An Infrared Study of Co-ordinated BH₃ and BH₂ Groups as Proton Acceptors in Hydrogen Bonding

By M. P. Brown,* R. W. Heseltine, Pamela A. Smith, and P. J. Walker, Donnan Laboratories, Liverpool University, Liverpool 7

Boron co-ordination compounds of the type L,BH₃ (L = Me₃N, Et_aN, Py, and Et_aP) and Me₃N,BH₂X (X = CI, Br, and I) are shown to form hydrogen-bonded complexes with OH (MeOH, PhOH, and p-F-CeH4 OH) in carbon tetrachloride solution. These complexes appear to be formed via $OH \cdots BH_3$ and $OH \cdots BH_2$ interactions and are readily detected by the appearance of a low-frequency i.r. OH stretch. Formation of similar complexes with the more extensively halogenated amine-boranes Me₃N,BHX₂ (X = Cl, Br, and I) and Me₃N,BX₃ (X = F, Cl, and Br) could not be observed. Cyclotriborazanes (RNH·BH₂)₃ are shown to undergo self-association in solution and this is attributed to a related $NH \cdots BH_2$ interaction.

WE have reported 1 the appearance of low-frequency O-H stretching absorptions upon addition of Me₃N,BH₃ to dilute solutions of methanol and phenol in carbon tetrachloride. We suggested that these absorptions are due to the formation of hydrogen-bonded complexes in which the BH_3 group acts as a proton acceptor. In this paper we examine the interaction of hydroxylic compounds (MeOH, PhOH, and p-F·C₆H₄·OH) with Me₃N,BH₃ (and Me₃N,BD₃), Et₃N,BH₃, Py,BH₃, and Et₃P,BH₃. The effect of successive substitution of halogen (Cl, Br, and I) for H in the BH₃ group of Me₃N,BH₃ is also examined. Earlier we suggested that the temperature- and concentration-dependence of the N-H absorptions of Me₂NH,BH₃ in CCl₄ is due to a $NH \cdots BH_3$ interaction. Here we report the similar self-association of some cyclotriborazanes² (RNH·BH₂)₃, which like Me₂NH,BH₃, contain N-H and B-H bonds and tetraco-ordinated N and B atoms. Quantitative study of the self-association of Me2NH,BH3 will be described elsewhere.

RESULTS

Interactions involving OH Compounds.-Data for ternary solutions of OH compound and borane derivatives in CCl₄ are in Table 1 and, for PhOH as the proton donor, some spectra are shown in Figure 1 (a). In these solutions, the concentration of OH compound at 0.05M is sufficiently low to ensure that self-association is negligible in relation to complex formation with the borane derivative. In fact, if 0.697 l. mole⁻¹ is taken as the value of the equilibrium constant relating to cyclic dimerization of phenol,³ a simple calculation shows that 94% of the molecules (at 25°) are unassociated at this concentration. We find that the amine-boranes Et₃N,BH₃ and Py,BH₃ and the phosphineborane Et₃P,BH₃ behave like Me₃N,BH₃ and reduce the intensity of the free-OH stretch and produce a broader band at a lower frequency. With PhOH as the proton donor, the deuteriated compound Me₃N,BD₃ gives, within the limits of experimental error, identical results to Me₃N,BH₃.

The variation of the position of the associated-OH band, for a given OH compound, is not great. The hydrogenbonded shifts, Δv , lie in the following ranges: MeOH, 84-91; PhOH, 141-157; and p-F·C₆H₄·OH, 146-161

cm.⁻¹. On the basis of the Δv value and the concentration of free-OH (as measured by its absorbance), hydrogen bonding with PhOH is, as might be expected, stronger than

TABLE 1

Interaction of borane complexes (0.3M) with OH compounds (0.05M) in CCl₄ at 25° (cell path length 1.00 mm.)

