C NMR (CDCl₃) δ : 9.3 (d, J = 7.5, CCH₂CH₃), 14.2 (s, OCH₂CH₃), 16.5 (d, J = 5.9, POCH₂CH₃), 24.8 (d, J = 3.6, CCH₂CH₃), 53.1 (d, J = 133.9, PCC), 61.1 (s, OCH₂), 62.4 (d, J = 7.2, POCH₂), 171.4 (d, J = 3.1, C=O); ¹H NMR (CDCl₃) δ : 0.98 (t, 6H, J = 7.4, CH₃), 1.34–1.26 (m, 6H + 3H, CH₃), 2.04–1.89 (m, 4H, CH₂), 4.25–4.10 (m, 6H, CH₂); HR-MS, (M + H)⁺found = 281.1520, C₁₂H₂₅O₅P requires 281.1518, (M + Na)⁺found = 303.1341, C₁₂H₂₄O₅PNa requires 303.1337.

Diethyl 1-propyl-1-(ethoxycarbonyl)butylphosphonate (**3b**). Yield: 41%, ³¹P NMR (CDCl₃) δ : 27.1; ¹³C NMR (CDCl₃) δ : 14.1 (s, OCH₂CH₃), 14.7 (s, CH₂CH₂CH₃), 16.5 (d, J = 5.9, POCH₂CH₃), 18.1 (d, J = 7.3, CH₂), 34.5 (d, J = 3.7, CH₂), 52.6 (d, J = 133.4, PCC), 61.1 (s, OCH₂), 62.4 (d, J = 7.2, POCH₂), 171.5 (d, J = 3.1, C=O); ¹H NMR (CDCl₃) δ : 0.92 (t, 6H, J = 7.3, CH₃), 1.34–1.26 (m, 9H + 2H, CH₂, CH₃), 1.51–1.37 (m, 2H, CH₂), 1.94–1.76 (m, 4H, CH₂), 4.24–4.10 (m, 6H, OCH₂); HR-MS, (M + H)⁺_{found} = 309.1830, C₁₄H₃₀O₅P requires 309.1831, (M + Na)⁺_{found} = 331.1651, C₁₄H₂₉O₅PNa requires 331.1650.

Diethyl 1-butyl-1-(ethoxycarbonyl)pentylphosphonate (**3c**) [8]. Yield: 48%, ³¹P NMR (CDCl₃) δ : 26.4; ¹³C NMR (CDCl₃) δ : 14.0 (s, CH₃), 14.3 (s, OCH₂CH₃), 16.6 (d, J = 5.9, POCH₂CH₃), 23.4 (s, CH₂), 26.9 (d, J = 7.0, CH₂), 32.1 (d, J = 3.6, CH₂), 52.6 (d, J = 133.2, PCC), 61.2 (s, OCH₂), 62.5 (d, J = 7.2, POCH₂), 171.7 (d, J = 3.1, C=O); ¹H NMR (CDCl₃) δ : 0.91 (t, 6H, J = 6.7, CH₃), 1.46–1.23 (m, 9H + 8H, CH₂, CH₃), 1.92–1.82 (m, 4H, CH₂), 4.24–4.09 (m, 6H, OCH₂); HR-MS, (M + H)⁺found = 337.2142, C₁₆H₃₄O₅P requires 337.2144, (M + Na)⁺found = 359.1964, C₁₆H₃₃O₅PNa requires 359.1963. The mixed alkyl products (**5b–d**) were also prepared by the general procedure.

Diethyl 1-ethyl-1-(ethoxycarbonyl)butylphosphonate (**5b**). Yield: 39%, ³¹P NMR (CDCl₃) δ : 26.4; ¹³C NMR (CDCl₃) δ : 9.3 (d, J = 7.4, OCH₂CH₃), 14.1 (s, CH₂CH₃), 14.6 (s, CH₂CH₂CH₃), 16.4 (d, J = 5.9, POCH₂CH₃), 17.9 (d, J = 7.4, CH₂CH₂CH₃), 25.2 (d, J = 3.7, CCH₂), 34.0 (d, J = 3.6, CCH₂), 52.8 (d, J = 133.6, PCC), 61.0 (s, OCH₂), 62.3 (d, J = 7.2, POCH₂), 171.4 (d, J = 3.0, C=O); ¹H NMR (CDCl₃) δ : 0.92 (t, 3H, J = 7.5, CH₃), 0.98 (t, 3H, J = 7.4, CH₃), 1.34–1.26 (m, 9H + 1H, CH₂, CH₃), 1.51–1.43 (m, 1H, CH₂), 1.98–1.80 (m, 2H + 2H, CH₂), 4.24–4.10 (m, 6H, OCH₂); HR-MS, (M + H)⁺_{found} = 295.1673, C₁₃H₂₈O₅P requires 295.1674, (M + Na)⁺_{found} = 317.1492, C₁₃H₂₇O₅PNa requires 317.1494.

