$\frac{1.6-\text{Dideutero}-1.3-\text{dip}\text{henylhexane (VI)}}{(\nu, \text{ cm}^{-1}): 690, 730, 1450, 1500, 1600; 1800, 1870, 1940, 2175 (C-D), 3030, 3060. PMR spectrum (<math>\delta$, ppm): 0.81 t (2H, CH₂D, J = 7 Hz), 1.1-1.7 m (6H, 3CH₂), 2.20-2.70 m (2H, CH, CHD-Ph), 7.1-7.4 m (10H, 2Ph). Calculated: C 90.0; H 10.0%. Found: C 90.0; H 10.03%. M⁺ 240.

 $\frac{1,1-\text{Dimethyl-2-phenylsilacyclopentane (IX)}{(v, cm^{-1}): 715 (C-H arom.); 800 (Si CH_3); 850, 860 (Si(CH_3)_2); 1210, 1250 (Si-Ch_2); 1260 (Si-CH_3); 1415 (Si-CH_2); 1500, 1600, 1735, 1790, 1860, 1925, 3030, 3070, 3090. PMR spectrum (<math>\delta$, ppm): -0.175 s (3H, CH_3-Si), 0.25 s (3H, CH_3-Si), 0.92 t (2H, CH_2-Si, J = 7.5 Hz), 1.25-2.00 m (4H, 2CH_2), 2.25 t (1H, CH, J = 7.5 Hz), 7.1-7.5 m (5H, Ph). Calculated, %: C 75.79; H 9.47; Si 14.74. Found, %: C 75.4; H 9.44; Si 14.69. M⁺ 190. The ¹³C NMR spectra are given in Table 1.

LITERATURE CITED

- R. M. Sultanov, R. G. Gaimaldinov, and R. R. Muslukhov, Summaries of Lectures at the All-Union Conference on the Use of Metallocomplex Catalysis in Organic Synthesis [in Russian], Ufa (1989), p. 40.
- 2. S. Datta, M. B. Fischer, and S. S. Wreford, J. Organomet. Chem., <u>188</u>, 353 (1980).
- 3. J. X. McDermott, M. E. Wilson, and G. M. Whitesides, J. Am. Chem. Soc., <u>98</u>, 6529 (1976).
- H. C. Holtkamp, G. Schat, C. Blomberg, and F. Bickelhaugt, J. Organomet. Chem., <u>240</u>, No. 1, 1 (1989).
- 5. H. Xiong and R. D. Rieke, J. Org. Chem., 54, No. 14, 3247 (1989).

SYNTHESIS OF 1-TERT-BUTYL-2-ARYLDIAZENE-2-OXIDES BY REACTIONS OF t-BuNHMgBr WITH NITROBENZENES

É. T. Apasov, B. A. Dzhetigenov, Yu. A. Strelenko, UDC 542.91:542.952.1:547.566.2: A. V. Kalinin, and V. A. Tartakovskii 547.546:547.233+546.46'141

A new method has been developed for the synthesis of alkylaryldiazene oxides by the reactions of t-BuNHMgBr with nitrobenzenes. The cis-azoxy compound l-tert-butyl-2-(2-chlorophenyl)diazene-2-oxide, which irreversibly isomerizes to the trans isomer upon heating, was obtained for the first time under chemical reaction conditions.

Alkylaromatic diazene oxides are usually obtained by the reactions of aromatic nitroso compounds with dihaloamines [1-3]. Synthesis of asymmetric diaryldiazene oxides from aromatic nitro compounds under the effect of $ArN(MgBr)_2$ was described earlier [4, 5].