Methanol #

Borane	Δν ο		d-OH band	Free-OH band
complex	(cm1)	Absorbance	$\Delta \nu_{\frac{1}{2}} \circ (\text{cm.}^{-1})$	absorbance d
None				0.32
Me_3N,BH_3	84	0.14	75	0.19
Et ₃ N,BH ₃	91	0.12	79	0.12
Py,BH ₃	90	0.12	85	0.12
Et ₃ P,BH ₃	85	0.12	72	0.14
Me ₃ N,BH ₂ Cl	71	0.10	104	0.18
Me_3N,BH_2Br	81	0.08	100	0.18
Me_3N,BH_2I	87	0.11	115	0.18
		Phenol a		
None			<u>→</u>	1.03
Me ₃ N,BH ₃	142	0.45	96	0.43
Et _a N, BH ₃	157	0.48	100	0.38
Py, BH,	148	0.42	106	0.38
Et.P.BH,	141	0.40	82	0.37
Me ₃ N,BH ₂ Cl	142	0.40	110	0.45
Me ₃ N,BH ₂ Br	153	0.34	117	0.45
Me ₃ N, BH ₂ I	149	0.25	125	0.51
$Me_3N, BD_3 \dots$	142	0.42	95	0.41
		p-Fluorophe	enol ^a	
None				1.01
Me ₃ N,BH ₃	148	0.52	97	0.34
Et ₃ N,BH ₃	161	0.51	103	0.31
Py, BH ₃	152	0.50	103	0.31
Et ₃ P,BH ₃	146	0.48	87	0.28
Me ₃ N, BH ₂ Cl	150	0.41	110	0.36
Me ₃ N, BH ₂ Br	158	0.40	121	0.41
Me_3NBH_1I	155	0.30	124	0.48
				-

^a The frequencies of the free-OH bands for 0.05M solutions are: MeOH, 3643; PhOH, 3610; p-F·C₆H₄·OH, 3612 cm.⁻¹. The respective values of ν_{OH} (free) for the ternary solutions differ by, at most, only 2 cm.⁻¹ from these values. ^b Experimental error in $\Delta \nu$ is about ± 3 cm.⁻¹ and is mainly due to the difficulty of locating the peak position of the associated-OH ^e Experimental error is about ± 5 cm.⁻¹. ^d Absorbband. ances will be slightly less than the true values because of the slit-width effect. They are reproducible to within ± 0.02 except for MeOH for which the reproducibility is slightly less satisfactory.

with MeOH. With the more positive hydrogen of p- $F \cdot C_6 H_4 \cdot OH$, the Δv values are greater than those for PhOH by about 5 cm.⁻¹, indicating stronger bonding in this case. The stoicheiometry of the PhOH-Me₃N,BH₃ complex has

³ D. L. Powell and R. West, Spectrochim. Acta, 1964, 20, 983.

¹ M. P. Brown and R. W. Heseltine, Chem. Comm., 1968,

^{1551.} ² M. P. Brown, R. W. Heseltine, and L. H. Sutcliffe, J. Chem.

been investigated by recording spectra for different concentrations of Me_3N,BH_3 . The absorbance of the free-OH stretch is taken as a measure of the free PhOH concentration

FIGURE 1 (a) OH Bands: Interaction of PhOH (0.05M) with some borane complexes (0.3M) in CCl₄: A, Me₃N,BH₃; B, Et₃N,BH₃; C, Et₃P,BH₃. (b) OH bands: Interaction of p-F·C₆H₄·OH (0.05M) with compounds Me₃N,BH₂X (0.3M) in CCl₄: A, X = Cl; B, X = Br; C, X = I. (c) OH bands: Interaction of p-F·C₆H₄·OH (0.05M) with A, Me₃N,BH₃; B, Me₃N,BH₂Cl; and C, Me₃N,BHCl₂ in benzene; D, p-F·C₆H₄·OH (0.05M) in the absence of amine-borane

(Table 2). A knowledge of this parameter together with the known initial concentrations of PhOH and Me_3N,BH_3 permits the ready calculation of equilibrium constants on the basis of assumed equilibria of various stoicheiometries. The small effect of PhOH self-association is ignored. Table 2 shows that constant values of K are obtained on the

TABLE 2

Interaction of PhOH (0.03M) with Me_3N,BH_3 in CCl_4 (25°)

		Equilibrium constant			
	Free-OH	1:1	1:2	2:1	
$[Me_3N, BH_3]$	absorb-	Complex b	Complex b	Complex b	
(м)	ance ^a	(l. mole ⁻¹)	(l. ² mole ⁻²)	(l. ² mole ⁻²)	
0	0.624				
0.1	0.428	5.1	69	117	
0.2	0.328	4.8	31	148	
0.3	0.256	$5 \cdot 1$	21	200	
0.4	0.212	$5 \cdot 1$	15	245	
0.2	0.183	5.0	12	281	
0.6	0.161	5.0	9	317	

^a Cell path length 1.00 mm. ^b Phenol : amine-borane.

assumption of a 1:1 complex but not 1:2 or 2:1 complexes. These results, therefore, indicate a complex with 1:1 stoicheiometry.