Diethyl 1-ethyl-1-(ethoxycarbonyl)pentylphosphonate (**5c**). Yield: 36%, ³¹P NMR (CDCl₃) δ : 26.4; ¹³C NMR (CDCl₃) δ : 9.4 (d, J = 7.2, CCH₂CH₃), 13.9 (s, CH₂CH₂CH₃), 14.1 (s, OCH₂CH₃), 16.5 (d, J = 5.9, POCH₂CH₃), 23.3 (s, CH₂), 25.2 (d, J =3.7, CH₂), 26.7 (d, J = 7.3, CCH₂CH₃), 31.5 (d, J =3.6, CH₂), 52.7 (d, J = 133.5, PCC), 61.1 (s, OCH₂), 62.4 (d, J = 7.2, POCH₂), 171.5 (d, J = 3.1, C=O); ¹H NMR (CDCl₃) δ : 0.91 (t, 3H, J = 6.8, CH₃), 0.99 (t, 3H, J = 7.4, CH₃), 1.45–1.26 (m, 9H + 4H, CH₂, CH₃), 2.17–1.82 (m, 4H, CH₂), 4.24–4.10 (m, 6H, OCH₂); HR-MS, (M + H)⁺_{found} = 309.1832, C₁₄H₃₀O₅P requires 309.1831, (M + Na)⁺_{found} = 331.1654, C₁₄H₂₉O₅PNa requires 331.1650.

Diethvl 1-benzyl-1-(ethoxycarbonyl)propylphosphonate (5d). Yield: 40%, ³¹P NMR (CDCl₃) δ: 25.5; ¹³C NMR (CDCl₃) δ: 10.4 (d, J = 4.5, CCH_2CH_3), 14.3 (s, $COCH_2CH_3$), 16.6 (d, J = 5.9, $POCH_2CH_3$), 16.7 (d, J = 5.9, $POCH_2CH_3$), 25.8 $(d, J = 3.4, CCH_2CH_3), 39.6 (d, J = 3.6, CCH_2Ar),$ 54.4 (d, J = 134.9, PCC), 61.4 (s, COCH₂), 62.5 (d, J = 7.1, POCH₂), 62.8 (d, J = 7.2, POCH₂), 127.0 (s, $C_{4'}$), 128.2 (s, $C_{2'}$)*, 130.7 (s, $C_{3'}$)*, 136.6 (d, $J = 12.2, C_{1'}$, 171.1 (d, J = 2.7, C=0), *tentative assignment; ¹H NMR (CDCl₃) δ : 1.07 (t, 3H, *J* = 7.5, CH₃), 1.34–1.25 (m, 9H, CH₃), 1.88–1.71 (m, 2H, CH₂), 3.08 (dd, 1H, $J^1 = 13.6$, $J^2 = 10.9$, CH₂Ar), 3.42 (dd, 1H, $J^1 = 13.6$, $J^2 = 10.9$, CH₂Ar), 4.24–4.09 (m, 6H, OCH₂), 7.27–7.16 (m, 5H, ArH); HR-MS, $(M + H)^{+}_{found} = 343.1670, C_{17}H_{28}O_5P$ requires 343.1674, (M + Na)⁺_{found} = 365.1491, C₁₇H₂₇O₅PNa requires 365.1494.

Compound	$\delta_P (CDCI_3)$	δ _P [lit]	HR-MS, [M + H] ⁺ _{found}	Requires	
4	22.2	22.0 [25]	315.1365	315.1361	C ₁₅ H ₂₄ O ₅ P
5d	25.4		343.1671	343.1674	C ₁₇ H ₂₈ O ₅ P
6	24.2		405.1832	405.1831	C ₂₂ H ₃₀ O ₅ P

TABLE 5 Identification of the Minor Components (4, 5d, and 6) Formed in the Phase-Transfer Catalyzed Ethylation of Ethoxycarbonylmethylphosphonate 1

Two-Step Diethylation of Diethyl Ethoxycarbonylmethylphosphonate under MW-PTC Conditions (Table 3, entry 3)

First step: 0.20 g (0.89 mmol) of triethyl phosphonoacetate (1), 0.09 mL (1.07 mmol) ethyl iodide 0.29 g (0.89 mmol) of cesium carbonate, and 0.03 g (0.09 mmol) of TBAB were measured in a tube that was placed in the MW reactor and was irradiated as above at 120° C for 2 h. Then the mixture was taken up in 10 mL of ethyl acetate, the resulting suspension was filtered, and the filtrate was concentrated in vacuum. The residue contained 8% of the starting material 1, 75% of the monoethylated product, and 7% of the diethylated product (**2a** and **3a**, respectively) according to GC (Table 3, entry 1, step 1).