We have shown that aromatic nitro compounds (I) react with t-BuNHMgBr (II) fairly smoothly to give a corresponding alkylaryldiazene oxides (III)

$$\begin{array}{c} \begin{array}{c} 1 & t \cdot BuNHMgBr (II) \\ 2 & H \cdot O + NH_{4}CI \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array}$$
 \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot BuN + NH_{4}CI} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot H_{4}CI} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot H_{4}CI} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot H_{4}CI} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} \mathbf{ArNO_{2}} & \xrightarrow{1 \cdot t \cdot H_{4}CI} \\ \end{array} \\ \\ \end{array} \\

Ar = Ph (a), 2-Me₃SiNIIC₆II₄ (b), * 4-ClC₆H₄ (c), 2-ClC₆H₄ (d).

Condensation occurs slowly at $\sim 20^{\circ}$ C and accelerates upon heating practically without a change of the product ratio (Table 1). Characteristics of the products are given in Tables 2-4.

*In (IIIb) and (IVb) Ar = $2-NH_2C_6H_4$, the loss of the Me₃Si group evidently occurs in step 2.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1394-1397, June, 1991. Original article submitted September 14, 1990.

1234

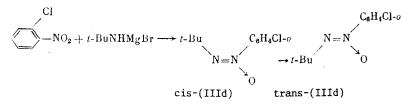

Sub-	Mole ra- tio (II)/	T, °C	Time, h	Substrate	Yield, %		
strate	(I)	1, 0		conver- sion (%)	(III)	(IV)	
(Ia)	4	22	72	64	52	12	
(1b)	3	60 22	$\frac{3}{48}$	75 86	60 73	15 13	
	4	60	2,5	100	100		
(10)	3,5	60	3	100	50	50	
	4	22	72	78	59	19	
(1 <u>d</u>)	2,5	22	96	59	18.7(cis) 16.3(trans)	24	
	4,5	22	96	66	28 (cis) 12 (trans)	26	
	5	60	3	73	35	40	

TABLE 1. Reaction Conditions and Yields of the Products of Reactions of (Ia-d) with (II)

Azo compounds (IV) form as by-products, as in [4, 5], owing to reduction of either (III) or (I) to the corresponding nitroso derivative and subsequent condensation of it with (II). The latter version is evidently realized in the case of (Ia), since it was shown that (IVa) is obtained in the reaction of (II) with nitrosobenzene, but not with (IIIa). However, formation of (IVb) is most likely connected with the first version, since (II) does not react with o-nitrosoaniline.

It should be noted that (IIIb) is obtained only in reaction (II) with silylated o-nitroaniline (Ib), with unsubstituted o-nitroaniline under the same conditions giving only o-nitrosoaniline.

In the reaction of (II) with (Id) at ~22°C it was possible to recover the fairly stable cis isomer of (IIId), which in solution gradually and irreversibly converts to the thermodynamically more stable trans-(IIId)

This is the first example of the formation of cis-azoxy compounds under conditions of chemical reactions. Until now the only method of obtaining them was photoisomerization of the trans derivatives [6].

It is known [7] that phenylazomethane is oxidized by perbenzoic acid to 1-methyl-2phenyldiazene-2-oxide. Therefore, we attempted to oxidize the corresponding by-product azo compounds (IVc, d) to (IIIc, d). However, only oxygenation of the nitrogen atom bonded to the t-Bu group is accomplished in this case

$$(IVc,d) \xrightarrow{PhCO_{3}H} t-Bu - N = N - Ar$$

$$(Vc,d)$$

An analogous course of the reaction was observed in [1].

EXPERIMENTAL

GLC analysis was carried out on a Biokhrom 1M chromatograph (glass column 58.2 m \times 0.25 mm with stationary liquid phase PEG-40M; carrier gas nitrogen). The ¹H, ¹³C, ¹⁴N, and ¹⁵N NMR spectra were recorded on a Bruker AM-300 spectrometer (¹H - 300 MHz, ¹³C - 75.5 MHz, ¹⁵N - 30.4 MHz, ¹⁴N -21.7 MHz, references TMS and MeNO₂). All reactions with magnesium derivatives were conducted in anhydrous solvents in a dry Ar atmosphere. The starting (Ia), tert-butylamine, and o-nitroaniline of grade "pure" were used after distillation, and the o-Cl- and p-Cl-nitrobenzenes [8], EtMgBr [9], and PhCO₃H [10] were obtained by well-known techniques.