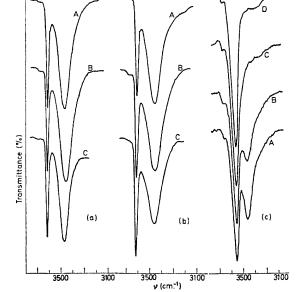
The compounds Me_3N,BH_2X (X = Cl, Br, and I) interact similarly with the OH compounds (Table 1). The corresponding spectra are shown in Figure 1 (b) for complexes with p-F·C₆H₄·OH. For a given OH compound, the intensity of the associated-OH band mainly decreases in the order The more extensively halogenated compounds Me_3N,BHX_2 and Me_3N,BX_3 cannot be examined in carbon tetrachloride solution because of their low solubilities in this solvent. Benzene is a suitable alternative solvent although it has the disadvantage that it complexes weakly with OH compounds, causing a reduction in the frequency of the 'free-OH' stretch. Nevertheless, complexing of the BH_3 and BH_2X adducts with the OH compounds also takes place in this solvent (Table 3 and Figure 1 (c)). The intensities of

TABLE 3

Interaction ^{*a*} of borane complexes (0·3*m*) with PhOH and p-F·C₆H₄·OH (0·05*m*) in benzene at 25°

	PhOH ^b $\Delta \nu$ (cm. ⁻¹)	p-F·C ₆ H ₄ ·OH ^b $\Delta \nu$ (cm. ⁻¹)
Me ₃ N,BH ₃	93	96
$Me_{3}N,BH_{2}Cl$	91	95
Me ₃ N,BH ₂ Br	97	98
$Me_{3}N,BH_{2}I$	89	98

^a Data are not given for MeOH solutions because the weaker associated-OH band maximum is difficult to locate precisely. ^b Free-OH frequencies (0.05M in C_6H_6) are: PhOH, 3557; *p*-F· C_6H_4 ·OH, 3557 cm.⁻¹. In the ternary solution these frequencies are at about 3555-3556 cm.⁻¹. The estimated experimental error in $\Delta \nu$ is about ± 4 cm.⁻¹.


both OH bands indicate that complexing is less extensive in this solvent. The smaller values of Δv are largely explained by changes in position of the free-OH bands rather than associated-OH bands.

In contrast to the compounds Me_3N,BH_2X , those of formulae Me_3N,BHX_2 (X = Cl, Br, in 0.6 and 0.3Msolutions; X = I in 0.3M-solution) and Me_3N,BX_3 (X = F, Cl, and Br, in 0.15M-solutions) are not observed to interact with any of the three OH compounds (0.05M). No associated-OH bands are observed. In Figure 1 (c) the spectrum of a p-F·C₆H₄·OH-Me₃N,BHCl₂ solution is compared with spectra of similar solutions of Me_3N,BH_3 and Me_3N,BH_2Cl and with that for a binary p-F·C₆H₄·OH solution. For the dibromide and di-iodide, as for Me₃N,BHCl₂, there was slight broadening of the free-OH band but there was no indication of a separate associated-OH band. Unfortunately the use of a more inert solvent than benzene seems ruled out by solubility problems.

N-H Stretching Absorptions of Cyclotriborazanes² (RNH·BH₂)₃.—The frequencies for these compounds are

given in Table 4 and the concentration and temperaturedependent bands for cis-(BuNH·BH₂)₃ are shown in Figure 2. Similar spectra are observed for cis-(PrNH·BH₂)₃. These spectra resemble those ¹ of Me₂NH,BH₃ in CCl₄ except that the N-H absorption of the unassociated

			(mm D	1 2/3		
		cis-Ison	mer	1	trans-Is	omer
	Solid ^a	CCl ₄ solution		Solid a	CCl ₄ solution	
R		Free- NH	Associated- NH		Free- NH	Associated- NH
Et،	3220	$\begin{array}{c} 3295\\ 3260 \end{array}$		$\begin{array}{c} 3267\\ 3236\end{array}$	$\begin{array}{c} 3297\\ 3278 \end{array}$	
Pr	3220	3295 326 3	3226	$\begin{array}{c} 3263\\ 3230 \end{array}$	3298 3277	3258
Bu	3218	$3295 \\ 3263$	3225	3250 °	$3298 \\ 3278$	3257