Second step: The residue of first step, 2 equiv. of ethyl iodide, 1.5 equiv. of cesium carbonate, and 0.1 equiv. of TBAB were measured in a tube that was placed in the MW reactor and was irradiated under pressure control at 50 W at 120°C for 2 h. Then the mixture was taken up in 10 mL of ethyl acetate, the resulting suspension was filtered, and the filtrate was concentrated in vacuum. The residue contained 62% of the monoethyl compound (**2a** and 21% of the diethyl species (**3a**) along with 17% of other products (**4**, **5d**, and **6**) according to GC and gas chromatography-mass spectrometry (Table 3, entry 1, step 2). The ³¹P NMR shifts and HR-MS data for minor components **4**, **5d**, and **6** are shown in Table 5.

REFERENCES

- Henecka, H. In Methoden Der Organischen Chemie (Houben–Weyl); Müller, E., Ed.; Bayer, O., Vol. Ed.; G. Thieme Verlag: Stuttgart, 1976; Part II, pp 1435– 1447.
- [2] Sustmann, R.; Korth, H.-G. In Methoden Der Organischen Chemie (Houben-Weyl); Büchel, K. H., Ed.; Falbe, J., Vol. Ed.; G. Thieme Verlag: Stuttgart, 1985; Part E5, Ch. 3.2.1.1.1.3, pp 370–373.
- [3] Davis, B. R.; Hinds, M. G. Aust J Chem 1997, 50, 309–320.

- [4] English, A. R.; Girard, D.; Jasys, V. J.; Martingano, R. J.; Kellogg, M. S. J Med Chem 1990, 33, 344–347.
- [5] Baumstark, A. L.; Choudhary, A.; Vasquez, P. C.; Dotrong, M. J Heterocycl Chem 1990, 27, 291–294.
- [6] Quici, S.; Manfredi, A.; Raimondi, L.; Sironi, A. J Org Chem 1995, 60, 6379–6388.
- [7] Viera, I.; Manta, E.; Gonzalez, L.; Mahler, G. Tetrahedron: Asymmetry 2010, 21, 631–635.
- [8] Kosolapoff, G. M.; Powell, J. S. J Am Chem Soc 1950, 72, 4198–4200.
- [9] Bodnarchuk, N. D.; Malovik, V. V.; Derkach, G. I. J Gen Chem USSR 1970, 40, 1201–1207, 1210–1217.
- [10] Khachik, F.; Beecher, G. R.; Li, B. W.; Englert, G. J Labelled Compd Radiopharm 1995, 36, 1157–1172.
- [11] Doran, R.; Duggan, L.; Singh, S.; Duffy, C. D.; Guiry, P. J. Eur J Org Chem 2011, 35, 7097–7106.
- [12] Noguchi, H.; Aoyama, T.; Shioiri, T. Tetrahedron 1995, 51, 10531–10544.
- [13] Singh, R. J. Synthesis 1986, 762–763.
- [14] Starks, C. M.; Liotta, C. L.; Halpern, M. Phase Transfer Catalysis—Fundamentals, Applications and Industrial Perspectives; Chapman & Hall: New York, 1994.
- [15] Tierney, J. P.; Lidsröm, P. (Eds.). Microwave-Assisted Organic Synthesis; Blackwell: Oxford, UK, 2005.
- [16] Loupy, A. (Ed.), Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
- [17] Kappe, C. O. Angew Chem, Int Ed 2004, 43, 6250– 6284.
- [18] Deshayes, S.; Liagre, M.; Loupy, A.; Luche, J.-L.; Petit, A. Tetrahedron 1999, 55, 10851–10870.
- [19] Wang, Y.; Deng, R.; Mi, A.; Jiang, Y. Synth Commun 1995, 25, 1761–1764.
- [20] Deng, R.; Wang, Y.; Jiang, Y. Synth Commun 1994, 24, 111–115.
- [21] Keglevich, G.; Grün, A.; Bálint, E. Curr Org Synth 2013, 10, 751–763.
- [22] Keglevich, G.; Novák, T.; Vida, L.; Greiner, I. Green Chem 2006, 8, 1073–1075.
- [23] Keglevich, G.; Majrik, K.; Vida, L.; Greiner, I. Lett Org Chem 2008, 5, 224–228.
- [24] Greiner, I.; Grün, A.; Ludányi, K.; Keglevich, G. Heteroatom Chem 2011, 22, 11–14.
- [25] Grün, A.; Blastik, Z.; Drahos, L.; Keglevich, G. Heteroatom Chem 2012, 23, 241–246.
- [26] Keglevich, G.; Grün, A.; Blastik, Z.; Greiner, I. Heteroatom Chem 2011, 22, 174–179.
- [27] Bálint, E.; Greiner, I.; Keglevich, G. Lett Org Chem 2011, 8, 22–27.