Spectra
NMR
15N
and
1 "N,
1Н,
of
Parameters
2.
TABLE

(Ib) C ₆ D ₆ (IIb) C ₆ D ₆ (IIIb) C ₁ Cl ₄	11 ² - 8,06	н. 6,76 7,29 8.69	÷				And and a support of the support of	And a second sec		
	8.06	6,76 7,29 6.69			-11	Me	0 X N	N <	N=N	
	8,06	7,29	- 7,43 t	6,40 t	8,05	0,16 s	- 8,40 (NO ₂)	-301,6 (NH)		$\begin{bmatrix} 7, 71, br (NH): \\ 12, rg \dots \sim 78 Hz \end{bmatrix}$
- 	1	6.69	7,29	7,29	8,06	1,44	i	.	1	NMR ²⁰ Si: 5,65 ppm
		1	7,14t	6,62	2,98	1,48 s	-47,8	;	ţ	5,60. $\operatorname{br}_{13}(\mathrm{NH}_2)$ NMR ¹³ N:16,8 Ppm,
_	8,06	7,36	I	7,36	8,06	1.46 s	54.6	:	I	(INEPT for t-Bu)
	ł	7.45	7.45 - 7,70 m			1,16 s	-51,9	1	ł	
	 -	7,30-7.50 m	7,50 m		i	1,49 s	-51.5	1	1	
(IVb) CDCl ₂	I	6,68	7.12 t	6.74 t	7,62	1,32 s	;	- 322,6 (NH ₂)	69,8	5,30, br (NH2)
(IV.e) CDCI _s	7,59	7.38	;	80.1	7,59	1,32 s	:	,	121,1 170,8	NMR 15N: 170,9 ppm //INEPT for t-Bu)
(IVd) CDCIs	1	- 7,20-7,45 m J	7.45 m			1,36 s	;	1	124,5 176.9	NMR 16N: -29,8 ppm ([NEPT for t-Bu)
$(Vc) \qquad G_6 D_6$	7,93	7,12	i	2,12	7,93	1,38s	- 29,8	1	ļ	NWR 15N: -24,0 ppm (INEPT for t-Bu)
(Vd) $C_{i}D_{n}$;	7,22	6,93 t	6,77 t	7.60	1.47 s	23,5	:	!	

*Parameters of the PMR spectrum do not agree with those given in [2].

-

1236

Compound	Sol- vent	C,	C ²	C3	C,	C2	C ⁶	C (t-Bu)	Mc
(Ib) (IIIb) (IIIc) (IIId)cis (IId)trans (IVb) (IVc) (IVc) (IVd) (Vc) (Vd)	$\begin{array}{c} C_*D_{\mathfrak{c}}\\ CDCl_3\\ C_8D_6\\ C_8D_6\\ C_8D_6\end{array}$	135,0 133,6 147,1 147,0 148,0 136,1 150,7 148,9 143,4 142,8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	116,8 116,7 128,6 131,2 130,7 116,8 129,0 130,2 128,8 130,1	135,3 131,6 137,4 127,8 130,1 131,0 135,8 130,4 133,9 128,1	119,3 117,9 128,6 130,5 127,5 117,1 129,0 127,2 128,8 127,0	126,9 124,7 123,5 124,5 124,4 125,9 123,3 117,9 126,6 123,5	59,1 $59,1$ $60,5$ $60,0$ $67,0$ $67,8$ $69,0$ $77,7$ $78,1$	0,39 26,1 25,7 28,6 25.5 27,3 26,9 27,0 28,2 28,2 28,2