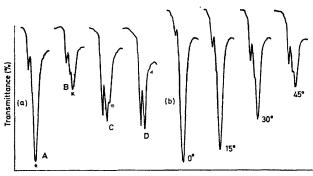

^a As KBr discs and Nujol mulls. ^b Associated-NH bands are not clearly observed for the Et derivatives because of their low solubilities. ^c Sample liquefied in the i.r. beam.

TABLE 5

Molecular weight data for (BuNH·BH₂)₃ in CCl₄

cis-Isomer M.W. (Found)		trans-Isomer		
	M.W. (Found)		M.W. (Found)	
Concn. (M)	M.W. (Calc.)	Concn. (M)	M.W. (Calc.)	
0.08	1.70	0.08	1.03	
0.04	1.27	0.06	1.04	
0.02	1.10	0.03	1.00	
0.01	0.98			

 $(\text{RNH}\cdot\text{BH}_2)_3$ molecules consists of a doublet. The molecular weights (Table 5) obtained by vapour pressure osmometry substantiate the i.r. evidence for association. The *trans*-isomers appear to associate much less extensively than the *cis*-; there is very little sign of the characteristic low-frequency band at concentrations of about 0·1M and only at about 1·0M is this band of comparable intensity with the free-NH doublet. It is noteworthy that the similarity of N-H absorptions of *cis*- and *trans*-isomers is only revealed

(a) Concentration dependence; A, 0.08M, 1.0 mm. cell; B, 0.04M, 1.0 mm. cell; C, 0.02M, 5.0 mm. cell; D, 0.01M, 10.0 mm. cell; * denotes associated-NH band (3225 cm.⁻¹); (b) temperature-dependence of a 0.08M solution, 1.0 mm. cell

by study of dilute solutions. At moderate concentrations, the spectra differ markedly because of more extensive selfassociation of the former and in the crystalline phase the absorptions also differ. The lesser tendency of the *trans*isomers to associate, also revealed by molecular weight studies (Table 5), is probably explained by their lower symmetry.²

B-H Stretching Absorptions.—The effect of p-F·C₈H₄·OH

(0.2M) on the BH₃ absorptions of Me₃N,BH₃ (0.1M) is to lower the intensity (Figure 3 (a)). The strongest component, the antisymmetric stretch,⁴ of the absorptions appears to be affected most. There is no observable change in frequency of the peak maxima (2273m, 2319m, and 2370s cm.⁻¹). The reason for using a solution of a different composition from those used for examination of OH bands is that the requirement here is a high degree of complexing of Me₃N,BH₃ molecules rather than of p-F·C₆H₄·OH. Although at 0.2M there is significant p-F·C₆H₄·OH self-association, this does not interfere in the B–H stretching region of the spectrum.

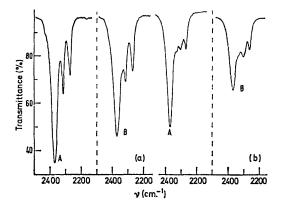


FIGURE 3 B-H Absorptions: (a) Me₃N,BH₃ (0·1M) in CCl₄, (A) without and (B) with p-F·C₆H₄·OH (0·2M), 0·1 mm. cell; (b) Me₂NH,BH₃ in CCl₄ at comparable effective path lengths, (A) 0·002M, 2·5 mm. cell and (B) 0·09M, 0·056 mm. cell

Perturbations of the BH_3 absorption of Me_2NH, BH_3 when it undergoes self-association in CCl_4 are seen from Figure 3 (b) to be very similar. According to observation of the N-H stretches, the degree of association at 0.002M is low, the free-NH band having an absorbance of about twice as large as that of the associated-NH band, whereas at 0.09M it is very much higher, the free-NH band having only a negligible intensity compared to that of the associated-NH band. The BH₃ absorptions of Me₃N, BH₃, which has no protonic hydrogen atom for self-association, are independent of concentration, in contrast to those of Me_3NH,BH_3 .

In recording these spectra, the weak CCl_4 band at about 2300 cm.⁻¹ has been carefully balanced by the use of a suitable reference cell and CO_2 absorption has been overcome by flushing the spectrometer with dry nitrogen.