TABLE 3. Parameters of ¹³C NMR Spectra of Compounds, 6, ppm

TABLE 4. Properties and Results of Analysis of Products

Compound	$n_D^{\frac{22}{2}}$		Empirical			
		С	11	N	CI	formula
(IIIa) *		$\frac{67.53}{67.42}$	$\frac{7,91}{7,87}$	$\frac{16.02}{15.73}$		C10H14N2O
(IIIb)	1,5678	$\frac{62,20}{62,18}$	7,73	$\frac{22,17}{21,76}$		$C_{10}H_{15}N_{2}O$
(IIIc)	1,5360	$\frac{56,62}{56,47}$	$\frac{-6.07}{-6.42}$	<u>13,43</u> 13,18	$\frac{16,72}{16,71}$	C ₁₀ H ₁₃ N ₂ OCl
trans-(IIId)†	1,5210	<u>56,57</u> 56,47	$\frac{6,12}{6,12}$	13,51 13,18	$\frac{16,45}{16,71}$	C ₁₀ II ₁₃ N ₂ OCl
(1Vb)	1,5710	$\frac{67,67}{67,80}$	<u>8,47</u> 8,48	$\frac{24,14}{23,73}$		C ₁₀ H ₅ N ₃
(IVc)	1,5310	<u>66,98</u> 61,07	$\begin{array}{c} \underline{-6,65}\\ \hline 6,62 \end{array}$	$\frac{14,60}{14,25}$	<u>17,99</u> <u>18,07</u>	C10H13N2CI
(IVd)	1,5280	<u>60,92</u> 61,07	$\begin{array}{c} \underline{6,48} \\ \hline 6,62 \end{array}$	14,41	<u>18,18</u> <u>18,07</u>	C10H13N2Cl
(Vc)	1,5370	$\frac{56,51}{56,47}$	$\frac{-6,15}{-6,12}$	<u>13,47</u> <u>13,18</u>	<u>16,51</u> <u>16,71</u>	C ₁₀ II ₁₃ N ₂ OCl
(Vd)	1,523 0	$\frac{56,67}{56,47}$	$\begin{array}{c} \underline{6,09} \\ \hline 6,12 \end{array}$	<u>13,53</u> 13,18	$\frac{16,63}{16,71}$	$C_{10}H_{13}N_2OCl$

*Bp 70-80°C at 0.5 mm (cf. [2]). [†]cis-(IIId), bp 60-75°C.

<u>General Technique of Conducting the Reactions of t-BuNHMgBr with $ArNO_2$ </u>. To a freshly prepared solution of EtMgBr, obtained from 65 meq Mg and 60 mmoles EtBr in 30 ml abs. THF at 0°C with stirring was added by drops an equimolar amount of tert-butylamine in 5 ml abs. THF, the mixture was held for 10 min, cooled to 0°C, the solution of (Ia-d) in 5 ml abs. THF was added, and the mixture was held under the corresponding conditions (for mole ratios of reactants and reaction time, see Table 1). The mixture was treated with saturated aqueous NH₄Cl solution, extracted with ether, and the extract was dried over MgSO₄ and concentrated. The products were purified and analyzed (see Tables 1-4). Product (IVa) was identified with that described in [11].

<u>General Technique of Oxidation of (IVc-d) with Perbenzoic Acid</u>. To a solution of 0.5 g of (IVc, d) in 10 ml CHCl₃ at 0°C was added 15 ml of 0.7 N solution of PhCO₃H in CHCl₃, the mixture was held for 16 h in a refrigerator and treated with a 10% aqueous solution of KI, and then with sodium thiosulfate until the violet color disappeared. The organic layer was separated, washed with 10% NaHCO₃ solution, with water, and then dried over MgSO₄. After concentrating the solution products (Vc, d) were obtained with almost quantitative yields (see Tables 2-4).

<u>Silylation of o-Nitroaniline</u>. All operations were carried out in an atmosphere of dry Ar. To a three-necked flask fitted with a mechanical stirrer, thermometer, dropping funnel, and reflux condenser was added 10 g (72.5 mmoles) o-nitroaniline in 100 ml abs. C_6H_6 and 31 ml (220 mmoles) abs. Et_3N , and at ~20°C with vigorous stirring 28 ml (220 mmoles) Me_3SiCl was

slowly added by drops. The mixture was boiled for 6 h with continued stirring, then cooled, filtered, and the precipitate was washed with benzene; the filtrate was concentrated by evaporation, and the residue was distilled. The yield of (IIa) was 13.2 g (87%), bp 78°C at 0.45 mm. Treating (IIa) with methanol leads to the formation of MeaSiOMe, bp 57°C at 760 mm, n_D^{22} 1.3678 (cf. [12]), and o-nitroaniline, mp 71°C (cf. [13]).

LITERATURE CITED

- 1. F. R. Sullivan, E. Luck, and P. Kovacic, J. Org. Chem., 39, 2967 (1974).
- 2. V. Nelson, A. Serianz, and P. Kovacic, J. Org. Chem., 41, 1751 (1976).
- R. C. Zawalski and P. Kovacic, J. Org. Chem., 44, 2130 (1979).
 M. Okubo, T. Takahashi, and K. Koga, Bull. Chem. Soc. Jpn., <u>56</u>, 199 (1983).
- 5. M. Okubo, T. Nakashima, and J. Shiku, Bull. Chem. Soc. Jpn., 62, 1621 (1989).
- 6. J. Swigert and K. G. Taylor, J. Am. Chem. Soc., <u>93</u>, 7337 (1971).
- 7. J. P. Greenman, J. Org. Chem., <u>28</u>, 2508 (1963).
- 8. Preparative Organic Chemistry [in Russian], Goskhimizdat, Moscow (1964), p. 229.
- 9. C. T. Ioffe and A. N. Nesmeyanov, Methods of Organoelemental Chemistry [in Russian], Izd-vo Akad. Nauk SSSR, Moscow (1963), p. 14.
- 10. L. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol. 1, Wiley, New York (1967).
- 11. P. J. Stang and M. G. Mangum, J. Am. Soc., 99, 2597 (1977).
- 12. K. A. Andrianov, Organosilicon Compounds [in Russian], Goskhimizdat, Moscow (1955), p. 520.
- 13. Syntheses of Organic Preparations [Russian translation], No. 1, Izd-vo IL, Moscow (1949), p. 291.

SYNTHESIS AND PROPERTIES OF STABLE AROMATIC BIS(NITRILE OXIDES)

D. V. Tsyganov, A. P. Yakubov, L. I. Belen'kii, and M. M. Krayushkin

UDC 542.91:547.631.3-31

A number of stable bis(nitrile oxides) based on dimesitylmethane and didurylmethane and their analogs in which two aromatic rings are joined by various bridging groups were synthesized. The thermal isomerization of the bis(nitrile oxides) to diisocyanates and the relative reactivities of the bis(nitrile oxides) in 1,3-dipolar cycloaddition to styrene were studied.

It is known that nitrile oxides readily undergo 1,3-dipolar cycloaddition [1, 2], which makes it possible to use bis(nitrile oxides) (BNO) as effective low-temperature polymer hardeners [3]. Up until now, only a few stable aromatic BNO based on mesitylene [4, 5], durene [6], anthracene [7], and aromatic sulfonyl derivatives [8] were known. The aim of the present research was to synthesize stable compounds with two aromatic rings, each of which contains a nitrile oxide group.

In [9] we described a number of dialdehydes in which two mesitylene or durene rings were linked by various bridging bonds. These dialdehydes were converted to the corresponding oximes, which are BNO precursors. The synthesis of nitrile oxides from aldoximes can be accomplished either via halogenation with subsequent dehydrochlorination of the resulting hydroximoyl chlorides or by direct oxidative dehydrogenation [1]. Both of these possibilities were realized in our research.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1398-1403, June, 1991. Original article submitted July 24, 1990.