DISCUSSION

Amine-boranes, R_3N,BH_3 and some of the related boron compounds described above do not contain lone pairs of electrons, or even π electrons, requirements normally considered necessary for formation of hydrogen bonds. These compounds, stable in the air but moderately reactive by most standards, do however contain Lewis bases, which if released from the complex would participate as proton acceptors. In view of this it is necessary to establish that the compounds are chemically

(

⁴ J. N. G. Faulks, N. N. Greenwood, and J. H. Morris, J. Inorg. Nuclear Chem., 1967, **29**, 329; R. C. Taylor, 'Boron-Nitrogen Chemistry,' Advances in Chemistry Series, No. 42, American Chemical Society, Washington D.C., 1964, p. 59.

unchanged in the solutions under observation. One possibility which must be excluded is reaction with the solvent or impurity. Strong evidence against such reaction is the use of two solvents, CCl_4 and C_8H_6 , with different chemical properties. Water is the only probable common impurity. Addition of trace amounts has no effect on the spectra and larger amounts would be readily detected spectroscopically. A more serious possibility is a disproportionation or similar reversible reaction of the boron compound. The fact that from many of the actual solutions studied we have successfully recovered the compounds in high yield (Me₂NH,BH₃ from CCl₄, Me₃N,BH₃ from CCl₄-PhOH, and other examples) does not necessarily rule out this type of reaction. The most convincing evidence is spectroscopic. For example, the C-H stretching frequencies, when not obscured by those of other components in the solutions, are completely unchanged. This is a sensitive criterion, as C-H stretching bands of Me₃N,BH₃, for example, are readily distinguishable from those of, say, Me₃N. The B-H stretching bands, too, provide convincing evidence. The changes here are inconsistent with any major chemical rearrangement. Stability of cis- and transisomers of the cyclotriborazanes in CCl₄ is also good evidence against a reversible disproportionation which would lead to isomerization.

We consider then, that our i.r. observations are evidence of weak complex formation between amineborane and OH compound, in the ternary solutions, and related self-association of $Me_2NH_3BH_3$ and $(RNH \cdot BH_2)_3$, in the binary solutions. The molecular interactions clearly involve on the one hand an electropositive hydrogen atom attached either to oxygen or nitrogen, and on the other, a proton-accepting group. The perturbations of the BH₃ frequencies of Me₃N,BH₃ (ternary solutions) and Me₂NH,BH₃ suggest that the BH₃ groups are the proton acceptors in these cases although the spectroscopic evidence is not conclusive. Nevertheless, Burg⁵ also came to a similar conclusion and suggested weak $NH \cdots BH_3$ forces in solid and liquid Me₂NH,BH₂ on the basis of a spectroscopic study. He observed perturbation of the BH₃ frequencies of Me₂NH,BH₃ in the liquid phase compared with CCl₄ solution. He also observed some changes in the NH frequencies, although he incorrectly assigned the free-NH band at 3303 cm.⁻¹ (his value) and did not therefore observe the characteristic concentration- and temperature-dependence of the solution spectra.

Other evidence for the proton acceptor being the Lewis acid function of the molecule and not the Lewis base comes from comparing a series of Me₃N adducts such as the BH₃, BH₂Cl, BHCl₂, and BCl₃ adducts. All have Me₃N in common but only the BH₃ and BH₂Cl adducts appear to form complexes. However, steric effects per se rather than the successive decrease in the number of B-H bonds could be responsible. A stronger piece of evidence is the very similar behaviour of Et₃N,BH₃ and Et₃P,BH₃. Direct involvement of Et₃N and Et₃P would lead to the expectation of a much weaker interaction for the phosphorus compound since Et₃P is a much weaker base than Et_3N .

A high dipole moment for the boron compound is likely to be an important factor leading to complex formation but is clearly not the only requirement. This is shown by comparing the dipole moments⁶ of Me₂NH,BH₃ and Me₃N,BH₃ (5.0 and 4.7 D respectively) with those ^{7,8} of Me₃N,BF₃, Me₃N,BCl₃, and Me₃N,BBr₃ $(5\cdot8, 6\cdot3, and 6\cdot6 D$ respectively). A considerable contribution to hydrogen bond energies derives from electrostatic forces.⁹ For this reason the charge distribution is important. That implied by a simple formula of the type $R_3N^{+--}BH_3$ is an oversimplification, as considerable delocalization of negative charge occurs over the three hydrogen atoms.¹⁰ In view of this we suggest that two possible explanations of complex formation should be considered: (i) the formation of weak $B \cdots H$ -O bonds, and (ii) the formation of weak $H^{\delta-} \cdots H-O$ bonds between the hydridic H atoms attached to boron and the protonic H atom of OH group. Another possibility is of course one in which both the boron atom and the hydrogen atoms attached to it take part in hydrogen bond formation, *i.e.*, the interaction is a property of the BH₃ (or BH₂) group as a whole. The experimental evidence is not very helpful in deciding between these possibilities. The explanation for the limiting case of an observed interaction being with Me₃N,BH₂X and not Me₃N,BHX₂ may be steric, close approach of $H^{\delta+}$ to B being prevented in BHX₂ adducts, or simply that two $H^{\delta-}$ atoms are necessary because of a chelating effect. The absence of frequency changes in ν_{B-H} on addition of OH compound might be more plausibly explained by $B \cdots H$ -O rather than $H \cdots H$ -O interactions but it does not appear to constitute a strong criterion for or against involvement of the hydridic H atoms. More helpful evidence may come from an X-ray study 11 of solid Me₂NH,BH₃, preliminary results of which indicate a comparable $BH_3 \cdots H-N$ interaction and an analysis of the relevant interatomic distances should be interesting and perhaps decisive.

The relation between Δv and the strength of hydrogen bonds is not simple,¹² but Δv very roughly increases with the strength of the bond. Values of Δv in Table 1 are comparable with those observed for moderately strong

⁶ A. B. Burg, Inorg. Chem., 1964, 3, 1325.
⁶ J. R. Weaver and R. W. Parry, Inorg. Chem., 1966, 5, 713.
⁷ C. M. Bax, A. R. Katritzky, and L. E. Sutton, J. Chem.

Soc., 1958, 1258

⁸ G. M. Phillips, J. S. Hunter, and L. E. Sutton, J. Chem. Soc., 1945, 146. 9 S. Broto-

S. Bratoz, 'Advances in Quantum Chemistry,' vol. 3 ed. Per-olov Löwdin, Academic Press, London, 1967, 209.

¹⁰ R. Hoffmann, 'Boron-Nitrogen Chemistry,' Advances in Chemistry Series, No. 42, American Chemical Society, Washing-ton D.C., 1964, p. 78; D. R. Armstrong and P. G. Perkins, J. Chem. Soc. (A), 1969, 1044.

 ¹¹ N. Bailey, personal communication (Sheffield University).
 ¹² (a) G. C. Pimental and A. L. McClellan, 'The Hydrogen Bond,' Freeman, San Francisco, 1960; (b) L. J. Bellamy, Advances in Infrared Group Frequencies,' Methuen, London, 1968, ch. 8.

hydrogen bonds, e.g., for many O · · · H-O bonds such as those ¹³ in complexes of PhOH with esters (MeCO₂Me, 170 cm.⁻¹), ketones (Me·CO·Et, 200 cm.⁻¹) and aldehydes (EtCHO, 170 cm.⁻¹) etc., and also similar complexes with organic cyanides ¹⁴ (PhCN, 144 cm.⁻¹). Further, the value of K (5.0 l. mole⁻¹) which we find for formation of the Me₃N,BH₃-PhOH complex is of the same order as values 13,14 for most of these systems. A more interesting comparison would be of ΔH values and with this aim in mind we are studying the spectra as a function of temperature.

Finally, whether or not these $BH_3 \cdots H$ and $BH_2 \cdots H$ interactions can be properly termed hydrogen bonds depends on how these are defined. If the definition is based on experimental criteria, as followed by Pimentel and McClennan,¹⁵ rather than on specific electronic requirements (such as a lone pair) of the proton acceptor, then clearly there is no doubt that the term hydrogen-bonding may be properly used to describe these intermolecular forces.

EXPERIMENTAL

Spectra were recorded on a Perkin-Elmer 257 spectrometer and wavenumbers were measured by linear interpolation from reference peaks of separate MeOH (3643 cm.⁻¹)

prepared from Me₃N, BH₃ and Et₃P (65° for 2 hr.) and purified by vacuum sublimation. This preparation and those described below were carried out under nitrogen. Analyses are in Table 6.

Monohalogenated Compounds.—The chloride Me₃N,BH₂Cl was prepared in high yield (93%) from HCl and Me₃N,BH₃ in Et₂O at 35-40° and, after high-vacuum sublimation, had m.p. 85° (lit., 18 85°). The bromide, Me₃N, BH₂Br, was prepared (yield 75%) and purified similarly and had m.p. 69-70° (lit.,18 68°).

The iodide, Me₃N, BH₂I, was prepared ¹⁸ by adding iodine (8.8 g., 35 mmoles) in benzene (100 ml.) to Me₃N,BH₃ (5.1 g., 70 mmoles) in benzene (150 ml.) during 45 min. The pale yellow solution was refluxed for 30 min. after which time it became colourless. After evaporation of some solvent and addition of light petroleum (50 ml.), the product, m.p. 73° (lit.,¹⁸ 73°), was crystallized and sublimed in vacuo.

Dihalogenated Compounds.—The chloride Me₃N,BHCl₂ was prepared, in 64% yield, by redistribution (1) between Me₃N,BH₃ (0.183 g., 2.5 mmoles) and Me₃N,BCl₃ (0.883 g., 5.0 mmoles) in a sealed tube at 180° for 10 hr. The

$$Me_3N,BH_3 + 2Me_3N,BCl_3 \implies 3Me_3N,BHCl_2$$
 (1)

product, m.p. 156-158°, was purified by fractional sublimation under high vacuum.

The bromide Me₃N,BHBr₂ was prepared ¹⁸ in 61% yield

TABLE 6

Calc. (%)		
Xb		
33.0		
52.6		
63.8		
50.0		
69.2		
78.1		

" Under high vacuum. ^b Halogen.

and PhCONH₂ (3423 cm.⁻¹) solutions in CCl₄ and were generally accurate to ± 2 cm.⁻¹. Several were checked by recording them on a Perkin-Elmer 125 spectrometer. The instruments were flushed with dry air or nitrogen. The cells were maintained at 25° by water circulating through a hollow brass block around the cell.

Solvents.-Carbon tetrachloride was dried and distilled from P₂O₅ and, in a 10 mm. cell, had negligible OH and CH absorptions. AnalaR benzene was used.

Hydroxy-compounds.---Methanol (AnalaR) and p-fluorophenol (m.p. 48°) were used without further purification. Phenol was resublimed and had m.p. 41°.

Boron Compounds .--- Trimethylamine-borane, m.p. 94°, was recrystallized. Triethylamine-borane, $n_{\rm D}^{21}$ 1.4422 (lit.,¹⁶ 1.4427) and pyridine-borane, $n_{\rm p}^{20}$ 1.5300 (lit.,⁷ 1.5310), were purified by high-vacuum distillation. Triethylphosphine-borane, m.p. 47-48°, (lit.,¹⁷ 48°) was

14 M. C. Sousa Lopes and H. W. Thompson, Spectrochim. Acta, 1968, 24, 1367.

¹⁵ Ref. 12a, p. 194.

from Me_3N, BH_3 and BBr_3 in benzene and after crystallization and sublimation had m.p. 127-128° (lit.,¹⁸ 127-128°).

The *iodide* Me₃N,BHI₂ was prepared from iodine and Me₃N,BH₃, at first only with considerable difficulty in low yield, but then readily provided the following procedure was closely followed. Iodine (8.7 g., 34 mmoles) was added rapidly with shaking to Me₃N,BH₃ (2.5 g., 34 mmoles) in CCl₄ (100 ml.). Immediately after addition of the iodine, the pale yellow solution began to darken rapidly and the solvent was quickly removed in vacuo. The brown residue after exposure to air for 48 hr. became lighter in colour. Fractional sublimation gave Me₃N,BHI₂, m.p. 112-114°, in 53% yield.

[9/1034 Received, June 17th, 1969]

¹⁶ N. N. Greenwood and J. H. Morris, J. Chem. Soc., 1960, 2922.

17 R. A. Baldwin and R. M. Washburn, J. Org. Chem., 1961, 26, 3549.

¹⁸ H. Noth and H. Beyer, Chem. Ber., 1960, 93, 2251.

¹³ T. Gramstad, Spectrochim. Acta, 1963, 19, 497.